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SHARP INEQUALITIES BETWEEN TOADER AND NEUMAN

MEANS∗

WEI-MAO QIAN1, ZAI-YIN HE2, AND YU-MING CHU3,∗∗

Abstract. In the article, we prove that the double inequalities

α1Q(a, b) + (1− α1)NGA(a, b) < T (a, b) < β1Q(a, b) + (1− β1)NGA(a, b),

α2Q(a, b) + (1− α2)NQA(a, b) < T (a, b) < β2Q(a, b) + (1− β2)NQA(a, b),

α3C(a, b) + (1− α3)NGA(a, b) < T (a, b) < β3C(a, b) + (1− β3)NGA(a, b),

α4C(a, b) + (1− α4)NQA(a, b) < T (a, b) < β4C(a, b) + (1− β4)NQA(a, b)

hold for all a, b > 0 with a 6= b if and only if α1 ≤ 5/8, β1 ≥ (16−π2)/[(4
√

2−
π)π] = 0, 7758 · · · , α2 ≤ 1/4, β2 ≥ 1 − 2(

√
2π − 4)/[(

√
2 − log(1 +

√
2))π] =

0.4708 · · · , α3 ≤ 5/14 = 0.3571 · · · , β3 ≥ (16 − π2)/[(8 − π)π] = 0.4016 · · · ,
α4 ≤ 1/10 and β4 ≥ 1−4(π−2)/[(4−

√
2− log(1+

√
2))π] = 0.1472 · · · , where

Q(a, b), C(a, b) and T (a, b) are respectively the quadratic, contra-harmonic
and Toader means, and NGA(a, b) and NQA(a, b) are the Neuman means.

1. Introduction

Let p ∈ R, r ∈ (0, 1) and a, b > 0 with a 6= b. Then the complete elliptic integrals K(r)
and E(r) [1-32] of the first and second kinds, geometric mean G(a, b), arithmetic mean
A(a, b), quadratic mean Q(a, b), contra-harmonic mean C(a, b), second contra-harmonic

mean C(a, b), centroidal mean C̃(a, b), Toader mean T (a, b) [33-36], pth power mean
Mp(a, b) [37-43], and Schwab-Borchardt mean SB(a, b) [44-48] of a and b are given by

K(r) =

∫ π/2

0

(
1− r2 sin2 t

)−1/2
dt, E(r) =

∫ π/2

0

√
1− r2 sin2(t)dt,

G(a, b) =
√
ab, A(a, b) =

a+ b

2
, Q(a, b) =

√
a2 + b2

2
,

C(a, b) =
a2 + b2

a+ b
, C(a, b) =

a3 + b3

a2 + b2
, C̃(a, b) =

2(a2 + ab+ b2)

3(a+ b)
,

T (a, b) =
2

π

∫ π/2

0

√
a2 cos2(t) + b2 sin2(t)dt,

=

2aE
(√

1− (b/a)2
)
/π, a > b,

2bE
(√

1− (a/b)2
)
/π, a < b,

(1.1)

2010 Mathematics Subject Classification. Primary: 26E60; Secondary: 33E05.
Key words and phrases. Toader mean, Neuman mean, geometric mean, arithmetic mean, qua-

dratic mean, contra-harmonic mean.
∗The research was supported by the Natural Science Foundation of China (Grant Nos.

61673169, 11301127, 11701176, 11626101, 11601485), the Science and Technology Research Pro-
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Mp(a, b) =


(
ap+bp

2

)1/p
, p 6= 0,

√
ab, p = 0

and

SB(a, b) =


√
b2−a2

arccos (a/b)
, a < b,√

a2−b2
cosh−1 (a/b)

, a > b,

respectively, where cosh−1(x) = log(x+
√
x2 − 1) is the inverse hyperbolic cosine functions.

Recently, the bivariate means have attracted the attention of many researchers [49-82].
Neuman [83] introduced the Neuman mean

N(a, b) =
1

2

[
a+

b2

SB(a, b)

]
,

provided the explicit formulae for NAG(a, b)(a, b), NGA(a, b), NAQ(a, b) and NQA(a, b) as
follows

NAG(a, b) =: N [A(a, b), G(a, b)] =
1

2
A(a, b)

[
1 + (1− v2)

tanh−1(v)

v

]
,

NGA(a, b) =: N [G(a, b), A(a, b)] =
1

2
A(a, b)

[√
1− v2 +

arcsin(v)

v

]
, (1.2)

NAQ(a, b) =: N [A(a, b), Q(a, b)] =
1

2
A(a, b)

[
1 + (1 + v2)

arctan(v)

v

]
,

NQA(a, b) =: N [Q(a, b), A(a, b)] =
1

2
A(a, b)

[√
1 + v2 +

sinh−1(v)

v

]
, (1.3)

where v = (a − b)/(a + b), tanh−1(x) = log[(1 + x)/(1 − x)]/2 and sinh−1(x) = log(x +√
x2 + 1) are the inverse hyperbolic tangent and sine functions, respectively.
It is well known that the power mean Mp(a, b) is continuous and strictly increasing

with respect to p ∈ R for fixed a, b > 0 with a 6= b and the inequalities

G(a, b) = M0(a, b) < A(a, b) = M1(a, b) < C̃(a, b) (1.4)

< Q(a, b) = M2(a, b) < C(a, b) < C(a, b)

hold for all a, b > 0 with a 6= b.
Barnard, Pearce and Richards [84], and Alzer and Qiu [85] proved that the double

inequality
M3/2(a, b) < T (a, b) < Mlog 2/ log(π/2)(a, b)

holds all a, b > 0 with a 6= b.
In [86], the authors stated that the double inequality

αQ(a, b) + (1− α)A(a, b) < T (a, b) < βQ(a, b) + (1− β)A(a, b) (1.5)

is valid for all a, b > 0 with a 6= b if and only if α ≤ 1/2 and β ≥ (4 − π)/[(
√

2 − 1)π] =
0.6596 · · · .

Neuman [83] presented the inequalities

G(a, b) < NAG(a, b) < NGA(a, b) < A(a, b) (1.6)

< NQA(a, b) < NAQ(a, b) < Q(a, b),

α1A(a, b) + (1− α1)G(a, b) < NGA(a, b) < β1A(a, b) + (1− β1)G(a, b),

α2Q(a, b) + (1− α2)A(a, b) < NAQ(a, b) < β2Q(a, b) + (1− β2)A(a, b),

α3A(a, b) + (1− α3)G(a, b) < NAG(a, b) < β3A(a, b) + (1− β3)G(a, b),

α4Q(a, b) + (1− α4)A(a, b) < NQA(a, b) < β4Q(a, b) + (1− β4)A(a, b)

for all a, b > 0 with a 6= b if α1 ≤ 2/3, β1 ≥ π/4, α2 ≤ 2/3, β2 ≥ (π − 2)/[4(
√

2 − 1)] =

0.6890 · · · , α3 ≤ 1/3, β3 ≥ 1/2, α4 ≤ 1/3, β4 ≥ (log(1 +
√

2) +
√

2 − 2)/[2(
√

2 − 1)] =
0.3568 · · · .
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Li, Qian and Chu [87] proved that the double inequalities

αNAQ(a, b) + (1− α)A(a, b) < T (a, b) < βNAQ(a, b) + (1− β)A(a, b),

Q[λa+ (1− λ)b, λb+ (1− λ)a] < T (a, b) < Q[µa+ (1− µ)b, µb+ (1− µ)a]

hold for all a, b > 0 with a 6= b if and only if α ≤ 3/4 and β ≥ 4(4 − π)/[π(π − 2)] =

0.9753 · · · , λ ≤ 1/2 +
√

2/4 = 0.8535 · · · and µ ≥ 1/2 +
√

16/π2 − 1/2 = 0.8940 · · · if
λ, µ ∈ (1/2, 1).

Qian, Song, Zhang and Chu [88] proved that the two-sided inequalities

λ1C(a, b) + (1− λ1)A(a, b) < T (a, b) < µ1C(a, b) + (1− µ1)A(a, b)

C[λ2a+ (1− λ2)b, λ2b+ (1− λ2)a] < T (a, b) < C[µ2a+ (1− µ2)b, µ2b+ (1− µ2)a]

are valid for all a, b > 0 with a 6= b if and only if λ1 ≤ 1/8, µ1 ≥ 4/π − 1 = 0.2732 · · · ,
λ2 ≤ 1/2 +

√
2/8 = 0.6767 · · · and µ2 ≥ 1/2 +

√
(4− π)/(3π − 4)/2 = 0.6988 · · · if

λ2, µ2 ∈ (1/2, 1).
In [89], Song, Qian and Chu found that the inequalities

α1A(a, b) + (1− α1)C̃(a, b) < NQA(a, b) < β1A(a, b) + (1− β1)C̃(a, b), (1.7)

Aα2(a, b)C̃1−α2(a, b) < NQA(a, b) < Aβ2(a, b)C̃1−β2(a, b),

C̃[α3a+ (1− α3)b, α3b+ (1− α3)a] < NQA(a, b) < C̃[β3a+ (1− β3)b, β3b+ (1− β3)a]

take place if and only if α1 ≥ 4 − 3[
√

2 + log(1 +
√

2)]/2 = 0.5566 · · · , β1 ≤ 1/2, α2 ≥
1−[log(

√
2+log(1+

√
2))−log 2]/(2 log 2−log 3) = 0.5208 · · · , β2 ≤ 1/2, β3 ≥ 1/2+

√
2/4 =

0.8535 · · · and α3 ≤ 1/2 +
√

6[
√

2 + log(1 +
√

2)]− 12/4 = 0.8329 · · · if α3, β3 ∈ (1/2, 1).

From (1.4)-(1.7) we clearly see that the inequalities

NGA(a, b) < NQA(a, b) <
1

2
A(a, b) +

1

2
C̃(a, b) (1.8)

<
1

2
A(a, b) +

1

2
Q(a, b) < T (a, b) < Q(a, b) < C(a, b)

hold for all a, b > 0 with a 6= b.
Motivated by inequality (1.8), in the article we deal with the optimality of the param-

eters α1, α2, α3, α4, β1, β2, β3 and β4 such that the double inequalities

α1Q(a, b) + (1− α1)NGA(a, b) < T (a, b) < β1Q(a, b) + (1− β1)NGA(a, b),

α2Q(a, b) + (1− α2)NQA(a, b) < T (a, b) < β2Q(a, b) + (1− β2)NQA(a, b),

α3C(a, b) + (1− α3)NGA(a, b) < T (a, b) < β3C(a, b) + (1− β3)NGA(a, b),

α4C(a, b) + (1− α4)NQA(a, b) < T (a, b) < β4C(a, b) + (1− β4)NQA(a, b)

hold for all a, b > 0 with a 6= b.

2. Lemmas

In order to prove our main results, we need several formulas and lemmas which we
present in this section.

The following formulas for K(r) and E(r) can be found in the literature [90]:

dK(r)

dr
=
E(r)− (1− r2)K(r)

r(1− r2)
,

dE(r)

dr
=
E(r)−K(r)

r
,

d [K(r)− E(r)]

dr
=

rE(r)

1− r2 , E
(

2
√
r

1 + r

)
=

2E(r)− (1− r2)K(r)

1 + r
,

K(0+) = E(0+) =
π

2
, K(1−) =∞, E(1−) = 1.
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Lemma 2.1. (See [90, Theorem 1.25]) Let −∞ < a < b < ∞, f, g : [a, b] → R be
continuous on [a, b] and differentiable on (a, b), and g′(x) 6= 0 on (a, b). If f ′(x)/g′(x) is
increasing (decreasing) on (a, b), then so are the functions

f(x)− f(a)

g(x)− g(a)
,

f(x)− f(b)

g(x)− g(b)
.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2. The following statements are true:
(1) The function r 7→

[
E(r)− (1− r2)K(r)

]
/r2 is strictly increasing from (0, 1) onto

(π/4, 1);
(2) The function r 7→ K(r) is strictly increasing from (0, 1) onto (π/2,∞);
(3) The function r 7→ [K(r)− E(r)] /r2 is strictly increasing from (0, 1) onto (π/4,+∞);

(4) The function r 7→ φ(r) =
[
3E(r)− 2(1− r2)K(r)

]
/
√

1 + r2 is strictly increasing

from (0, 1) onto (π/2, 3
√

2/2).

Proof. Parts (1)-(3) can be found in [8, Theorem 3.21(1), (2) and Exercise 3.43(11)]. For
part (4), it is not difficult to verify that

φ(0+) =
π

2
, φ(1+) =

3
√

2

2
, (2.1)

φ′(r) =
E(r)− 2r2E(r)−K(r) + 3r2K(r)

r(1 + r2)3/2

=
r

(1 + r2)3/2

[
E(r)− (1− r2)K(r)

r2

]
+

2r3

(1 + r2)3/2

[
K(r)− E(r)

r2

]
. (2.2)

It follows from (2.2) together with Lemma 2.2(1) and (3) that

φ′(r) > 0 (2.3)

for r ∈ (0, 1).
Therefore, part (4) follows from (2.1) and (2.3). �

Lemma 2.3. The function

ϕ(r) =
2r2 + 1− 2

π

√
1 + r2

[
3E(r)− 2(1− r2)K(r)

]
r2

is strictly decreasing from (0, 1) onto (3− 6
√

2/π, 3/4).

Proof. Let ϕ1(r) = 2r2 + 1 − 2
√

1 + r2
[
3E(r)− 2(1− r2)K(r)

]
/π, ϕ2(r) = r2. Then

simple computations lead to

ϕ1(0+) = ϕ2(0+) = 0, ϕ(r) =
ϕ1(r)

ϕ2(r)
, (2.4)

ϕ(1−) = 3− 6
√

2

π
, (2.5)

ϕ′1(r)

ϕ′2(r)
= 2− 1

π

{
3E(r)− 2(1− r2)K(r)√

1 + r2
+
√

1 + r2
[
E(r)− (1− r2)K(r)

r2
+K(r)

]}
.

(2.6)

It is not difficult to verify that the function r 7→
√

1 + r2 is strictly increasing on (0, 1).
Then it follows from Lemma 2.2(1), (2) and (4) together with (2.6) that ϕ′1(r)/ϕ′2(r) is
strictly decreasing on (0, 1) and

ϕ(0+) = lim
r→0+

ϕ′1(r)

ϕ′2(r)
=

3

4
. (2.7)

Therefore, Lemma 2.3 follows from Lemma 2.1, (2.4), (2.5) and (2.7) together with the
monotonicity of ϕ′1(r)/ϕ′2(r). �
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Lemma 2.4. The function

ψ(r) =
3r2 + 1− 2

π

[
3E(r)− 2(1− r2)K(r)

]
r2

is strictly decreasing from (0, 1) onto (4− 6/π, 9/4).

Proof. Let ψ1(r) = 3r2 + 1 − 2
[
3E(r)− 2(1− r2)K(r)

]
/π, ψ2(r) = r2. Then simple

computations lead to

ψ1(0+) = ψ2(0+) = 0, ψ(r) =
ψ1(r)

ψ2(r)
, (2.8)

ψ(1−) = 4− 6

π
, (2.9)

ψ′1(r)

ψ′2(r)
= 3− 1

π

[
E(r)− (1− r2)K(r)

r2
+K(r)

]
. (2.10)

From Lemma 2.2(1), (2) and (2.10) we know that ψ′1(r)/ψ′2(r) is strictly decreasing on
(0, 1) and

ψ(0+) = lim
r→0+

ψ′1(r)

ψ′2(r)
=

9

4
. (2.11)

Therefore, Lemma 2.4 follows from Lemma 2.1, (2.8), (2.9) and (2.11) together with
the monotonicity of ψ′1(r)/ψ′2(r). �

3. Main Results

Theorem 3.1. The double inequality

α1Q(a, b) + (1− α1)NGA(a, b) < T (a, b) < β1Q(a, b) + (1− β1)NGA(a, b)

holds for all a, b > 0 with a 6= b if and only if α1 ≤ 5/8 and β1 ≥ (16−π2)/[π(4
√

2−π)] =
0.7758 · · · .

Proof. Since Q(a, b), NGA(a, b) and T (a, b) are symmetric and homogenous of degree one.
Without loss of generality, we assume that a > b. Let r = (a − b)/(a + b) ∈ (0, 1). Then
from (1.1) and (1.2) one has

T (a, b) =
2

π
A(a, b)

[
2E(r)− (1− r2)K(r)

]
, (3.1)

NGA(a, b) =
1

2
A(a, b)

[√
1− r2 +

arcsin(r)

r

]
. (3.2)

It follows from (3.1) and (3.2) together with Q(a, b) = A(a, b)
√

1 + r2 that

T (a, b)−NGA(a, b)

Q(a, b)−NGA(a, b)
=

2
π

[
2E(r)− (1− r2)K(r)

]
− 1

2

[√
1− r2 + arcsin(r)

r

]
√

1 + r2 − 1
2

[√
1− r2 + arcsin(r)

r

]
= 1−

2r
√

1 + r2 − 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r
√

1 + r2 − r
√

1− r2 − arcsin(r)
:= 1− F (r). (3.3)

Let f1(r) = 2r
√

1 + r2−4r
[
2E(r)− (1− r2)K(r)

]
/π and g1(r) = 2r

√
1 + r2−r

√
1− r2−

arcsin(r). Then simple computations lead to

f1(0+) = g1(0+) = 0, F (r) =
f1(r)

g1(r)
, (3.4)

f ′1(r)

g′1(r)
=

2r2 + 1− 2
π

√
1 + r2

[
3E(r)− 2(1− r2)K(r)

]
2r2 −

√
1− r4 + 1
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=
ϕ(r)

(2r2 −
√

1− r4 + 1)/r2
, (3.5)

where ϕ(r) is defined as in Lemma 2.3.

It is easy to verify that the function r 7→ (2r2−
√

1− r4 + 1)/r2 is positive and strictly
increasing on (0, 1), then (3.5) and Lemma 2.3 lead to the conclusion that f ′1(r)/g′1(r)
is strictly decreasing on (0,1). Hence from Lemma 2.1 and (3.4) we know that F (r) is
strictly decreasing on (0,1). Moreover,

lim
r→0+

2r
√

1 + r2 − 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r
√

1 + r2 − r
√

1− r2 − arcsin(r)
=

3

8
, (3.6)

lim
r→1−

2r
√

1 + r2 − 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r
√

1 + r2 − r
√

1− r2 − arcsin(r)
=

4(
√

2π − 4)

π(4
√

2− π)
. (3.7)

Therefore, Theorem 3.1 follows from (3.3), (3.6) and (3.7) together with the mono-
tonicity of F (r). �

Theorem 3.2. The double inequality

α2Q(a, b) + (1− α2)NQA(a, b) < T (a, b) < β2Q(a, b) + (1− β2)NQA(a, b)

holds for all a, b > 0 with a 6= b if and only if α2 ≤ 1/4 and β2 ≥ 1 − 2(
√

2π −
4)/
[
(
√

2− log(1 +
√

2))π
]

= 0.4708 · · · .

Proof. Since Q(a, b), NQA(a, b) and T (a, b) are symmetric and homogenous of degree one.
Without loss of generality, we assume that a > b. Let r = (a − b)/(a + b) ∈ (0, 1). Then
from (1.4) we have

NQA(a, b) =
1

2
A(a, b)

[√
1 + r2 +

sinh−1(r)

r

]
. (3.8)

It follows from (3.1) and (3.8) together with Q(a, b) = A(a, b)
√

1 + r2 that

T (a, b)−NQA(a, b)

Q(a, b)−NQA(a, b)
=

2
π

[
2E(r)− (1− r2)K(r)

]
− 1

2

[√
1 + r2 + sinh−1(r)

r

]
√

1 + r2 − 1
2

[√
1 + r2 + sinh−1(r)

r

]
= 1−

2r
√

1 + r2 − 4
π
r
[
2E(r)− (1− r2)K(r)

]
r
√

1 + r2 − sinh−1(r)
:= 1−G(r). (3.9)

Let f1(r) = 2r
√

1 + r2−4r
[
2E(r)− (1− r2)K(r)

]
/π and g2(r) = r

√
1 + r2−arcsinh(r).

Then simple computations lead to

f1(0+) = g2(0+) = 0, G(r) =
f1(r)

g2(r)
, (3.10)

f ′1(r)

g′2(r)
=

2r2 + 1− 2
π

√
1 + r2

[
3E(r)− 2(1− r2)K(r)

]
r2

= ϕ(r), (3.11)

where ϕ(r) is defined as in Lemma 2.3.
It follows from Lemma 2.3 and (3.11) that f ′1(r)/g′2(r) is strictly decreasing on (0,1).

Then Lemma 2.1 and (3.10) lead to the conclusion that G(r) is strictly decreasing on
(0,1). Moreover,

lim
r→0+

2r
√

1 + r2 − 4
π
r
[
2E(r)− (1− r2)K(r)

]
r
√

1 + r2 − sinh−1(r)
=

3

4
, (3.12)

lim
r→1−

2r
√

1 + r2 − 4
π
r
[
2E(r)− (1− r2)K(r)

]
r
√

1 + r2 − sinh−1(r)
=

2(
√

2π − 4)[√
2− log(1 +

√
2)
]
π
. (3.13)

Therefore, Theorem 3.2 follows from (3.9), (3.12) and (3.13) together with the mono-
tonicity of G(r). �
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Theorem 3.3. The double inequality

α3C(a, b) + (1− α3)NGA(a, b) < T (a, b) < β3C(a, b) + (1− β3)NGA(a, b),

holds for all a, b > 0 with a 6= b if and only if α3 ≤ 5/14 and β3 ≥ (16− π2)/[π(8− π)] =
0.4016 · · · .

Proof. Without loss of generality, we assume that a > b. Let r = (a− b)/(a+ b) ∈ (0, 1).
Then it follows from (3.1), (3.2) and C(a, b) = A(a, b)(1 + r2) that

T (a, b)−NGA(a, b)

C(a, b)−NGA(a, b)
=

2
π

[
2E(r)− (1− r2)K(r)

]
− 1

2

[√
1− r2 + arcsin(r)

r

]
1 + r2 − 1

2

[√
1− r2 + arcsin(r)

r

]
= 1−

2r(1 + r2)− 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r(1 + r2)− r

√
1− r2 − arcsin(r)

:= 1−H(r). (3.14)

Let f2(r) = 2r(1 + r2)− 4r
[
2E(r)− (1− r2)K(r)

]
/π and g3(r) = 2r(1 + r2)− r

√
1− r2−

arcsin(r). Then simple computations lead to

f2(0+) = g3(0+) = 0, H(r) =
f2(r)

g3(r)
, (3.15)

f ′2(r)

g′3(r)
=

3r2 + 1− 2
π

[
3E(r)− 2(1− r2)K(r)

]
3r2 −

√
1− r2 + 1

=
ψ(r)

(3r2 −
√

1− r2 + 1)/r2
, (3.16)

where ψ(r) is defined as in Lemma 2.4.

It is easy to verify that the function r 7→ (3r2−
√

1− r2 + 1)/r2 is positive and strictly
increasing on (0, 1). Then from Lemma 2.4 and (3.16) we know that f ′2(r)/g′3(r) is
strictly decreasing on (0,1). Hence Lemma 2.1 and (3.15) lead to the conclusion that H(r)
is strictly decreasing on (0,1). Moreover,

lim
r→0+

2r(1 + r2)− 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r(1 + r2)− r

√
1− r2 − arcsin(r)

=
9

14
, (3.17)

lim
r→1−

2r(1 + r2)− 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r(1 + r2)− r

√
1− r2 − arcsin(r)

=
8(π − 2)

π(8− π)
. (3.18)

Therefore, Theorem 3.3 follows from (3.14), (3.17) and (3.18) together with the mono-
tonicity of H(r). �

Theorem 3.4. The double inequality

α4C(a, b) + (1− α4)NQA(a, b) < T (a, b) < β4C(a, b) + (1− β4)NQA(a, b)

holds for all a, b > 0 with a 6= b if and only if α4 ≤ 1/10 and β4 ≥ 1−4(π−2)/
[
(4−

√
2− log(1 +

√
2))π

]
=

0.1472.

Proof. Without loss of generality, we assume that a > b. Let r = (a− b)/(a+ b) ∈ (0, 1).
Then it follows from (3.1), (3.8) and C(a, b) = A(a, b)(1 + r2) that

T (a, b)−NQA(a, b)

C(a, b)−NQA(a, b)
=

2
π

[
2E(r)− (1− r2)K(r)

]
− 1

2

[√
1 + r2 + sinh−1(r)

r

]
1 + r2 − 1

2

[√
1 + r2 + sinh−1(r)

r

]
= 1−

2r(1 + r2)− 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r(1 + r2)− r

√
1 + r2 − sinh−1(r)

:= 1− J(r). (3.19)
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Let f2(r) = 2r(1+r2)−4r
[
2E(r)− (1− r2)K(r)

]
/π and g4(r) = 2r(1+r2)−r

√
1 + r2−

sinh−1(r). Then simple computations lead to

f2(0+) = g4(0+) = 0, J(r) =
f2(r)

g4(r)
, (3.20)

f ′2(r)

g′4(r)
=

3r2 + 1− 2
π

[
3E(r)− 2(1− r2)K(r)

]
3r2 −

√
1 + r2 + 1

=
ψ(r)

(3r2 −
√

1 + r2 + 1)/r2
, (3.21)

where ψ(r) is defined as in Lemma 2.4.

It is easy to verify that the function r 7→ (3r2−
√

1 + r2 + 1)/r2 is positive and strictly
increasing on (0,1). Then from Lemma 2.4 and (3.21) we know that f ′2(r)/g′4(r) is strictly
decreasing on (0,1). Hence Lemma 2.1 and (3.20) lead to the conclusion that J(r) is
strictly decreasing on (0,1). Moreover,

lim
r→0+

2r(1 + r2)− 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r(1 + r2)− r

√
1 + r2 − sinh−1(r)

=
9

10
, (3.22)

lim
r→1−

2r(1 + r2)− 4
π
r
[
2E(r)− (1− r2)K(r)

]
2r(1 + r2)− r

√
1 + r2 − sinh−1(r)

=
4(π − 2)[

4−
√

2− log(1 +
√

2)
]
π
. (3.23)

Therefore, Theorem 3.4 follows from (3.19), (3.22) and (3.23) together with the mono-
tonicity of J(r). �

Let r0 = log(1 +
√

2), r∗ = r2/(1 +
√

1− r2)2. Then (1.1) and Theorems 3.1-3.4 lead
to Corollary 3.5 immediately.

Corollary 3.5. The double inequalities

π

64

[
10
√

2
√

2− r2 + 3(1 +
√

1− r2)

(√
1− r∗2 +

arcsin(r∗)

r∗

)]
< E(r)

<

√
2(16− π2)

4(4
√

2− π)

√
2− r2 +

√
2π − 4

2(4
√

2− π)
(1 +

√
1− r2)

(√
1− r∗2 +

arcsin(r∗)

r∗

)
,

π

32

[
2
√

2
√

2− r2 + 3(1 +
√

1− r2)

(√
1 + r∗2 +

sinh−1(r∗)

r∗

)]
< E(r)

<

√
2(8− π(

√
2 + r0))

4(
√

2− r0)

√
2− r2 +

√
2π − 4

4(
√

2− r0)
(1 +

√
1− r2)

(√
1 + r∗2 +

sinh−1(r∗)

r∗

)
,

π

112

[
20(2− r2)

1 +
√

1− r2
+ 9(1 +

√
1− r2)

(√
1− r∗2 +

arcsin(r∗)

r∗

)]
< E(r)

<
16− π2

2(8− π)

2− r2

1 +
√

1− r2
+
π − 2

8− π (1 +
√

1− r2)

(√
1− r∗2 +

arcsin(r∗)

r∗

)
,

π

80

[
4(2− r2)

1 +
√

1− r2
+ 9(1 +

√
1− r2)

(√
1 + r∗2 +

sinh−1(r∗)

r∗

)]
< E(r)

<
8− π(

√
2 + r0)

2(4−
√

2− r0)

2− r2

1 +
√

1− r2
+

π − 2

2(4−
√

2− r0)
(1+

√
1− r2)

(√
1 + r∗2 +

sinh−1(r∗)

r∗

)
.

hold for all r ∈ (0, 1).
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4. Results and discussion

In the article, we present the best possible parameters α1, α2, α3, α4, β1, β2, β3 and
β4 such that the double inequalities

α1Q(a, b) + (1− α1)NGA(a, b) < T (a, b) < β1Q(a, b) + (1− β1)NGA(a, b),

α2Q(a, b) + (1− α2)NQA(a, b) < T (a, b) < β2Q(a, b) + (1− β2)NQA(a, b),

α3C(a, b) + (1− α3)NGA(a, b) < T (a, b) < β3C(a, b) + (1− β3)NGA(a, b),

α4C(a, b) + (1− α4)NQA(a, b) < T (a, b) < β4C(a, b) + (1− β4)NQA(a, b)

hold for all a, b > 0 with a 6= b. Our results are the improvements and refinements of the
previously results.

5. Conclusion

We present several sharp bounds for the Toader mean in terms of the Neuman mean,
quadratic mean and contraharmonic mean, and give new bounds for the complete elliptic
integral of the second kind E(r). Our approach may have further applications in the theory
of bivariate means and special functions.
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ON STRONGLY STARLIKENESS OF STRONGLY
CONVEX FUNCTIONS

ADEL A. ATTIYA, NAK EUN CHO, AND M. F. YASSEN

Abstract. In this paper we introduce an argument property which
gives an interesting relation between the classes of strongly convex
and strongly starlike functions of order α and type β in the open
unit disk. Also, the sufficient condition of starlikeness under cer-
tain restrictions is obtained.

1. Introduction

Let A denote the class of functions f(z) of the form

(1.1) f(z) = z +
∞∑
k=1

ak z
k,

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}.
The function f(z) is called strongly starlike of order β and type α and
strongly convex of order β and type α, respectively if it satisfies

(1.2)

∣∣∣∣arg

(
zf ′(z)

f(z)
− α

)∣∣∣∣ < π

2
β

and

(1.3)

∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)
− α

)∣∣∣∣ < π

2
β,

where α ∈ [0, 1) and β ∈ (0, 1]. We denote by S∗(α, β) and C(α, β) the
classes of functions satisfy the conditions (1.2) and (1.3) respectively.
We note that both S∗(α, 1) = S∗(α) and C(α, 1) = C(α), are the well
known classes of starlike functions of order α and convex functions of
order α.

MacGregor [2] Wilken and Feng [5] obtained the following result:

2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic functions; Strongly convex functions; Strongly

starlike functions.
1
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2 ADEL A. ATTIYA, NAK EUN CHO, AND M. F. YASSEN

f(z) ∈ C(α) ⇒ f(z) ∈ S∗(β) (0 ≤ α < 1),

where

(1.4) β := β(α) =


1−2α

22−2α(1−22α−1))
, α 6= 1

2

1
2 log 2

, α = 1
2
.

Also, Nunokawa et al.[4] investigated a certain relation between S∗(α, β)
and C(α, β). In the present paper, we obtain a relationship between
strongly convex and strongly starlike functions by using the result given
by Nunokawa [3].

In our investigation, we need the following lemma:

Lemma 1.1. [3] Let P (z) be analytic in U, P (0) = 1, P (z) 6= 0 in U
and suppose that there exists a point z0 ∈ U such that

|arg(P (z0))| =
π

2
δ,

where 0 < δ. Then we have

z0P
′(z0)

P (z0)
= ikδ,

where

k ≥ 1

2

(
a+

1

a

)
when arg(P (z0)) =

π

2
δ

and

k ≤ − 1

2

(
a+

1

a

)
when arg(P (z0)) = −π

2
δ,

where (P (z0))
1/δ = ±ia and a > 0.

2. Main Result

Theorem 2.1. Let f(z) be analytic function defined by (1.1) and also,
let

(2.5) f(z) ∈ C(α, γ) (z ∈ U),

where 0 ≤ α < 1 and 0 < γ < 1.
Then

(2.6) f(z) ∈ S(β, δ) (z ∈ U),
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STRONGLY STARLIKENESS OF STRONGLY CONVEX FUNCTIONS 3

where

(2.7) γ =
2

π
arctan

(
δ(1− β)aδ−10 (a20 + 1)

2
(
β + (1− β)aδ0

) (
(β − α) + (1− β)aδ0

)) ,
β is defined by (1.4), 0 < δ < 1 and a0 is the positive root of the
equation:

(β − α)β
(
(1 + δ)x2 − (1− δ)

)
+ xδ (1− β) (2β − α)

(
x2 − 1

)
(2.8)

+ x2δ (1− β)2
(
(1− δ)x2 − (1 + δ)

)
= 0,

which satisfies

(2.9) aδ0 ≥

(
β

1− β

(√
csc2

(π
2
δ
)

+

(
β − α
β

)
− csc

(π
2
δ
)))1/δ

Proof. Let

p(z) =
z f ′(z)

f(z)
, p(0) = 1 and p(z) 6= β (z ∈ U).

Then we have

1 +
z f ′′(z)

f ′(z)
= p(z) +

zp′(z)

p(z)
.

If there exists z0 ∈ U such that

|arg (P (z))| = |arg (p(z)− β)| < π

2
δ

for |z| < |z0| and

|arg (P (z0))| = |arg (p(z0)− β)| = π

2
δ,

where

P (z) =
p(z)− β

1− β
.

Since P (0) = 1 and by using Lemma 1.1, we have

z0 P
′(z0)

P (z0)
=

z0p
′(z0)

p(z0)− β
= iδk.

The first case, if

arg (P (z0)) = arg (p(z0)− β) =
π

2
δ,
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4 ADEL A. ATTIYA, NAK EUN CHO, AND M. F. YASSEN

then we have

arg

(
1 +

z f ′′(z)

f ′(z)
− α

)
= arg

(
(p(z0)− β)

(
1 +

z0p
′(z0)/p(z0)

p(z0)− β
+

β − α
p(z0)− β

))
=
π

2
δ + arg

(
1 +

iδk

β + (1− β)(ia)δ
+

β − α
(1− β)(ia)δ

)
=
π

2
δ + arg

(
1 +

iδk

β + (1− β)aδei
π
2
δ

+
β − α

(1− β)aδei
π
2
δ

)
= arg

(
ei

π
2
δ +

iδk

βe−i
π
2
δ + (1− β)aδ

+
(β − α)

(1− β)aδ

)

≥ arctan


δk(1−β)aδ+δkβ cos(π

2
δ)

(β+(1−β)aδ)
2 + sin

(
π
2
δ
)

β−α
(1−β)aδ + cos

(
π
2
δ
)
− βδk sin(π

2
δ)

(β+(1−β)aδ)
2

 .

Since the function h(k) defined by

h(k) = arctan


δk(1−β)aδ+δkβ cos(π

2
δ)

(β+(1−β)aδ)
2 + sin

(
π
2
δ
)

β−α
(1−β)aδ + cos

(
π
2
δ
)
− βδk sin(π

2
δ)

(β+(1−β)aδ)
2


is an increasing function of k (k ≥ 1), we have

arg

(
1 +

zf ′′(z)

f ′(z)
− α

)

≥ arctan


(δ (1−β)aδ+δβ cos(π

2
δ))(a+1/a)

2(β+(1−β)aδ)
2 + sin

(
π
2
δ
)

β−α
(1−β)aδ + cos

(
π
2
δ
)
− βδ sin(π

2
δ)(a+1/a)

2(β+(1−β)aδ)
2

 .

Also, the function f(θ) defined by

f(θ) = arctan


δ(1−β)aδ(a+1/a)

2(β+(1−β)aδ)
2 + δβ(a+1/a)

2(β+(1−β)aδ)
2 cos θ + sin θ

β−α
(1−β)aδ + cos θ − βδ(a+1/a)

2(β+(1−β)aδ)
2 sin θ
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STRONGLY STARLIKENESS OF STRONGLY CONVEX FUNCTIONS 5

is an increasing and continuous function of θ (0 < θ < π
2
) when

aδ satisfies (2.9). Therefore, we have

arg

(
1 +

zf ′′(z)

f ′(z)
− α

)
(2.10)

≥ arctan

(
δ(1− β) (a+ 1/a) aδ

2 (β + (1− β)aδ) ((β − α) + (1− β)aδ)

)
.

On the other hand, since the function g(x) defined by

(2.11) g(x) =
δ(1− β)

(
x+ 1

x

)
xδ

2 (β + (1− β)xδ) ((β − α) + (1− β)xδ)
(x > 0),

takes its minimum value when x is defined by (2.8), we see that this
contradicts the hypothesis of Theorem 2.1.

The second case, if

arg (P (z0)) = arg (p(z0)− β) = −π
2
δ,

then we have

arg

(
1 +

z f ′′(z)

f ′(z)
− α

)
= arg

(
(p(z0)− β)

(
1 +

z0p
′(z0)/p(z0)

p(z0)− β
+

β − α
p(z0)− β

))
= −π

2
δ + arg

(
1 +

iδk

β + (1− β)aδe−i
π
2
δ

+
β − α

(1− β)aδe−i
π
2
δ

)
= arg

(
e−i

π
2
δ +

i δk

β ei
π
2
δ + (1− β)aδ

+
(β − α)

(1− β)aδ

)

= arctan


δk(1−β)aδ+δkβ cos(π

2
δ)

(β+(1−β)aδ)
2 − sin

(
π
2
δ
)

β−α
(1−β)aδ + cos

(
π
2
δ
)

+
βδk sin(π

2
δ)

(β+(1−β)aδ)
2

 .

Since the function h(k) defined by

h(k) = arctan

(
δk(1− β)aδ + δkβ cos

(
π
2
δ
)
− sin

(
π
2
δ
)

β−α
(1−β)aδ + cos

(
π
2
δ
)

+ βδk sin
(
π
2
δ
) )

is a decreasing function of k (k ≤ −1), we have
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6 ADEL A. ATTIYA, NAK EUN CHO, AND M. F. YASSEN

arg

(
1 +

zf ′′(z)

f ′(z)
− α

)

≤ arctan

−
(δ(1−β)aδ+δβ cos(π

2
δ))(a+1/a)

2(β+(1−β)aδ)
2 − sin

(
π
2
δ
)

β−α
(1−β)aδ + cos

(
π
2
δ
)
− βδ sin(π

2
δ)(a+1/a)

2(β+(1−β)aδ)
2

 .

Also, the function f(θ) defined by

f(θ) = − arctan


δ(1−β)aδ(a+1/a)

2(β+(1−β)aδ)
2 + δβ(a+1/a)

2(β+(1−β)aδ)
2 cos θ + sin θ

β−α
(1−β)aδ + cos θ − βδ(a+1/a)

2(β+(1−β)aδ)
2 sin θ


is a decreasing and continuous function of θ (0 < θ < π

2
), when

aδ satisfies (2.9). Therefore, we have

arg

(
1 +

z f ′′(z)

f ′(z)
− α

)
≤ − arctan

(
δ(1− β)

(
a+ 1

a

)
aδ

2 (β + (1− β)aδ) ((β − α) + (1− β)aδ)

)
.

Also, by using the function g(x) defind by (2.11) which contradicts
hypothesis of Theorem 2.1. Therefore, it completes the proof of the
theorem. �

Putting f(z) instead of zf ′(z) in Theorem 2.1, we have the following
corollary

Corollary 2.1. Let f(z) be analytic function defined by (1.1) and also,
let

(2.12) f(z) ∈ S∗(α, γ) (z ∈ U),

where 0 ≤ α < 1 and 0 < γ < 1. Then

(2.13)

∣∣∣∣arg

(
f(z)

A(z)
− β

)∣∣∣∣ < π

2
δ (z ∈ U),

where A(z) =
∫ z
0

(f(t)/t)dt is Alexander operator defined by Alexander
[1],

(2.14) γ =
2

π
arctan

(
δ(1− β)aδ−10 (a20 + 1)

2
(
β + (1− β)aδ0

) (
(β − α) + (1− β)aδ0

)) ,
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STRONGLY STARLIKENESS OF STRONGLY CONVEX FUNCTIONS 7

β is defined by (1.4), 0 < δ < 1 and a0 is the positive root of the
equation:

(β − α)β
(
(1 + δ)x2 − (1− δ)

)
+ xδ (1− β) (2β − α)

(
x2 − 1

)
(2.15)

+ x2δ (1− β)2
(
(1− δ)x2 − (1 + δ)

)
= 0.

which satisfies

(2.16) aδ0 ≥

(
β

1− β

(√
csc2

(π
2
δ
)

+

(
β − α
β

)
− csc

(π
2
δ
)))1/δ

.

Corollary 2.2. Let f(z) be analytic function defined by (1.1) and also,
let

(2.17) f(z) ∈ C(α, γ) (z ∈ U),

where 0 ≤ α < 1 and 0 < γ < 1. Then

(2.18) f(z) ∈ S(β, δ) (z ∈ U),

where
(2.19)

γ =
2

π
arctan

 δ
√
β(β − α)(

β +
√
β(β − α)

)(
(β − α) +

√
β(β − α)

)
 ,

and β is defined by (1.4).

Proof. Let f(z) ∈ C(α, γ). Since the inequality (2.10) is satisfied when
aδ satisfies (2.9), we have

δ(1− β) (a+ 1/a) aδ

2 (β + (1− β)aδ) ((β − α) + (1− β)aδ)

≥ δ(1− β)aδ

(β + (1− β)aδ) ((β − α) + (1− β)aδ)
.

Then the function k(x) defined by

k(x) =
δ(1− β)x

(β + (1− β)x) ((β − α) + (1− β)x)
(x > 0)

takes its minimum value when x =

√
β(β−α)
1−β .

On the other hand , we have

√
β(β − α)

1− β
≥

(
β

1− β

(√
csc2

(π
2
δ
)

+

(
β − α
β

)
− csc

(π
2
δ
)))

.

Hence we have f(z) ∈ S(β, δ). �
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Invariance analysis of a four-dimensional system of fourth-order difference equations with
variable coefficients

Mensah Folly-Gbetoula∗

School of Mathematics, University of the Witwatersrand, 2050, Johannesburg, South Africa.

Abstract

A class of a four-dimensional system of difference equations is considered. A Lie symmetry analysis
is performed and symmetries are derived. We use the differential invariant approach to obtain exact
solutions. The link between the similarity variables and these symmetries is clearly given. Furthermore,
we show the existence of periodic solutions for some specific coefficients. This work considerably extends
some findings by El-Dessoky and Hobiny [M. M. El-Dessoky and A. Hobiny, J. Computational Analysis
and Applications, 26:8 (2019), 1428–1439].

Keywords: System of difference equation; invariance analysis; group invariant solutions; periodicity
MSC: 39A11, 39A05

1 Introduction

The group theoretical approach for finding exact solutions to differential equations is now well reported
[2, 14] and its application to difference equations has sparked interest recently [6–8, 10–13]. This approach,
commonly known as Lie symmetry analysis, permits one to lower the order of the difference equations via
a convenient choice of canonical coordinates obtained using a group of transformations admitted by the
equation. Its application to higher dimensional system of difference equations is somewhat new and the
calculation one deals with when finding symmetries in the latter can become cumbersome. Hydon in [10]
extends the idea of Maeda [16] by developing a systematic algorithm permitting one to obtain the Lie algebra
of a difference equation. Several authors have studied difference equations from different approaches and
some interesting results can be found in [3–5, 17]

In this paper, inspired by the work in [1] where the authors study the behavior and existence of solutions
of

xn+1 =
xn−3

±1± xn−3yn−2zn−1tn
, yn+1 =

yn−3
±1± xnyn−3zn−2tn−1

zn+1 =
zn−3

±1± xn−1ynzn−3tn−2
, tn+1 =

tn−3
±1± xn−2yn−1zntn−3

,
(1)

we utilize Hydon’s idea in a slightly modified manner to investigate the solutions to

xn+1 =
xn−3

an + bnxn−3yn−2zn−1tn
, yn+1 =

yn−3
cn + dnxnyn−3zn−2tn−1

zn+1 =
zn−3

en + fnxn−1ynzn−3tn−2
, tn+1 =

tn−3
gn + hnxn−2yn−1zntn−3

,
(2)

where (an)n∈N0
, (bn)n∈N0

, (cn)n∈N0
, (dn)n∈N0

, (en)n∈N0
, (fn)n∈N0

, (gn)n∈N0
and (hn)n∈N0

are non-zero
sequences of real numbers. The solutions of (2) are derived after a series of steps. Firstly, we obtain the Lie
algebra of (2). We make use of point symmetries and additional assumptions on the characteristics to allow
us derive analytic expressions for the symmetry generators. Secondly, we lower the order via the invariants
and finally, find the solutions. We have showed that results in [1] are special cases of our findings.

∗Mensah.Folly-Gbetoula@wits.ac.za
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1.1 Preliminaries

In this section, we commence with some background necessary for understanding symmetry analysis. Note
that throughout this paper, we utilize definitions and notation in [10, 14]. The notion of symmetry is strongly
related to the notion of group transformations. Basically, it is a group of transformations that map a solution
of a given equation onto another solution. Suppose G is a group of transformations acting on a manifold
M. Certain subsets H of this group, called H-invariant, transform solutions onto themselves. Often times,
for system of difference equations, the difference invariants of H are the new variables of the much simpler
difference equations equivalent to the original system of equations.
Let Si be the forward shift operator that maps n to n + i. We shall assume that a system of fourth order
ordinary difference equations is of the form

Sp(uk) =Ωk(n, [uk]), k = 1, 2, 3, 4, (3)

where [ui] denotes the dependent variable ui and its shifts. The invertible mapping (n, uk) 7→ (n, ũk =
uk + εQk(n, [uk]) + O(ε2)), k = 1, 2, 3, 4, is a symmetry group of transformations if and only if it satisfies
the following linearized symmetry condition

Sp(Qk)−X (Ωk) = 0, k = 1, 2, 3, 4, (4)

where X is the (p− 1)st prolongation of the symmetry generator

X =
4∑

k=1

Qk
∂

∂uk
, (5)

i. e.,

X = X [p−1] =

p−1∑
j=0

4∑
k=1

Sj(Qk)
∂

∂Sj(uk)
. (6)

We shall refer to Qk = Qk(n, un) as characteristics and for simplicity we shall consider point transformations
only, that is, Qk = Qk(n, uk).

Definition 1.1 [14] Let G be a connected group of transformations acting on a manifold M . A smooth
real-valued function ζ : M → R is an invariant function for G if and only if

X(ζ) = 0 for all x ∈M,

Without any lucky guess, the reduction of order can readily be done via the canonical coordinates [9]

sk =

∫
duk

Qk(n, uk)
, k = 1, 2, 3, 4. (7)

Eventually, the constraining restrictions on the constants in the characteristics, Qk, k = 1, 2, 3, 4, hint on a
perfect choice of invariants.

2 Main results

To start, we consider the corresponding forward system

xn+4 = Ω1 =
xn

An +Bnxnyn+1zn+2tn+3
, yn+4 = Ω2 =

yn
Cn +Dnxn+3ynzn+1tn+2

zn+4 = Ω3 =
zn

En + Fnxn+2yn+3zntn+1
, tn+4 = Ω4 =

tn
Gn +Hnxn+1yn+2zn+3tn

,
(8)

where (An)n∈N0
, (Bn)n∈N0

, (Cn)n∈N0
, (Dn)n∈N0

, (En)n∈N0
, (Fn)n∈N0

, (Gn)n∈N0
and (Hn)n∈N0

are non-
zero sequences of real numbers, equivalent to (2).

2
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2.1 Symmetries

To construct the characteristics of the system of fourth order difference equations (8), we must impose
linearized symmetry criterion (4). This amounts to

S4Q1 +
Bnx

2
n(tn+3zn+2(S1Q2) + tn+3yn+1(S2Q3) + yn+1zn+2(S3Q4))−AnQ1

(An +Bnxnyn+1zn+2tn+3)2
= 0, (9a)

S4Q2 +
Dny

2
n(tn+2xn+3(S1Q3) + xn+3zn+1(S2Q4) + tn+2zn+1(S3Q1))− CnQ2

(Cn +Dnxn+3ynzn+1tn+2)2
= 0, (9b)

S4Q3 +
Fnz

2
n(tn+1xn+2(S3Q2) + xn+2yn+3(S1Q4) + tn+1yn+3(S2Q1))− EnQ3

(En + Fnxn+2yn+3zntn+1)2
= 0, (9c)

S4Q4 +
Hnt

2
n(xn+1zn+3(S2Q2) + xn+1yn+2(S3Q3) + yn+2zn+3(S1Q1))−GnQ4

(Gn +Hnxn+1yn+2zn+3tn)2
= 0. (9d)

We act the operators ∂/∂xn−[(∂Ω1/∂xn)/(∂Ω1/∂yn+1)]∂/∂yn+1, ∂/∂yn−[(∂Ω2/∂yn)(∂Ω2/∂zn+1)]∂/∂zn+1,
∂/∂zn−[(∂Ω3/∂zn)(∂Ω3/∂yn+3)]∂/∂yn+3 and ∂/∂tn−[(∂Ω4/∂tn)(∂Ω4/∂yn+2)]∂/∂yn+2 on equations in (9),
respectively, to get

(S1Q2)
′ −Q1′ + (1/zn+2)(S2Q3) + (1/tn+3)(S3Q4) + (2/xn)Q1 = 0 (10a)

−Q2′ + (S1Q3)′ + (2/yn)Q2 + (1/tn+2)(S2Q4) + (1/xn+3)(S3Q1) = 0 (10b)

(S3Q2)′ −Q3′ + (2/zn)Q3 + (1/tn+1)(S1Q4) + (1/xn+2)(S2Q1) = 0 (10c)

(S2Q2)′ −Q4
′ + (1/zn+3)(S3Q3) + (2/tn)Q4 + (1/xn+1)(S1Q1) = 0 (10d)

after simplification. Note that ′ denotes the derivative with respect to the continuous variable.
Next, we differentiate equations in (10) with respect to xn, yn, zn and tn, respectively. The latter leads to
the differential equations

−Q1′′ + (2/xn)Q1′ − (2/x2n)Q1 = 0, −Q2′′ + (2/yn)Q2′ − (2/y2n)Q2 = 0,

−Q3′′ + (2/zn)Q3′ − (2/z2n)Q3 = 0,−Q4′′ + (2/tn)Q4′ − (2/t2n)Q4 = 0 (11)

whose solutions are given by

Q1(n, xn) = α1(n)xn
2 + β1(n)xn, Q2(n, yn) = α2(n)yn

2 + β2(n)yn,

Q3(n, zn) = α3(n)zn
2 + β3(n)zn, Q4(n, tn) = α4(n)tn

2 + β4(n)tn,
(12)

for some functions αi and βi, respectively.
We replace (12) and their shits in (9). Due to the fact that the αi’s and βi’s depend on the independent
variable only, we equate all products of shifts of dependent variables xn, yn, zn and tn in the resulting
equations to zero; this yields the ‘final constraints’ below

β1(n) + β2(n+ 1) + β3(n+ 2) + β4(n+ 3) = 0, α1(n) = α2(n) = α3(n) = α4(n) = 0, (13)

with β1(n) = β1(n+ 4), β2(n) = β2(n+ 4), β3(n) = β3(n+ 4), β4(n) = β4(n+ 4). The reader can easily verify
that the functions satisfying the above constraints are of the forms:

αj(n) = 0, j = 1, 2, 3, 4; β1(n) = c1 + c2(−i)n + c3(i)n + c4(−1)n; β2(n) = c5 + c6(−i)n + c7(i)n + c8(−1)n;

β3(n) = c9 + c10(−i)n + c11(i)n + c12(−1)n; β4(n) = (ic2 + c6 − ic10)(−i)n + (c7 − ic3 + ic11)(i)n + (c4 − c8
+ c12)(−1)n − c1 − c5 − c9, (14)
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where the ci’s, i = 1, . . . , 12, are arbitrary constants. Consequently, thanks to (5), (12) and (14), we obtain
twelve symmetry generators:

X1 = xn∂xn − tn∂tn, X2 = (−i)n(xn∂xn + itn∂tn), X3 = in(xn∂xn − itn∂tn), X4 = (−1)n(xn∂xn + tn∂tn),

X5 = yn∂yn − tn∂tn, X6 = (−i)n(yn∂yn + tn∂tn), X7 = in(yn∂yn + tn∂tn), X8 = (−1)n(yn∂yn − tn∂tn),

X9 = zn∂zn − tn∂tn, X10 = (−i)n(zn∂zn − itn∂tn), X11 = in(zn∂zn + itn∂tn), X12 = (−1)n(zn∂zn + tn∂tn).
(15)

Note that for simplicity, we adopt the notation ∂x = ∂/∂x.

2.2 Reduction of order via symmetries and formulas for solutions

Using any linear combinations of the symmetries in (15) that involves all four independent variables xn, yn, zn
and tn, say X = X1 +X2 +X3 = xn∂xn + yn∂yn + zn∂zn − 3tn∂tn, we derive the corresponding canonical
coordinates

s1(n) =

∫
dxn
xn

, s2(n) =

∫
dyn
yn

, s3(n) =

∫
dzn
zn

, s4(n) =

∫
dtn
−3tn

. (16)

Inspired by the form of the equations in the final constraints (13), we construct the invariants:

X̃n =β1(n)s1(n) + β2(n+ 1)s2(n+ 1) + β3(n+ 2)s3(n+ 2) + β4(n+ 3)s4(n+ 3) = ln |xnyn+1zn+2tn+3|
Ỹn =β1(n+ 3)s1(n+ 3) + β2(n)s2(n) + β3(n+ 1)s3(n+ 1) + β4(n+ 2)s4(n+ 2) = ln |xn+3ynzn+1tn+2|
Z̃n =β1(n+ 2)s1(n+ 2) + β2(n+ 3)s2(n+ 3) + β3(n)s3(n) + β4(n+ 1)s4(n+ 1) = ln |xn+2yn+3zntn+1|
T̃n =β1(n+ 1)s1(n+ 1) + β2(n+ 2)s2(n+ 2) + β3(n+ 3)s3(n+ 3) + β4(n)s4(n) = ln |xn+1yn+2zn+3tn|,

obtained by replacing βi(n+ j) by si(n+ j)βi(n+ j) in the left hand sides of equations in (13).
Using Definition 1.1, the reader can easily confirm that X̃n, Ỹn, Z̃n and T̃n are invariant functions. For
simplicity, we introduce the variables

Xn = exp(−X̃n), Yn = exp(−Ỹn), Zn = exp(−Z̃n), Tn = exp(−T̃n). (17)

Thus

Xn+1 =Hn +GnTn, Yn+1 = Bn +AnXn, Zn+1 = Dn + CnYn, Tn+1 = Fn + EnZn (18a)

and so

xn+4 =
Xn

Yn+1
xn, yn+4 =

Yn
Zn+1

yn, zn+4 =
Zn

Tn+1
zn, tn+4 =

Tn
Xn+1

tn. (18b)

Straightforward iterations ( using equation (18a)) yield

Xn+4 = Λx
n + (Θx

n)Xn, Yn+4 = ∆y
n + (Θy

n)Yn, Zn+4 = ∆z
n + (Θz

n)Zn, Tn+4 = ∆t
n + (Θt

n)Tn

that is

U4n+j = Uj

(
n−1∏
k1=0

Θu
4k1+j

)
+

n−1∑
l=0

(
Λu
4l+j

n−1∏
k2=l+1

Θu
4k2+j

)
, (19a)

for j = 0, 1, 2, 3 and (U, u) ∈ {(X,x), (Y, y), (Z, z), (T, t)}, where

Λx
n = Hn+3 +Gn+3Fn+2 +Gn+3En+2Dn+1 +Gn+3En+2Cn+1Bn,Θ

x
n = Gn+3En+2Cn+1An;

Λy
n = Bn+3 +An+3Hn+2 +An+3Gn+2Fn+1 +An+3Gn+2En+1Dn,Θ

y
n = An+3Gn+2En+1Cn;

Λz
n = Dn+3 + Cn+3Bn+2 + Cn+3An+2Hn+1 + Cn+3An+2Gn+1Fn,Θ

z
n = Cn+3An+2Gn+1En;

Λt
n = Fn+3 + En+3Dn+2 + En+3Cn+2Bn+1 + En+3Cn+2An+1Hn,Θ

t
n = En+3Cn+2An+1Gn; (19b)
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Also, straightforward iterations (using equation (18b)) yield

x4n+j = xj

n−1∏
k=0

X4k+j

Y4k+1+j
, y4n+j = yj

n−1∏
k=0

Y4k+j

Z4k+1+j
, z4n+j = zj

n−1∏
k=0

Z4k+j

T4k+1+j
, t4n+j = tj

n−1∏
k=0

T4k+j

X4k+1+j
, (19c)

j = 0, 1, 2, 3. Combining equations in (19), we obtain the following solutions {xn} of the system of equations
(8):

x4n+j =xj

n−1∏
s=0


Xj

(
s−1∏
k1=0

Θx
4k1+j

)
+

s−1∑
l=0

(
Λx
4l+j

s−1∏
k2=l+1

Θx
4k2+j

)

Yj+1

(
s−1∏
k1=0

Θy
4k1+j+1

)
+

s−1∑
l=0

(
Λy
4l+j+1

s−1∏
k2=l+1

Θy
4k2+j+1

)
 , j = 0, 1, 2,

x4n+3 =x3

n−1∏
s=0


X3

(
s−1∏
k1=0

Θx
4k1+3

)
+

s−1∑
l=0

(
Λx
4l+3

s−1∏
k2=l+1

Θx
4k2+3

)

Y0

(
s∏

k1=0

Θy
4k1

)
+

s∑
l=0

(
Λy
4l

s∏
k2=l+1

Θy
4k2

)
 , (20)

where Θu
n and Λu

n, u ∈ {x, y, z, t} are defined in (19b); andX0 = 1/(x0y1z2t3), X1 = H0+G0/(t0x1y2z3), X2 =
F0G1+H1+(E0G1)/(t1x2y3z0) X3 = D0E1G2+F1G2+H2+(C0E1G2)/(t2x3y0z1), Y0 = 1/(t2x3y0z1), Y1 =
B0 +A0/(t3x0y1z2), Y2 = A1H0 +B1 + (A1G0)/(t0x1y2z3), Y3 = A2F0G1 +B1 + (A2E0G1)/(t1x2y3z0).

Recall that we forward shifted equation (2) thrice to obtain (8) whose solutions xn is giving in (20). Now,
we go backward thrice and replace the capital letters in the right hand sides of equations in (19b) with lower
cases letters to get the solutions xn corresponding to (8). In other words, solutions {xn} of the system of
equations (2) is giving by

x4n−3 =x−3

n−1∏
s=0

(
s−1∏
i=0

θx4i

)
+ x−3y−2z−1t0

s−1∑
l=0

(
λx4l

s−1∏
i=l+1

θx4i

)

(a0 + b0x−3y−2z−1t0)

(
s−1∏
i=0

θy4i+1

)
+ x−3y−2z−1t0

s−1∑
l=0

(
λy4l+1

s−1∏
i=l+1

θy4i+1

)

x4n−2 =x−2

n−1∏
s=0

(g0 + h0t−3x−2y−1z0)

(
s−1∏
i=0

θx4i+1

)
+ t−3x−2y−1z0

s−1∑
l=0

(
λx4l+1

s−1∏
i=l+1

θx4i+1

)

((a1h0 + b1)t−3x−2y−1z0 + a1g0)

(
s−1∏
i=0

θy4i+2

)
+ t−3x−2y−1z0

s−1∑
l=0

(
λy4l+2

s−1∏
i=l+1

θy4i+2

)

x4n−1 =x−1

n−1∏
s=0

((f0g1 + h1)t−2x−1y0z−3 + e0g1)

(
s−1∏
i=0

θx4i+2

)
+ t−2x−1y0z−3

s−1∑
l=0

(
λx4l+2

s−1∏
i=l+1

θx4i+2

)

((a0f0g1 + a2h1 + b2)t−2x−1y0z−3 + a2e0g1)

(
s−1∏
i=0

θy4i+3

)
+ t−2x−1y0z−3

s−1∑
l=0

(
λy4l+3

s−1∏
i=l+1

θy4i+3

)

x4n =x0

n−1∏
s=0

((d0e1g2 + f1g2 + h2)t−1x0y−3z−2 + c0e1g2)

(
s−1∏
i=0

θx4i+3

)
+ t−1x0y−3z−2

s−1∑
l=0

(
λx4l+3

s−1∏
i=l+1

θx4i+3

)
(

s∏
i=0

θy4i

)
+ t−1x0y−3z−2

s∑
l=0

(
λy4l

s∏
i=l+1

θy4i

) .
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Similar computations yield

y4n−3 =y−3

n−1∏
s=0

(
s−1∏
i=0

θy4i

)
+ t−1x0y−3z−2

s−1∑
l=0

(
λy4l

s−1∏
i=l+1

θy4i

)

(c0 + d0t−1x0y−3z−2)

(
s−1∏
i=0

θz4i+1

)
+ t−1x0y−3z−2

s−1∑
l=0

(
λz4l+1

s−1∏
i=l+1

θz4i+1

)

y4n−2 =y−2

n−1∏
s=0

(a0 + b0t0x−3y−2z−1)

(
s−1∏
i=0

θy4i+1

)
+ t0x−3y−2z−1

s−1∑
l=0

(
λy4l+1

s−1∏
i=l+1

θy4i+1

)

((b0c1 + d1)t0x−3y−2z−1 + a0c1)

(
s−1∏
i=0

θz4i+2

)
+ t0x−3y−2z−1

s−1∑
l=0

(
λz4l+2

s−1∏
i=l+1

θz4i+2

)

y4n−1 =y−1

n−1∏
s=0

((a1h0 + b1)t−3x−2y−1z0 + a1g0)

(
s−1∏
i=0

θy4i+2

)
+ t−3x−2y−1z0

s−1∑
l=0

(
λy4l+2

s−1∏
i=l+1

θy4i+2

)

((a1c2h0 + b1c2 + d2)t−3x−2y−1z0 + a1c2g0)

(
s−1∏
i=0

θz4i+3

)
+ t−3x−2y−1z0

s−1∑
l=0

(
λz4l+3

s−1∏
i=l+1

θz4i+3

)

y4n =y0

n−1∏
s=0

((a2f0g1 + a2h1 + b2)t−2x−1y0z−3 + a2e0g1)

(
s−1∏
i=0

θy4i+3

)
+ t−2x−1y0z−3

s−1∑
l=0

(
λy4l+3

s−1∏
i=l+1

θy4i+3

)
(

s∏
i=0

θz4i

)
+ t−2x−1y0z−3

s∑
l=0

(
λz4l

s∏
i=l+1

θz4i

)

z4n−3 =z−3

n−1∏
s=0

(
s−1∏
i=0

θz4i

)
+ t−2x−1y0z−3

s−1∑
l=0

(
λz4l

s−1∏
i=l+1

θz4i

)

(e0 + f0t−2x−1y0z−3)

(
s−1∏
i=0

θt4i+1

)
+ t−2x−1y0z−3

s−1∑
l=0

(
λt4l+1

s−1∏
i=l+1

θt4i+1

)

z4n−2 =z−2

n−1∏
s=0

(c0 + d0t−1x0y−3z−2)

(
s−1∏
i=0

θz4i+1

)
+ t−1x0y−3z−2

s−1∑
l=0

(
λz4l+1

s−1∏
i=l+1

θz4i+1

)

((d0e1 + f1)t−1x0y−3z−2 + c0e1)

(
s−1∏
i=0

θt4i+2

)
+ t−1x0y−3z−2

s−1∑
l=0

(
λt4l+2

s−1∏
i=l+1

θt4i+2

)

z4n−1 =z−1

n−1∏
s=0

((b0c1 + d1)t0x−3y−2z−1 + a0c1)

(
s−1∏
i=0

θz4i+2

)
+ t0x−3y−2z−1

s−1∑
l=0

(
λz4l+2

s−1∏
i=l+1

θz4i+2

)

((b0c1e2 + d1e2 + f2)t0x−3y−2z−1 + a0c1e2)

(
s−1∏
i=0

θt4i+3

)
+ t0x−3y−2z−1

s−1∑
l=0

(
λt4l+3

s−1∏
i=l+1

θt4i+3

)

z4n =z0

n−1∏
s=0

((a1c2h0 + b1c2 + d2)t−3x−2y−1z0 + a1c2g0)

(
s−1∏
i=0

θz4i+3

)
+ t−3x−2y−1z0

s−1∑
l=0

(
λz4l+3

s−1∏
i=l+1

θz4i+3

)
(

s∏
i=0

θt4i

)
+ t−3x−2y−1z0

s∑
l=0

(
λt4l

s∏
i=l+1

θt4i

)

t4n−3 =t−3

n−1∏
s=0

(
s−1∏
i=0

θt4i

)
+ t−3x−2y−1z0

s−1∑
l=0

(
λt4l

s−1∏
i=l+1

θt4i

)

(g0 + h0t−3x−2y−1z0)

(
s−1∏
i=0

θx4i+1

)
+ t−3x−2y−1z0

s−1∑
l=0

(
λx4l+1

s−1∏
i=l+1

θx4i+1

)
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t4n−2 =t−2

n−1∏
s=0

(e0 + f0t−2x−1y0z−3)

(
s−1∏
i=0

θt4i+1

)
+ t−2x−1y0z−3

s−1∑
l=0

(
λt4l+1

s−1∏
i=l+1

θt4i+1

)

((f0g1 + h1)t−2x−1y0z−3 + e0g1)

(
s−1∏
i=0

θx4i+2

)
+ t−2x−1y0z−3

s−1∑
l=0

(
λx4l+2

s−1∏
i=l+1

θx4i+2

)

t4n−1 =t−1

n−1∏
s=0

((d0e1 + f1)t−1x0y−3z−2 + c0e1)

(
s−1∏
i=0

θt4i+2

)
+ t−1x0y−3z−2

s−1∑
l=0

(
λt4l+2

s−1∏
i=l+1

θt4i+2

)

((d0e1g2 + f1g2 + h2)t−1x0y−3z−2 + c0e1g2)

(
s−1∏
i=0

θx4i+3

)
+ t−1x0y−3z−2

s−1∑
l=0

(
λx4l+3

s−1∏
i=l+1

θx4i+3

)

t4n =t0

n−1∏
s=0

((b0c1e2 + d1e2 + f2)t0x−3y−2z−1 + a0c1e2)

(
s−1∏
i=0

θt4i+3

)
+ t0x−3y−2z−1

s−1∑
l=0

(
λt4l+3

s−1∏
i=l+1

θt4i+3

)
(

s∏
i=0

θx4i

)
+ t0x−3y−2z−1

s∑
l=0

(
λx4l

s∏
i=l+1

θx4i

) .

(21a)

Note that

λxn = hn+3 + gn+3fn+2 + gn+3en+2dn+1 + gn+3en+2cn+1bn, θ
x
n = gn+3en+2cn+1an;

λyn = bn+3 + an+3hn+2 + an+3gn+2fn+1 + an+3gn+2en+1dn, θ
y
n = an+3gn+2en+1cn;

λzn = dn+3 + cn+3bn+2 + cn+3an+2hn+1 + cn+3an+2gn+1fn, θ
z
n = cn+3an+2gn+1en;

λtn = fn+3 + en+3dn+2 + en+3cn+2bn+1 + en+3cn+2an+1hn, θ
t
n = en+3cn+2an+1gn. (21b)

2.3 Case where an, bn, cn, dn, en, fn, gn and hn are periodic of period four

Suppose {an} = {a0, a1, a2, a3, a0, . . . }, {bn} = {b0, b1, b2, b3, b0, . . . }, {cn} = {c0, c1, c2, c3, c0, . . . },
{dn} = {d0, d1, d2, d3, d0, . . . }, {en} = {e0, e1, e2, e3, e0, . . . }, {fn} = {f0, f1, f2, f3, f0, . . . } and
{gn} = {g0, g1, g2, g3, g0, . . . }. Equations in (21) simplify to

x4n−3 =x−3

n−1∏
s=0

(θx0 )
s

+ x−3y−2z−1t0(λx0)
s−1∑
l=0

(θx0 )l

(a0 + b0x−3y−2z−1t0) (θy1)
s

+ x−3y−2z−1t0(λy1)
s−1∑
l=0

(θy1)
l

x4n−2 =x−2

n−1∏
s=0

(g0 + h0t−3x−2y−1z0)(θx1 )s + t−3x−2y−1z0(λx1)
s−1∑
l=0

(θx1 )l

((a1h0 + b1)t−3x−2y−1z0 + a1g0) [θy2 ]
s

+ t−3x−2y−1z0(λy2)
s−1∑
l=0

(θy2)l

x4n−1 =x−1

n−1∏
s=0

((f0g1 + h1)t−2x−1y0z−3 + e0g1) (θx2 )
s

+ t−2x−1y0z−3λ
x
2

s−1∑
l=0

(θx2 )
l

((a0f0g1 + a2h1 + b2)t−2x−1y0z−3 + a2e0g1) (θy3)
s

+ t−2x−1y0z−3(λy3)
s−1∑
l=0

(θy3)
l

x4n =x0

n−1∏
s=0

((d0e1g2 + f1g2 + h2)t−1x0y−3z−2 + c0e1g2) (θx3 )
s

+ t−1x0y−3z−2(λx3)
s−1∑
l=0

(θx3 )
l

(θy0)
s+1

+ t−1x0y−3z−2(λy0)
s∑

l=0

(θy0)
l
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y4n−3 =y−3

n−1∏
s=0

(θy0)
s

+ t−1x0y−3z−2(λy0)
s−1∑
l=0

(θy0)
l

(c0 + d0t−1x0y−3z−2) (θz1)
s

+ t−1x0y−3z−2(λz1)
s−1∑
l=0

(θz1)
l

y4n−2 =y−2

n−1∏
s=0

(a0 + b0t0x−3y−2z−1) (θy1)
s

+ t0x−3y−2z−1(λy1)
s−1∑
l=0

(θy1)
l

((b0c1 + d1)t0x−3y−2z−1 + a0c1) (θz2)
s

+ t0x−3y−2z−1(λz2)
s−1∑
l=0

(θz2)
l

y4n−1 =y−1

n−1∏
s=0

((a1h0 + b1)t−3x−2y−1z0 + a1g0) (θy2)
s

+ t−3x−2y−1z0(λy2)
s−1∑
l=0

(θy2)
l

((a1c2h0 + b1c2 + d2)t−3x−2y−1z0 + a1c2g0) (θz3)
s

+ t−3x−2y−1z0(λz3)
s−1∑
l=0

(θz3)
l

y4n =y0

n−1∏
s=0

((a2f0g1 + a2h1 + b2)t−2x−1y0z−3 + a2e0g1) (θy3)
s

+ t−2x−1y0z−3(λy3)
s−1∑
l=0

(θy3)
l

(θz0)
s+1

+ t−2x−1y0z−3(λz0)
s∑

l=0

(θz0)
l

z4n−3 =z−3

n−1∏
s=0

(θz0)
s

+ t−2x−1y0z−3(λz0)
s−1∑
l=0

(θz0)
l

(e0 + f0t−2x−1y0z−3) (θt1)
s

+ t−2x−1y0z−3(λt1)
s−1∑
l=0

(θt1)
l

z4n−2 =z−2

n−1∏
s=0

(c0 + d0t−1x0y−3z−2) (θz1)
s

+ t−1x0y−3z−2(λz1)
s−1∑
l=0

(θz1)
l

((d0e1 + f1)t−1x0y−3z−2 + c0e1) (θt2)
s

+ t−1x0y−3z−2(λt2)
s−1∑
l=0

(θt2)
l

z4n−1 =z−1

n−1∏
s=0

((b0c1 + d1)t0x−3y−2z−1 + a0c1) (θz2)
s

+ t0x−3y−2z−1(λz2)
s−1∑
l=0

(θz2)
l

((b0c1e2 + d1e2 + f2)t0x−3y−2z−1 + a0c1e2) (θt3)
s

+ t0x−3y−2z−1(λt3)
s−1∑
l=0

(θt3)
l

z4n =z0

n−1∏
s=0

((a1c2h0 + b1c2 + d2)t−3x−2y−1z0 + a1c2g0) (θz3)
s

+ t−3x−2y−1z0(λz3)
s−1∑
l=0

(θz3)
l

(θt0)
s+1

+ t−3x−2y−1z0(λt0)
s∑

l=0

(θt0)
l

t4n−3 =t−3

n−1∏
s=0

(θt0)
s

+ t−3x−2y−1z0(λt0)
s−1∑
l=0

(θt0)
l

(g0 + h0t−3x−2y−1z0) (θx1 )
s

+ t−3x−2y−1z0(λx1)
s−1∑
l=0

(θx1 )
l

t4n−2 =t−2

n−1∏
s=0

(e0 + f0t−2x−1y0z−3) (θt1)
s

+ t−2x−1y0z−3(λt1)
s−1∑
l=0

(θt1)
l

((f0g1 + h1)t−2x−1y0z−3 + e0g1) (θx2 )
s

+ t−2x−1y0z−3(λx2)
s−1∑
l=0

(θx2 )
l

t4n−1 =t−1

n−1∏
s=0

((d0e1 + f1)t−1x0y−3z−2 + c0e1) (θt2)
s

+ t−1x0y−3z−2(λt2)
s−1∑
l=0

(θt2)
l

((d0e1g2 + f1g2 + h2)t−1x0y−3z−2 + c0e1g2) (θx3 )
s

+ t−1x0y−3z−2(λx3)
s−1∑
l=0

(θx3 )
l
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t4n =t0

n−1∏
s=0

((b0c1e2 + d1e2 + f2)t0x−3y−2z−1 + a0c1e2) (θt3)
s

+ t0x−3y−2z−1(λt3)
s−1∑
l=0

(θt3)
l

(θx0 )
s+1

+ t0x−3y−2z−1(λx0)
s∑

l=0

(θx0 )
l

, (22)

where θu0 , λ
u
0 , u = x, y, z, t are defined in (21b).

2.4 Case where an, bn, cn, dn, en, fn, gn and hn are constant

Suppose that an = a, bn = b, cn = c, dn = d, en = e, fn = f and gn = g. Equations in (22) simplify to

x4n−3 =x−3

n−1∏
s=0

 (aceg)
s

+ x−3y−2z−1t0(h+ gf + ged+ gecb)
s−1∑
l=0

(aceg)l

(a+ bx−3y−2z−1t0) (aceg)
s

+ x−3y−2z−1t0(b+ ah+ agf + aged)
s−1∑
l=0

(aceg)
l



x4n−2 =x−2

n−1∏
s=0

(g + htx−2y−1z0)(aceg)s + t−3x−2y−1z0(h+ gf + ged+ gecb)
s−1∑
l=0

(aceg)l

((ah+ b)t−3x−2y−1z0 + ag) (aceg)
s

+ t−3x−2y−1z0(b+ ah+ agf + aged)
s−1∑
l=0

(aceg)l

x4n−1 =x−1

n−1∏
s=0

((fg + h)t−2x−1y0z−3 + eg) (aceg)
s

+ t−2x−1y0z−3(h+ gf + ged+ gecb)
s−1∑
l=0

(aceg)
l

((afg + a2h+ b)t−2x−1y0z−3 + aeg) (aceg)
s

+ t−2x−1y0z−3(b+ ah+ agf + aged)
s−1∑
l=0

(aceg)
l

x4n =x0

n−1∏
s=0

((deg + fg + h)t−1x0y−3z−2 + ceg) (aceg)
s

+ t−1x0y−3z−2(h+ gf + ged+ gecb)
s−1∑
l=0

(aceg)
l

(aceg)
s+1

+ t−1x0y−3z−2(b+ ah+ agf + aged)
s∑

l=0

(aceg)
l

y4n−3 =y−3

n−1∏
s=0

(aceg)
s

+ t−1x0y−3z−2(b+ ah+ agf + aged)
s−1∑
l=0

(aceg)
l

(c+ dt−1x0y−3z−2) (aceg)
s

+ t−1x0y−3z−2(d+ cb+ cah+ cagf)
s−1∑
l=0

(aceg)
l

y4n−2 =y−2

n−1∏
s=0

(a+ bt0x−3y−2z−1) (aceg)
s

+ t0x−3y−2z−1(b+ ah+ agf + aged)
s−1∑
l=0

(aceg)
l

((bc+ d)t0x−3y−2z−1 + ac) (aceg)
s

+ t0x−3y−2z−1(d+ cb+ cah+ cagf)
s−1∑
l=0

(aceg)
l

y4n−1 =y−1

n−1∏
s=0

((ah+ b)t−3x−2y−1z0 + ag) (aceg)
s

+ t−3x−2y−1z0(b+ ah+ agf + aged)
s−1∑
l=0

(aceg)
l

((ach+ bc+ d)t−3x−2y−1z0 + acg) (aceg)
s

+ t−3x−2y−1z0(d+ cb+ cah+ cagf)
s−1∑
l=0

(aceg)
l

y4n =y0

n−1∏
s=0

((afg + ah+ b)t−2x−1y0z−3 + aeg) (aceg)
s

+ t−2x−1y0z−3(b+ ah+ agf + aged)
s−1∑
l=0

(aceg)
l

(aceg)
s+1

+ t−2x−1y0z−3(d+ cb+ cah+ cagf)
s∑

l=0

(aceg)
l

z4n−3 =z−3

n−1∏
s=0

(aceg)
s

+ t−2x−1y0z−3(d+ cb+ cah+ cagf)
s−1∑
l=0

(aceg)
l

(e+ ft−2x−1y0z−3) (aceg)
s

+ t−2x−1y0z−3(f + ed+ ecb+ ecah)
s−1∑
l=0

(aceg)
l
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z4n−2 =z−2

n−1∏
s=0

(c+ dt−1x0y−3z−2) (aceg)
s

+ t−1x0y−3z−2(d+ cb+ cah+ cagf)
s−1∑
l=0

(aceg)
l

((de+ f)t−1x0y−3z−2 + ce) (aceg)
s

+ t−1x0y−3z−2(f + ed+ ecb+ ecah)
s−1∑
l=0

(aceg)
l

z4n−1 =z−1

n−1∏
s=0

((bc+ d)t0x−3y−2z−1 + ac) (aceg)
s

+ t0x−3y−2z−1(d+ cb+ cah+ cagf)
s−1∑
l=0

(aceg)
l

((bce+ de+ f)t0x−3y−2z−1 + ace) (aceg)
s

+ t0x−3y−2z−1(f + ed+ ecb+ ecah)
s−1∑
l=0

(aceg)
l

z4n =z0

n−1∏
s=0

((ach+ bc+ d)t−3x−2y−1z0 + acg) (aceg)
s

+ t−3x−2y−1z0(d+ cb+ cah+ cagf)
s−1∑
l=0

(aceg)
l

(aceg)
s+1

+ t−3x−2y−1z0(f + ed+ ecb+ ecah)
s∑

l=0

(aceg)
l

t4n−3 =t−3

n−1∏
s=0

(aceg)
s

+ t−3x−2y−1z0(f + ed+ ecb+ ecah)
s−1∑
l=0

(aceg)
l

(g + ht−3x−2y−1z0) (aceg)
s

+ t−3x−2y−1z0(h+ gf + ged+ gecb)
s−1∑
l=0

(aceg)
l

t4n−2 =t−2

n−1∏
s=0

(e+ ft−2x−1y0z−3) (aceg)
s

+ t−2x−1y0z−3(f + ed+ ecb+ ecah)
s−1∑
l=0

(aceg)
l

((fg + h)t−2x−1y0z−3 + eg) (aceg)
s

+ t−2x−1y0z−3(h+ gf + ged+ gecb)
s−1∑
l=0

(aceg)
l

t4n−1 =t−1

n−1∏
s=0

((de+ f)t−1x0y−3z−2 + ce) (aceg)
s

+ t−1x0y−3z−2(f + ed+ ecb+ ecah)
s−1∑
l=0

(aceg)
l

((deg + fg + h)t−1x0y−3z−2 + ceg) (aceg)
s

+ t−1x0y−3z−2(h+ gf + ged+ gecb)
s−1∑
l=0

(aceg)
l

t4n =t0

n−1∏
s=0

((bce+ de+ f)t0x−3y−2z−1 + ace) (aceg)
s

+ t0x−3y−2z−1(f + ed+ ecb+ ecah)
s−1∑
l=0

(aceg)
l

(aceg)
s+1

+ t0x−3y−2z−1(h+ gf + ged+ gecb)
s∑

l=0

(aceg)
l

.

(23)

2.4.1 Case where a = 1, b = 1, c = 1, d = 1, e = 1, f = 1, g = 1 and h = 1

Here, θx = θy = θz = θt = 1 and λx = λy = λz = λt = 4. Thus, equations in (23) simplify to

x4n−3 =x−3

n−1∏
s=0

[
1 + 4sx−3y−2z−1t0

1 + (4s+ 1)x−3y−2z−1t0

]
, x4n−2 = x−2

n−1∏
s=0

[
1 + (4s+ 1)t−3x−2y−1z0
1 + (4s+ 2)t−3x−2y−1z0

]
,

x4n−1 =x−1

n−1∏
s=0

[
1 + (4s+ 2)t−2x−1y0z−3
1 + (4s+ 3)t−2x−1y0z−3

]
, x4n = x0

n−1∏
s=0

[
1 + (4s+ 3)t−1x0y−3z−2
1 + (4s+ 4)t−1x0y−3z−2

]
,

y4n−3 =y−3

n−1∏
s=0

[
1 + 4st−1x0y−3z−2

1 + (4s+ 1)t−1x0y−3z−2

]
, y4n−2 = y−2

n−1∏
s=0

[
1 + +(4s+ 1)t0x−3y−2z−1
1 + (4s+ 2)t0x−3y−2z−1

]
,

y4n−1 =y−1

n−1∏
s=0

[
1 + (4s+ 2)t−3x−2y−1z0
1 + (4s+ 3)t−3x−2y−1z0

]
, y4n = y0

n−1∏
s=0

[
1 + (4s+ 3)t−2x−1y0z−3
1 + (4s+ 4)t−2x−1y0z−3

]
,
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z4n−3 =z−3

n−1∏
s=0

[
1 + 4st−2x−1y0z−3

1 + (4s+ 1)t−2x−1y0z−3

]
, z4n−2 = z−2

n−1∏
s=0

[
1 + (4s+ 1)t−1x0y−3z−2
1 + (4s+ 2)t−1x0y−3z−2

]
,

z4n−1 =z−1

n−1∏
s=0

[
1 + (4s+ 2)t0x−3y−2z−1
1 + (4s+ 3)t0x−3y−2z−1

]
, z4n = z0

n−1∏
s=0

[
1 + (4s+ 3)t−3x−2y−1z0
1 + (4s+ 4)t−3x−2y−1z0

]
,

t4n−3 =t−3

n−1∏
s=0

[
1 + 4st−3x−2y−1z0

1 + (4s+ 1)t−3x−2y−1z0

]
, t4n−2 = t−2

n−1∏
s=0

[
1 + (4s+ 1)t−2x−1y0z−3
1 + (4s+ 2)t−2x−1y0z−3

,

]

t4n−1 =t−1

n−1∏
s=0

[
1 + (4s+ 2)t−1x0y−3z−2
1 + (4s+ 3)t−1x0y−3z−2

]
, t4n = t0

n−1∏
s=0

[
1 + (4s+ 3)t0x−3y−2z−1
1 + (4s+ 4)t0x−3y−2z−1

]
. (24)

2.5 Case where a = c = h = −1 and b = d = e = f = g = 1

Here, θx = θy = θz = θt = 1 and λx = λy = λz = λt = 0. Thus, equations in (23) simplify to Theorem 2.2
in [1].

2.6 Case where a = c = e = g = −1 and b = d = f = h = 1

Here, θx = θy = θz = θt = 1 and λx = λy = λz = λt = 0. Thus, equations in (23) simplify to Theorem 2.3
in [1].

2.7 Case where a = b = c = d = e = f = g = 1 and h = −1
Here, θx = θy = θz = θt = 1 and λx = λy = λz = λt = 0. Thus, equations in (23) simplify to Theorem 3.1
in [1].

3 Existence of four periodic solutions

If

x−3y−2z−1t0 = x−2y−1z0t−3 = x−1y0z−3t−2 = x0y−3z−2t−1 =
1− a
b

=
1− c
d

=
1− e
f

=
1− g
h

,

then
θx = θy = θz = θt = geca

and

λx = λy = λz = λt =
b

1− a
(1− geca).

Thus, equations in (23) simplify to

x4n−3 = x−3, x4n−2 = x−2, x4n−1 = x−1, x4n = x0,

y4n−3 = y−3, y4n−2 = y−2, y4n−1 = y−1, y4n = y0,

z4n−3 = z−3, z4n−2 = z−2, z4n−1 = z−1, z4n = z0,

t4n−3 = t−3, t4n−2 = t−2, t4n−1 = t−1, t4n = t0

and therefore all solutions of (8) are periodic with period four.
Below are the figures of some numerical examples that illustrate two cases of systems where solutions are
periodic with period four.
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Figure 1: Periodic solutions of (8) when a = 2, b = −1, c = 3, d = −2, e = 4, f = −3, g = 5, h = −4 with
initial conditions x0 = 0.5, x1 = 0.75, x2 = −3/2, x3 = 0.4, y0 = 0.5, y1 = 2, y2 = 0.5, y3 = −2/3, z0 =
1/5, z1 = 5, z2 = 0.25, z3 = 1/3, t0 = 8, t1 = 5, t2 = 1, t3 = 4.

Figure 2: Periodic solutions of (8) when a = 0.5, b = 0.5, c = 0.75, d = 0.25, e = 6, f = −5, g = −1, h = 2
with initial conditions x0 = −0.5, x1 = −1/7, x2 = −1/4, x3 = 1.25, y0 = −0.125, y1 = 2, y2 = −1/5,
y3 = 10, z0 = −0.8, z1 = 5, z2 = −1/3, z3 = 3.5, t0 = 10, t1 = 0.5, t2 = −1.28, t3 = 3.

References

[1] M. M. El-Dessoky and A. Hobiny, On the existence and behavior of the solutions for some difference
equations systems, J. Computational Analysis and Applications 26:8 (2019), 1428–1439.

[2] G. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New
York (2002).

[3] M. M. El-Dessoky, Solution for Rational Systems of Difference Equations of Order Three, Mathematics
4:53 (2016).

[4] E. M. Elsayed, Solutions of rational difference systems of order two, Mathematical and Computer Mod-
elling, 55 (2012), 378–384.

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

960 Folly-Gbetoula 949-961



[5] E. M. Elsayed and T.F. Ibrahim, Periodicity and solutions for some systems of nonlinear rational
difference equations, Hacettepe Journal of Mathematics and Statistics, 44:6 (2015), 1361–1390.

[6] M. Folly-Gbetoula, Symmetry, reductions and exact solutions of the difference equation un+2 = aun/(1+
bunun+1), J.Diff. Eq. and Appl., 23:6 (2017), 1017–1024.

[7] M. Folly-Gbetoula and A.H. Kara, Symmetries, conservation laws, and ’integrability’ of difference e-
quations, Advances in Difference Equations, 2014:224 (2014).

[8] M. Folly-Gbetoula and D. Nyirenda, On some sixth-order rational recursive sequences, Journal of com-
putational analysis and applications, 27:6 (2019), 1057–1069.

[9] N. Joshi and P. Vassiliou, The existence of Lie Symmetries for First-Order Analytic Discrete Dynamical
Systems, Journal of Mathematical Analysis and Applications, 195 (1995), 872–887.

[10] P. E. Hydon, Difference Equations by Differential Equation Methods, Cambridge University Press,
(2014).

[11] P. E. Hydon, Symmetries and first integrals of ordinary difference equations, Proc. Roy. Soc. Lond. A,
456 (2000), 2835–2855.

[12] N. Mnguni and M. Folly-Gbetoula, Invariance analysis of a third-order difference equation with vari-
able coefficients, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications &
Algorithms 25 (2018), 63–73.

[13] D. Nyirenda and M. Folly-Gbetoula, Invariance analysis and exact solutions of some sixth-order differ-
ence equations, J. Nonlinear Sci. Appl. 10 (2017), 6262–6273.

[14] P. J. Olver, Applications of Lie Groups to Differential Equations, Second Edition, Springer, New York,
(1993).

[15] G. R. W. Quispel and R. Sahadevan, Lie symmetries and the integration of difference equations, Physics
Letters A, 184 (1993), 64-70.

[16] S. Maeda, The similarity method for difference equations, IMA J. Appl. Math. 38 (1987), 129–134.

[17] S. Stevic, On a system of difference equation, Applied Mathematics and Computation, 218 (2011),
3372–3378.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

961 Folly-Gbetoula 949-961



Dynamics of an anti-competitive system of difference equations
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Abstract

In this paper, we study the dynamical properties of an anti-competitive system of second-order rational difference
equations. The proposed work is considerably extended and improve some exiting results in the literature.
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1 Introduction

In [1], Hamza et al. have investigated the global behavior of the difference equation: xn+1 = Axn−1

B+Cx2
n
, n = 0, 1, · · · , where

A, B, C and initial conditions x0, x−1 are positive real numbers. Motivated by the above studies, our aim in this paper
is to investigate the dynamical properties of the following anti-competitive system of second-order rational difference
equations:

xn+1 =
α+ βyn−1

γ + δx2
n

, yn+1 =
α1 + β1xn−1

γ1 + δ1y2
n

, n = 0, 1, · · · , (1)

where α, β, γ, δ, α1, β1, γ1, δ1 and the initial conditions x0, x−1, y0, y−1 are positive real numbers. The rest of
the paper is dedicated to investigate the boundedness and persistence, existence of unbounded solutions, existence and
uniqueness of positive equilibrium point, local and global stability about the unique positive equilibrium point of the
system (1).

2 Main results

2.1 Boundedness and persistence

Theorem 1. If ββ1 < γγ1 then every solution {(xn, yn)/xn, yn > 0} of the system (1) is bounded and persists.

Proof. If {(xn, yn)/xn, yn > 0} is a solution of the system (1) then

xn+1 ≤
α

γ
+
β

γ
yn−1, yn+1 ≤

α1

γ1
+
β1

γ1
xn−1, n = 0, 1, · · · . (2)

From (2), one get

xn+1 ≤
α

γ
+
α1β

γγ1
+
ββ1

γγ1
xn−3, yn+1 ≤

α1

γ1
+
αβ1

γγ1
+
ββ1

γγ1
yn−3, n = 0, 1, · · · . (3)

Consider

Φn+1 =
α

γ
+
α1β

γγ1
+
ββ1

γγ1
Φn−3, ξn+1 =

α1

γ1
+
αβ1

γγ1
+
ββ1

γγ1
ξn−3, n = 0, 1, · · · . (4)

The solution {(Φn, ξn)} of (4) is

Φn = r1

(
4

√
ββ1

γγ1

)n
+ r2

(
− 4

√
ββ1

γγ1

)n
+ r3

(
ι 4

√
ββ1

γγ1

)n
+ r4

(
−ι 4

√
ββ1

γγ1

)n
+
αγ1 + βα1

γγ1 − ββ1
,

ξn = s1

(
4

√
ββ1

γγ1

)n
+ s2

(
− 4

√
ββ1

γγ1

)n
+ s3

(
ι 4

√
ββ1

γγ1

)n
+ s4

(
−ι 4

√
ββ1

γγ1

)n
+
α1γ + αβ1

γγ1 − ββ1
,

(5)
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where r1, r2, r3, r4, s1, s2, s3, s4 depend upon the initial values Φ−3, Φ−2, Φ−1, Φ0, ξ−3, ξ−2, ξ−1, ξ0. Assuming
that ββ1 < γγ1 then (5) implies that Φn and ξn are bounded. Now consider the solution {(Φn, ξn)} of (5) such that

Φ−3 = x−3, Φ−2 = x−2, Φ−1 = x−1, Φ0 = x0,

ξ−3 = y−3, ξ−2 = y−2, ξ−1 = y−1, ξ0 = y0. (6)

From (3), (5) and (6) one get

xn ≤
αγ1 + βα1

γγ1 − ββ1
+ ε = U1 + ε, yn ≤

α1γ + αβ1

γγ1 − ββ1
+ ε = U2 + ε, (7)

where for large n, ε is a sufficiently small number. In addition from (1) and (7), we get

xn ≥
α

γ + δx2
n

≥ α(γγ1 − ββ1)2

γ(γγ1 − ββ1)2 + δ(αγ1 + βα1)2
= L1. (8)

yn ≥
α1

γ1 + δ1y2
n

≥ α1(γγ1 − ββ1)2

γ1(γγ1 − ββ1)2 + δ1(α1γ + β1α)2
= L2. (9)

Finally, from (7), (8) and (9) one get

L1 ≤ xn ≤ U1, L2 ≤ yn ≤ U2, n = 0, 1, · · · . (10)

2.2 Existence of unbounded solution

Theorem 2. For solution {(xn, yn)/xn, yn > 0} of the system (1), the following statements hold:

(i) If ββ1 > (γ + δU2
1 )(γ1 + δ1U

2
2 ) then xn →∞ as n→∞.

(ii) If ββ1 > (γ + δU2
1 )(γ1 + δ1U

2
2 ) then yn →∞ as n→∞.

Proof. (i) If {(xn, yn)/xn, yn > 0} is a solution of the system (1) then

xn+1 =
α+ βyn−1

γ + δx2
n

≥ α+ βyn−1

γ + δU2
1

=
α

γ + δU2
1

+
β

γ + δU2
1

yn−1. (11)

yn+1 =
α1 + β1xn−1

γ1 + δ1y2
n

≥ α1 + β1xn−1

γ1 + δ1U2
2

=
α1

γ1 + δ1U2
2

+
β1

γ1 + δ1U2
2

xn−1. (12)

From (12)

yn−1 ≥
α1

γ1 + δ1U2
2

+
β1

γ1 + δ1U2
2

xn−3. (13)

Using (13) in (11), one get

xn+1 ≥
α

γ + δU2
1

+
βα1

(γ + δU2
1 )(γ1 + δ1U2

2 )
+

ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )
xn−3. (14)

Consider

τn+1 =
α

γ + δU2
1

+
βα1

(γ + δU2
1 )(γ1 + δ1U2

2 )
+

ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )
τn−3. (15)

The solution of (15) is

τn = c1

(
4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+ c2

(
− 4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+ c3

(
ι 4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+

c4

(
−ι 4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+

α(γ1 + δ1U
2
2 ) + βα1

(γ + δU2
1 )(γ1 + δ1U2

2 )− ββ1
,
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where c1, c2, c3, c4 depends on τ−3, τ−2, τ−1, τ0. Now if ββ1 > (γ + δU2
1 )(γ1 + δ1U

2
2 ) then {τn} is divergent. Hence

by comparison xn →∞ as n→∞.

(ii) Similarly from (11), we have

xn−1 ≥
α

γ + δU2
1

+
β

γ + δU2
1

yn−3. (16)

Using (16) in (12), we get

yn+1 ≥
α1

γ1 + δ1U2
2

+
β1α

(γ + δU2
1 )(γ1 + δ1U2

2 )
+

ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )
yn−3. (17)

Consider

µn+1 =
α1

γ1 + δ1U2
2

+
β1α

(γ + δU2
1 )(γ1 + δ1U2

2 )
+

ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )
µn−3. (18)

The solution of (18) is given by

µn = c5

(
4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+ c6

(
− 4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+ c7

(
ι 4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+

c8

(
−ι 4

√
ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )

)n
+

α1(γ + δU2
1 ) + β1α

(γ + δU2
1 )(γ1 + δ1U2

2 )− ββ1
,

where c5, c6, c7, c8 depends on µ−3, µ−2, µ−1, µ0. If ββ1 > (γ + δU2
1 )(γ1 + δ1U

2
2 ) then {µn} is divergent. Hence by

comparison yn →∞ as n→∞.

2.3 Existence and uniqueness of positive equilibrium point

Theorem 3. If

α1 + β1L1 <

(
γ1 + δ1

(
(γ + δL2

1)L1 − α
β

)2
)

(γ + δL2
1)L1 − α
β

, (19)

α1 + β1U1 >

(
γ1 + δ1

(
(γ + δU2

1 )L1 − α
β

)2
)

(γ + δU2
1 )U1 − α
β

, (20)

and (
γ + 3δU1

2
) (
γ1β

2 + 3δ1
((
γ + δU1

2
)
U1 − α

)2)
β3β1

< 1, (21)

then the system (1) has a unique positive equilibrium point Ω = (x̄, ȳ) ∈ [L1, U1]× [L2, U2].

Proof. Consider

x =
α+ βy

γ + δx2
, y =

α1 + β1x

γ1 + δ1y2
. (22)

From (22), we have

y =
(γ + δx2)x− α

β
, x =

(γ1 + δ1y
2)y − α1

β1
.

Taking

F (x) =
(γ1 + δ1(h(x))2)h(x)− α1

β1
− x, (23)

where

h(x) =
(γ + δx2)x− α

β
, (24)

and x ∈ [L1, U1]. Now

F (L1) =
(γ1 + δ1(h(L1))2)h(L1)− α1

β1
− L1 =

(
γ1 + δ1

(
(γ+δL2

1)L1−α
β

)2
)

(γ+δL2
1)L1−α
β − α1

β1
− L1. (25)
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Assume that (19) hold then (25) implies that F (L1) > 0. Also,

F (U1) =
(γ1 + δ1(h(U1))2)h(U1)− α1

β1
− U1 =

(
γ1 + δ1

(
(γ+δU2

1 )U1−α
β

)2
)

(γ+δU2
1 )U1−α
β − α1

β1
− U1. (26)

Assuming (20) hold then from (26) one get F (U1) < 0. Hence, F (x) has at least one positive solution in x ∈ [L1, U1].
Furthermore,

F ′(x) = h′(x)
γ1 + 3δ1(h(x))2

β1
− 1, (27)

where

h′(x) =
γ + 3δx2

β
. (28)

Let x̄ be a solution of equation F (x) = 0, then from (23), (24) and (28) one get

x̄ =
(γ1 + δ1(h(x̄))2)h(x̄)− α1

β1
, (29)

h(x̄) =
(γ + δx̄2)x̄− α

β
, (30)

h′(x̄) =
γ + 3δx̄2

β
. (31)

In view of (30) and (31), equation (27) takes the following form

F ′(x̄) =

(
γ + 3δx̄2

) (
γ1β

2 + 3δ1
((
γ + δx̄2

)
x̄− α

)2)
β3β1

− 1,

≤

(
γ + 3δU1

2
) (
γ1β

2 + 3δ1
((
γ + δU1

2
)
U1 − α

)2)
β3β1

− 1. (32)

Assume that (21) hold then from (32) one get F ′(x̄) < 0.

2.4 Local stability

Theorem 4. For equilibrium Ω of the system (1), the following statements hold:

(i) Ω of the system (1) is locally asymptotically stable if

2δU2
1

γ + δL2
1

(
1 +

2δ1U
2
2

γ1 + δ1L2
2

)
+

1

γ1 + δ1L2
2

(
2δ1U

2
2 +

ββ1

γ + δL2
1

)
< 1. (33)

(ii) Ω of the system (1) is unstable if

2δL2
1

γ + δU2
1

(
1 +

2δ1L
2
2

γ1 + δ1U2
2

)
+

1

γ1 + δ1U2
2

(
2δ1L

2
2 +

ββ1

γ + δU2
1

)
> 1. (34)

Proof. If (x̄, ȳ) is an equilibrium point of the system (1) then

x̄ =
α+ βȳ

γ + δx̄2
, ȳ =

α1 + β1x̄

γ1 + δ1ȳ2
. (35)

Consider the following transformation in order to construct the corresponding linearized form of the system (1):

(xn+1, xn, yn+1, yn) 7→ (f, f1, g, g1), (36)
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where

f =
α+ βyn−1

γ + δx2
n

, f1 = xn, g =
α1 + β1xn−1

γ1 + δ1y2
n

, g1 = yn. (37)

The Jacobian matrix J |(x̄,ȳ) about (x̄, ȳ) under the transformation (36) is given by

J |(x̄,ȳ) =


a 0 0 b
1 0 0 0
0 a1 b1 0
0 0 1 0

 , (38)

where

a = − 2δx̄2

γ + δx̄2
, b =

β

γ + δx̄2
, a1 =

β1

γ1 + δ1ȳ2
, b1 = − 2δ1ȳ

2

γ1 + δ1ȳ2
. (39)

The characteristic equation of J |(x̄,ȳ) about (x̄, ȳ) is given by

λ4 − (a+ b1)λ3 + ab1λ
2 − a1b = 0. (40)

Now,

|a|+ |b1|+ |ab1|+ |a1b| =
2δx̄2

γ + δx̄2
+

2δ1ȳ
2

γ1 + δ1ȳ2
+

4δδ1 x̄
2ȳ2

(γ + δx̄2)(γ1 + δ1ȳ2)
+

ββ1

(γ + δx̄2)(γ1 + δ1ȳ2)
,

≤ 2δU2
1

γ + δL2
1

+
2δ1U

2
2

γ1 + δ1L2
2

+
4δδ1U

2
1U

2
2

(γ + δL2
1)(γ1 + δ1L2

2)
+

ββ1

(γ + δL2
1)(γ1 + δ1L2

2)
,

=
2δU2

1

γ + δL2
1

(
1 +

2δ1U
2
2

γ1 + δ1L2
2

)
+

1

γ1 + δ1L2
2

(
2δ1U

2
2 +

ββ1

γ + δL2
1

)
. (41)

Assuming that (33) hold then from (41) one gets |a|+ |b1|+ |ab1|+ |a1b| < 1. Hence from Remark 1.3.1 of [2], Ω of (1)
is locally asymptotically stable.

Proof (ii). Using same manipulations as for the proof of (i) and assume that (34) hold then

|a|+ |b1|+ |ab1|+ |a1b| =
2δx̄2

γ + δx̄2
+

2δ1ȳ
2

γ1 + δ1ȳ2
+

4δδ1 x̄
2ȳ2

(γ + δx̄2)(γ1 + δ1ȳ2)
+

ββ1

(γ + δx̄2)(γ1 + δ1ȳ2)
,

≥ 2δL2
1

γ + δU2
1

+
2δ1L

2
2

γ1 + δ1U2
2

+
4δδ1L

2
1L

2
2

(γ + δU2
1 )(γ1 + δ1U2

2 )
+

ββ1

(γ + δU2
1 )(γ1 + δ1U2

2 )
,

=
2δL2

1

γ + δU2
1

(
1 +

2δ1L
2
2

γ1 + δ1U2
2

)
+

1

γ1 + δ1U2
2

(
2δ1L

2
2 +

ββ1

γ + δU2
1

)
> 1. (42)

Hence Ω of system (1) is unstable.

2.5 Global character

Now we will study the global dynamics of (1) about Ω by utilizing Theorem 1.16 of [3].

Theorem 5. Ω of the system (1) is a global attractor.

Proof. If f(x, y) = α+βy
γ+δx2 and g(x, y) = α1+β1x

γ1+δ1y2
then it is easy to examine that f(x, y) is non-increasing (resp.

non-decreasing) in x (resp. y) ∀ (x, y) ∈
[

α(γγ1−ββ1)2

γ(γγ1−ββ1)2+δ(αγ1+βα1)2 ,
αγ1+βα1

γγ1−ββ1

]
×
[

α1(γγ1−ββ1)2

γ1(γγ1−ββ1)2+δ1(α1γ+β1α)2 ,
α1γ+αβ1

γγ1−ββ1

]
.

Also g(x, y) is non-decreasing (resp. non-increasing) in x (resp. y) ∀ (x, y) ∈
[

α(γγ1−ββ1)2

γ(γγ1−ββ1)2+δ(αγ1+βα1)2 ,
αγ1+βα1

γγ1−ββ1

]
×[

α1(γγ1−ββ1)2

γ1(γγ1−ββ1)2+δ1(α1γ+β1α)2 ,
α1γ+αβ1

γγ1−ββ1

]
. Let (m1,M1,m2,M2) be a solution of the system

m1 =
α+ βm2

γ + δM2
1

, M1 =
α+ βM2

γ + δm2
1

. (43)

and

m2 =
α1 + β1m1

γ1 + δ1M2
2

, M2 =
α1 + β1M1

γ1 + δ1m2
2

. (44)
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From (43) and (44), we get

m1

M1
=

(α+ βm2)(γ + δm2
1)

(γ + δM2
1 )(α+ βM2)

. (45)

m2

M2
=

(α1 + β1m1)(γ1 + δ1m
2
2)

(γ1 + δ1M2
2 )(α1 + β1M1)

. (46)

Setting
m1

M1
= a1 ≤ 1,

m2

M2
= a2 ≤ 1. (47)

In view of (47), equations (45) and (46) then implies that

βγ(a1 − a2)M2 = αδ(a1 − 1)a1M
2
1 + βδ(a1a2 − 1)a1M

2
1M2 − αγ(a1 − 1),

β1γ1(a2 − a1)M1 = α1δ1(a2 − 1)a2M
2
2 + β1δ1(a1a2 − 1)a2M1M

2
2 − α1γ1(a2 − 1). (48)

So right-hand sides of (48) are less then or equal to zero, and thus

a1 − a2 ≤ 0, a2 − a1 ≤ 0.

This implies that
a1 ≤ a2 ≤ a1,

which hold if and only if a1 = a2. In view of (48) it follows that a1 = a2 = 1 and thus m1 = M1, m2 = M2. Hence, by
Theorem 1.16 of [3], Ω of the system (1) is a global attractor.

3 Conclusion

This work is related to the dynamical properties of an anti-competitive system of rational difference equations. We
proved that if ββ1 < γγ1 then every solution {(xn, yn)/xn, yn > 0} of the system (1) is bounded and persists. We

proved that if α1 +β1L1 <

(
γ1 + δ1

(
(γ+δL2

1)L1−α
β

)2
)

(γ+δL2
1)L1−α
β , α1 +β1U1 >

(
γ1 + δ1

(
(γ+δU2

1 )L1−α
β

)2
)

(γ+δU2
1 )U1−α
β

and
(γ+3δU1

2)
(
γ1β

2+3δ1((γ+δU1
2)U1−α)

2
)

β3β1
< 1 then system (1) has a unique positive equilibrium point Ω = (x̄, ȳ) ∈

[L1, U1] × [L2, U2]. Furthermore method of Linearization is used to study the local stability about the unique positive

equilibrium point Ω. Linear stability analysis shows that Ω is locally asymptotically stable if
2δU2

1

γ+δL2
1

(
1 +

2δ1U
2
2

γ1+δ1L2
2

)
+

1
γ1+δ1L2

2

(
2δ1U

2
2 + ββ1

γ+δL2
1

)
< 1 and unstable if

2δL2
1

γ+δU2
1

(
1 +

2δ1L
2
2

γ1+δ1U2
2

)
+ 1

γ1+δ1U2
2

(
2δ1L

2
2 + ββ1

γ+δU2
1

)
> 1. Finally global

dynamics about Ω is also investigated.

Acknowledgements

J. Ma’s research is supported by the National Natural Science Foundations of China [grant number 11501364] while
A. Q. Khan’s research is supported by the Higher Education Commission (HEC) of Pakistan.

References

[1] A. E. Hamza, R. Khalaf-Allah, Dynamics of second-order rational difference equation, BAMS, 23(1)(2008):206-214.

[2] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer
Academic Publishers, Dordrecht, (1993).

[3] E. A. Grove, G. Ladas, Periodicities in monlinear difference equations, Chapman and Hall/CRC Press, Boca Raton,
(2004).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

967 MA-KHAN 962-967
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Abstract. In this paper, we propose iterative algorithm for solving split system of minimization problems. We prove strong
convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that
the selection of the step-sizes does not need any prior information about the operator norm. We further give some example to
numerically verify the efficiency and implementation of our method.
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1. Introduction

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a bounded linear operator. Given nonempty
closed convex subsets Ci (i = 1, . . . , N) and Qi (i = 1, . . . ,M) of H1 and H2, respectively. The multiple-set
split feasibility problem (MSSFP) which was introduced by Censor et al. [10] is formulated as finding a
point

x̄ ∈
N∩
i=1

Ci such that Ax̄ ∈
M∩
j=1

Qj . (1.1)

In particular, if N = M = 1, then the MSSFP (1.1) is reduced to find a point
x̄ ∈ C such that Ax̄ ∈ Q. (1.2)

where C and Q are nonempty closed convex subsets of H1 and H2, respectively. The problem (1.2) is known
as the split feasibility problem (SFP) which was first introduced by Censor and Elfving [9] for modeling
inverse problems in finite-dimensional Hilbert spaces. Many authors studied the SFP, see for example in
[5, 9, 13, 14, 17, 24], and MSSFP, see for example in [10, 15, 19, 34, 35], provided the solution exists. The
SFP and MSSFP arises in many fields in the real world, such as image reconstruction, modeling inverse
problems, radiation therapy treatment planning and signal processing, and medical care; for details see
[6, 7, 8] and the references therein.

Throughout this paper, unless otherwise stated, we assume that H1 and H2 are real Hilbert spaces,
A : H1 → H2 is nonzero bounded linear operator, I denotes the identity operator on a Hilbert space and R
denotes set of real numbers.

Let us consider the following problem: find x ∈ H1 with the property that
min
x∈H1

{f(x) + gλ(Ax)}, (1.3)

where f : H1 → R∪{+∞}, g : H2 → R∪{+∞} are two proper, convex, lower-semicontinuous functions and
gλ is Moreau-Yosida approximate [26] of the function g of parameter λ given by gλ(y) = minu∈H2{g(u) +
1
2λ∥y − u∥

2}. In [21], Moudafi and Thakur introduced a weakly convergent algorithm solving the (1.3) in
case arg min f ∩ A−1(arg min g) ̸= ∅. Note that if we take f = δC [defined as δC(x) = 0 if x ∈ C and +∞
otherwise], the indicator function of nonempty, closed and convex subset C of H1 and g = δQ, the indicator

∗Corresponding author: R. Wangkeeree.
Email address: antgetm@gmail.com (A.G Gebrie) and rabianw@nu.ac.th (R. Wangkeeree).
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2 A.G GEBRIE AND R. WANGKEEREE

function of nonempty, closed and convex subset Q of H2, then problem problem (1.3) is reduced to the
following minimization problem:

min
x∈C

{
1

2λ
∥(I − PQ)(Ax)∥2

}
(1.4)

which, when C ∩A−1(Q) ̸= ∅, is equivalent to the split feasibility problem (SEP). It should also be noticed
that (1.3) is equivalent to the problem of finding a point x̄ ∈ H1 with the property

x̄ ∈ arg min f such that Ax̄ ∈ arg min g. (1.5)
Moudafi and Thakur [21] used the idea of Lopez et al. [17] to introduce a new way of selecting the step sizes
given by

θλµ(x) =
√
∥A∗(I − proxλg)Ax∥2 + ∥(I − proxλµf )x∥2

with hλ(x) = 1
2∥(I − proxλg)Ax∥2 and lλµ(x) = 1

2∥(I − proxλµf )x∥2 where proxλf (x) = arg min
u∈H1

{f(u) +

1
2λ∥u − y∥

2} stands for the proximal mapping of f . They proposed the following split proximal algorithm,
which generates, from an initial point x1 ∈ H1 assume that xn has been constructed and θλ(xn) ̸= 0, then
compute xn+1 via the rule

xn+1 = proxλµnf

(
xn − µnA∗(I − proxλg)Axn

)
(1.6)

where stepsize µn = ρn
hλ(xn)+lλµn (xn)

θ2λµn
(xn)

with 0 < ρn < 4 and if θλµn
(xn) = 0, then xn+1 = xn is a solution

of (1.5) and the iterative process stops; otherwise, we set n := n + 1 and go to (1.6). Based on Moudafi
and Thakur [21] many iterative algorithms are proposed for solving split minimization problem (1.5), see
eg, Shehu and Iyiola in [28, 29, 30, 31], Shehu and Ogbuisi in [27], Shehu et al. in [32], Abbas et al. in [1].

Very recently, Shehu and Iyiola [29] proposed algorithm for solving (1.5) as follows:
u, x1 ∈ H1,
zn = (1− αn)xn + αnu,

yn = zn − ρn h(zn)+l(zn)θ2(zn)

(
(I − proxλf )zn +A∗(I − proxλg)Azn

)
,

xn+1 = (1− βn)zn + βnyn,

(1.7)

where l(x) = 1
2∥(I−proxλf )x∥2, h(x) = 1

2∥(I−proxλg)Ax∥2 and θ(x) = ∥(I−proxλf )x+A∗(I−proxλg)Ax∥.
It was shown that the sequence {xn} generated by iterative algorithm (1.7) converges strongly to the solution
of problem (1.5) under the following conditions:

(a) : 0 < αn < 1, lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

(b) : 0 < β ≤ βn ≤ δ < 1,
(c) : 0 < ρn < 4, lim inf

n→∞
ρn(4− ρn) > 0.

To prove the strong convergence of iterative algorithm (1.7) the authors used simpler alternative proof
without recourse to ‘two cases method’ of proof studied by other authors [1, 27, 30, 31, 32] and is also
different from the approaches used in the proofs of [21, 28].

Motivated and inspired by results in [10, 21, 29], in this paper, we introduce and study the following split
system of minimization problem (SSMP): finding a point x̄ ∈ H1 with the property

x̄ ∈
N∩
i=1

(arg min fi) such that Ax̄ ∈
M∩
j=1

(arg min gj) (1.8)

where fi : H1 → R ∪ {+∞} and gj : H2 → R ∪ {+∞} are proper, lower semicontinuous convex functions,
arg min fi = {x̄ ∈ H1 : fi(x̄) ≤ fi(x), ∀x ∈ H1}, arg min gj = {ȳ ∈ H2 : gj(ȳ) ≤ gj(y), ∀y ∈ H2} and
i ∈ Φ = {1, . . . , N}, j ∈ Ψ = {1, . . . ,M}. The solution set Γ of problem (1.8) is denoted by

Γ =
{
x̄ ∈ H1 : x̄ ∈

N∩
i=1

(arg min fi) and Ax̄ ∈
M∩
j=1

(arg min gj)
}
.
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AN ITERATIVE SCHEME FOR SOLVING SPLIT SYSTEM OF MINIMIZATION PROBLEMS 3

Minimizers of any proper, lower semicontinuous function are exactly fixed points of its proximal mappings
and proximal mappings are nonexpansive mapping (whose set of fixed points is closed and convex), we have
that the set of minimizers of any proper, lower semicontinuous function is closed and convex. Therefore,
since A bounded linear operator the solution set Γ of problem (1.8) is closed convex set. We assume Γ is
nonempty.

We propose an iterative scheme using extended form of selecting step sizes used to solve (1.5) to the context
of solving split system of minimization problem (1.8). The iterative scheme is developed by computation of
proximal of fi at zn and gj at Azn in a parallel setting under simple assumptions on step sizes. Moreover,
the technique of the proof takes some steps of [29, 33] so that it takes few steps to complete the proof. Note
that if fi = f for all i ∈ Φ and gj = g for all j ∈ Ψ, then problem (1.8) reduces to the problem of split
minimization problem (1.5) considered in [1, 21, 27, 28, 29, 30, 31, 32].

This paper is organized in the following way. In Section 2, we collect some basic and useful lemmas for
further study. In Section 3, we propose and analyze the convergence result of our algorithm. In Section 4,
we give a numerical example to discuss performance of the proposed algorithm.

2. Preliminary

In order to prove our main results, we recall some basic definitions and lemmas, which will be needed in
the sequel. The symbols ” ⇀ ” and ”→ ” denote weak and strong convergence, respectively.

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The metric projection
on C is a mapping PC : H → C defined by

PC(x) = arg min{∥y − x∥ : y ∈ C}, x ∈ H.

Lemma 2.1. Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C, then z = PC(x) if
and only if

⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

Let T : H → H. Then,
(I): T is L-Lipschitz if there exists L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ H.
If L ∈ (0, 1), then we call T a contraction. If L = 1, then T is called a nonexpansive mapping.

(II): T is firmly nonexpansive if
∥Tx− Ty∥2 ≤ ∥x− y∥2 − ||(I − T )x− (I − T )y∥2, ∀x, y ∈ H,

which is equivalent to
∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ H.

If T is firmly nonexpansive, I − T is also firmly nonexpansive.
(III): strongly monotone if there exists a constant α > 0 such that

⟨Tx− Ty, x− y⟩ ≥ α∥x− y∥2

for all x, y ∈ H.
(IV): inverse strongly monotone if there exists a constant α > 0 such that

⟨Tx− Ty, x− y⟩ ≥ α∥Tx− Ty∥2

for all x, y ∈ H.

Note that the proximal mapping of f is nonexpansive and firmly nonexpansive mapping. The minimizers
of any proper, lower semicontinuous function are exactly fixed points of its proximal mappings. Many
properties of proximal operator can be found in [12] and the references therein.

Lemma 2.2. Let H be a real Hilbert space. Then,
∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩, ∀x, y ∈ H
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The following facts will be used several times in the paper.

Lemma 2.3. [2] Let H be a real Hilbert space. Then,
∥(1− α)x+ αy∥2 = (1− α)∥x∥2 + α∥y∥2 − α(1− α)∥x− y∥2,

∀α ∈ R, ∀x, y ∈ H.

Let H be a real Hilbert space, {x1, x2, . . . , xd} ⊂ H and {λ1, λ2, . . . , λd} ⊂ [0, 1] with
d∑
i=1

λi = 1. Then,

from [2, 37] one can see that ∥∥∥ d∑
i=1

λixi

∥∥∥2 ≤ d∑
i=1

λi∥xi∥2,

i.e., convexity of ∥.∥2.

Lemma 2.4. [18] Let {an} be the sequence of nonnegative numbers such that
an+1 ≤ (1− αn)an + αnδn,

where {δn} is a sequence of real numbers bounded from above and 0 ≤ αn ≤ 1 and
∞∑
n=1

αn = ∞. Then it
holds that

lim sup
n→∞

αn ≤ lim sup
n→∞

δn.

3. Main result

First we introduce the following settings which is an extension of settings introduced by Moudafi and
Thakur [21]. Let λ > 0. For x ∈ H1,

(i): for each i ∈ Φ, define

li(x) =
1

2
∥(I − proxλfi)x∥

2 and ∇li(x) = (I − proxλfi)x,

(ii): l(x) and ∇l(x) are defined as l(x) = lix(x) and so ∇l(x) = ∇lix(x) where ix is in Φ such that
ix ∈ arg max{∥(I − proxλfi)x∥ : i ∈ Φ},

(iii): for each j ∈ Ψ, define

hj(x) =
1

2
∥(I − proxλgj )Ax∥2 and ∇hj(x) = A∗(I − proxλgj )Ax,

(iv): for each j ∈ Ψ, define
θj(x) = max{∥∇hj(x)∥, ∥∇l(x)∥}.

It is easy to see that, for x ∈ H1

∥∇li(x)∥ ≤ ∥∇lix(x)∥ = ∥∇l(x)∥, ∀i ∈ Φ

and
li(x) =

1

2
∥∇li(x)∥2, ∀i ∈ Φ.

In this section, we propose algorithm for solving SSMP (1.8) and we analyse the convergence of the iteration
sequence generated by the algorithm by assuming that the solution set Γ is nonempty. In order to design
the algorithm, we consider the parameter sequences satisfying the following conditions.

Condition 1
(C1) : 0 < αn < 1, lim

n→∞
αn = 0 and

∞∑
n=1

αn =∞.

(C2) : 0 < β ≤ βn ≤ δ < 1,
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(C3) : 0 < ξ ≤ ξjn ≤ 1 such that
M∑
j=1

ξjn = 1 for each n ≥ 1.

(C4) : 0 < δ ≤ δin ≤ 1 such that
N∑
i=1

δin = 1 for each n ≥ 1.

(C5) : 0 < ρn < 2δ, lim inf
n→∞

ρn(2δ − ρn) > 0.

Throughout this paper, unless otherwise stated, Condition 1 refers to conditions (C1)-(C5) above. Using
the definitions of ∇li, li, l, ∇l, hj , ∇hj and θj given in (i)-(iv), we are now in a position to introduce our
algorithm.

Algorithm 1
Initialization: Choose u, x1 ∈ H1. Let {αn}, {βn}, {ρn}, {δin} and {ξjn} be real sequences satisfying
Condition 1.

Step 1: Evaluate zn = (1− αn)xn + αnu.
Step 2: For each j ∈ Ψ compute θj(zn), hj(zn) and l(zn).

Let Ψn = {j ∈ Ψ : θj(zn) ̸= 0}.
If Ψn = ∅, then zn is a solution of (1.8) and the iterative process stops, otherwise, go to Step 3.

Step 3: For each j ∈ Ψ evaluate µjn = ρnη
j
n where

ηjn =

{
0, if j /∈ Ψn
hj(zn)+l(zn)

θ2j (zn)
, if j ∈ Ψn.

Step 4: Evaluate
wn = zn −

(∑
j∈Ψ

ξjnµ
j
n

)∑
i∈Φ

δin∇li(zn)

and
tn = zn −

∑
j∈Ψ

ξjnµ
j
n∇hj(zn).

Step 5: Evaluate
yn =

wn + tn
2

.

Step 6: Evaluate xn+1 = (1− βn)zn + βnyn.
Step 7: Set n := n+ 1 and go to Step 1.

Lemma 3.1. If Ψn = ∅, then zn is the solution of (1.8).

Proof. Suppose Ψn = ∅ at some iteration n.
Then, from Ψn = {j ∈ Ψ : θj(zn) ̸= 0} = ∅, we have

max{∥∇hj(zn)∥, ∥∇l(zn)∥} = 0,∀j ∈ Ψ
⇔ ∥∇hj(zn)∥ = 0 = ∥∇l(zn)∥,∀j ∈ Ψ,
⇔ ∥∇hj(zn)∥ = 0 = ∥∇li(zn)∥,∀i ∈ Φ,∀j ∈ Ψ,
⇔ A∗(I − proxλgj )Azn = 0 = (I − proxλfi)zn,∀i ∈ Φ,∀j ∈ Ψ,

and this implies that zn ∈ Γ. �

Remark 3.2. Note that we can also use θj(x) =
√
∥∇hj(x)∥2 + ∥∇l(x)∥2 instead of θj(x) = max{∥∇hj(x)∥, ∥∇l(x)∥}

and the proof for convergence will be the same. It is clear to see that

max{∥∇hj(x)∥, ∥∇l(x)∥} ≤
√
∥∇hj(x)∥2 + ∥∇l(x)∥2.

If Algorithm 1 does not stop, then we have the following strong convergence theorem for approximation
of solution of problem (1.8).
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Theorem 3.3. The sequence {xn} generated by Algorithm 1 converges strongly to x̄ ∈ Γ where x̄ = PΓu.

Proof. Let x̄ = PΓu. Since proxλfi and proxλgj are firmly nonexpansive, I − proxλfi and I − proxλgj are
also firmly nonexpansive, and since x̄ verifies (1.8) (since minimizers of any function are exactly fixed-points
of its proximal mapping), we have for all z ∈ H1

⟨∇li(z), z − x̄⟩ = ⟨(I − proxλfi)z, z − x̄⟩
≥ ∥(I − proxλfi)z∥2 = 2li(z)

(3.1)

and

⟨∇hj(z), z − x̄⟩ = ⟨A∗(I − proxλgj )Az, z − x̄⟩
= ⟨(I − proxλgj )Az,Az −Ax̄⟩
≥ ∥(I − proxλgj )Az∥2 = 2hj(z), ∀j ∈ Ψ.

(3.2)

Note that, for all z ∈ H1, ∥∇l(z)∥ ≤ θj(z), ∥∇hj(z)∥ ≤ θj(z), ∀j ∈ Ψ,

∑
i∈Φ

δin∥∇li(z)∥2 ≤ ∥∇l(z)∥2 and
∑
i∈Φ

δinli(z) ≥ ζl(z).

Using convexity of ∥.∥2 together with (3.1), we have

∥wn − x̄∥2= ∥zn −
( ∑
j∈Ψ

ξjnµ
j
n

) ∑
i∈Φ

δin∇li(zn)− x̄∥2

= ∥zn − x̄∥2 +
∥∥( ∑

j∈Ψ

ξjnµ
j
n

) ∑
i∈Φ

δin∇li(zn)
∥∥2

− 2⟨
( ∑
j∈Ψ

ξjnµ
j
n

) ∑
i∈Φ

δin∇li(zn), zn − x̄⟩

≤ ∥zn − x̄∥2 +
( ∑
j∈Ψ

ξjnµ
j
n

)2 ∑
i∈Φ

δin
∥∥∇li(zn)

∥∥2
− 2
( ∑
j∈Ψ

ξjnµ
j
n

) ∑
i∈Φ

δin⟨∇li(zn), zn − x̄⟩

≤ ∥zn − x̄∥2 +
( ∑
j∈Ψ

ξjn(µjn)2
) ∑
i∈Φ

δin
∥∥∇li(zn)

∥∥2
− 2
( ∑
j∈Ψ

ξjnµ
j
n

) ∑
i∈Φ

δin⟨∇li(zn), zn − x̄⟩

≤ ∥zn − x̄∥2 +
( ∑
j∈Ψ

ξjn(µjn)2
) ∑
i∈Φ

δin
∥∥∇li(zn)

∥∥2
− 4
( ∑
j∈Ψ

ξjnµ
j
n

) ∑
i∈Φ

δinli(zn).

(3.3)

Similarly, using convexity of ∥.∥2 together with (3.2), we have

∥tn − x̄∥2 = ∥zn −
∑
j∈Ψ

ξjnµ
j
n∇hj(zn)− x̄∥2

= ∥zn − x̄∥2 + ∥
∑
j∈Ψ

ξjnµ
j
n∇hj(zn)∥2 − 2⟨

∑
j∈Ψ

ξjnµ
j
n∇hj(zn), zn − x̄⟩

≤ ∥zn − x̄∥2 +
∑
j∈Ψ

ξjn(µjn)2∥∇hj(zn)∥2 − 2
∑
j∈Ψ

ξjnµ
j
n⟨∇hj(zn), zn − x̄⟩

≤ ∥zn − x̄∥2 +
∑
j∈Ψ

ξjn(µjn)2∥∇hj(zn)∥2 − 4
∑
j∈Ψ

ξjnµ
j
nhj(zn).

(3.4)
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Now, ( ∑
j∈Ψ

ξjn(µjn)2
) ∑
i∈Φ

δin
∥∥∇li(zn)

∥∥2 − 4
( ∑
j∈Ψ

ξjnµ
j
n

) ∑
i∈Φ

δinli(zn)

≤
( ∑
j∈Ψ

ξjn(µjn)2
)
∥∇l(zn)∥2 − 4

( ∑
j∈Ψ

ξjnµ
j
n

)
δ
izn
n l(zn)

≤
( ∑
j∈Ψ

ξjn(µjn)2
)
∥∇l(zn)∥2 − 4ζ

( ∑
j∈Ψ

ξjnµ
j
n

)
l(zn)

=
( ∑
j∈Ψ

ξjn(ρnη
j
n)2
)
∥∇l(zn)∥2 − 4ζ

( ∑
j∈Ψ

ξjnρnη
j
n

)
l(zn)

=
∑
j∈Ψn

ξjn

(
ρn

hj(zn)+l(zn)

θ2j (zn)

)2
∥∇l(zn)∥2 − 4ζ

∑
j∈Ψn

ξjnρn
hj(zn)+l(zn)

θ2j (zn)
l(zn)

≤ ρ2n
∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ4j (zn)
θ2j (zn)− 4ζρn

∑
j∈Ψn

ξjn
hj(zn)+l(zn)

θ2j (zn)
l(zn)

= ρ2n
∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ2j (zn)
− 4ζρn

∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ2j (zn)
l(zn)

hj(zn)+l(zn)

= ρn
∑
j∈Ψn

ξjn

(
ρn − 4ζl(zn)

hj(zn)+l(zn)

)
(hj(zn)+l(zn))

2

θ2j (zn)
,

(3.5)

and ∑
j∈Ψ

ξjn(µjn)2∥∇hj(zn)∥2 − 4
∑
j∈Ψ

ξjnµ
j
nhj(zn)

=
∑
j∈Ψ

ξjn(ρnη
j
n)2∥∇hj(zn)∥2 − 4

∑
j∈Ψ

ξjnρnη
j
nhj(zn)

=
∑
j∈Ψn

ξjn

(
ρn

hj(zn)+l(zn)

θ2j (zn)

)2
∥∇hj(zn)∥2 − 4

∑
j∈Ψn

ξjnρn
hj(zn)+(zn)

θ2j (zn)
hj(zn)

≤ ρ2n
∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ4j (zn)
θ2j (zn)− 4ρn

∑
j∈Ψn

ξjn
hj(zn)+l(zn)

θ2j (zn)
hj(zn)

= ρ2n
∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ2j (xn)
− 4ρn

∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ2j (zn)

hj(zn)
hj(zn)+l(zn)

≤ ρ2n
∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ2j (zn)
− 4ζρn

∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ2j (zn)

hj(zn)
hj(zn)+l(zn)

= ρn
∑
j∈Ψn

ξjn

(
ρn − 4ζhj(zn)

hj(zn)+l(zn)

)
(hj(zn)+l(zn))

2

θ2j (zn)
.

(3.6)

From convexity of ∥.∥2 and (3.3)-(3.6), we have

∥yn − x̄∥2 = ∥ 12 (wn + tn)− x̄∥2 ≤ 1
2∥wn − x̄∥

2 + 1
2∥tn − x̄∥

2

≤ ∥zn − x̄∥2 + ρn
2

∑
j∈Ψn

ξjn

(
ρn − 4ζl(zn)

hj(zn)+l(zn)

)
(hj(zn)+l(zn))

2

θ2j (zn)

+ ρn
2

∑
j∈Ψn

ξjn

(
ρn − 4ζhj(zn)

hj(zn)+l(zn)

)
(hj(zn)+l(zn))

2

θ2j (zn)

= ∥zn − x̄∥2 + ρn(ρn − 2ζ)
∑
j∈Ψn

ξjn
(hj(zn)+l(zn))

2

θ2j (zn)
.

(3.7)

From (3.7) and (C5), we have

∥yn − x̄∥ ≤ ∥zn − x̄∥. (3.8)

Using (3.8) and the definition of xn+1, we get

∥xn+1−x̄∥2 = ∥(1− βn)zn + βnyn − x̄∥2
= ∥(1− βn)(zn − x̄) + βn(yn − x̄)∥2
= (1− βn)∥zn − x̄∥2 + βn∥yn − x̄∥2 − βn(1− βn)∥zn − yn∥2
≤ ∥zn − x̄∥2 − βn(1− βn)∥zn − yn∥2.

(3.9)
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From (3.9) and the definition of zn, we get
∥xn+1 − x̄∥ ≤ ∥zn − x̄∥= (1− αn)∥xn − x̄∥+ αn∥u− x̄∥

≤ max{∥xn − x̄∥, ∥u− x̄∥}
...
≤ max{∥xn − x̄∥, ∥u− x̄∥}

(3.10)

which shows that {xn} is bounded. Consequently, {yn}, {Ayn} and {zn} are all bounded.
Now,

1
βn

(xn+1 − zn) = 1
βn

(
(1− βn)zn + βnyn − zn

)
= yn − zn (3.11)

and
∥yn − zn∥2 = 1

β2
n
∥xn+1 − zn∥2 = αn

βn

(
∥xn+1−zn∥2

αnβn

)
. (3.12)

Using (3.9) and (3.11), we have
∥xn+1 − x̄∥2≤ ∥zn − x̄∥2 − 1−βn

βn
∥xn+1 − zn∥2. (3.13)

From the definition of zn, we have
∥zn − x̄∥2 = ∥(1− αn)xn + αnu− x̄∥2

= (1− αn)2∥xn − x̄∥2 + α2
n∥u− x̄∥2 + 2αn(1− αn)⟨xn − x̄, u− x̄⟩

= (1− αn)∥xn − x̄∥2 + α2
n∥u− x̄∥2 + 2αn(1− αn)⟨xn − x̄, u− x̄⟩

(3.14)

Thus, (3.13) and (3.14) gives
∥xn+1 − x̄∥2≤ (1− αn)∥xn − x̄∥2 + α2

n∥u− x̄∥2
+2αn(1− αn)⟨xn − x̄, u− x̄⟩ − 1−βn

βn
∥xn+1 − zn∥2.

(3.15)

That is,
∥xn+1 − x̄∥2≤ (1− αn)∥xn − x̄∥2 − αnΓn (3.16)

where
Γn = −αn∥u− x̄∥2 + 2(1− αn)⟨x̄− xn, u− x̄⟩+

1− βn
αnβn

∥xn+1 − zn∥2.

We know that {xn} is bounded and so it is bounded below. Hence, Γn is bounded below. Furthermore,
using Lemma 2.4 and (C1), we have

lim sup
n→∞

∥xn − x̄∥ ≤ lim sup
n→∞

(−Γn) = − lim inf
n→∞

Γn. (3.17)

Therefore, lim inf
n→∞

Γn is a finite real number and by (C1), we have

lim inf
n→∞

Γn = lim inf
n→∞

(
2⟨x̄− xn, u− x̄⟩+ 1−βn

αnβn
∥xn+1 − zn∥2

)
.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ p in H1 and

lim inf
n→∞

Γn = lim inf
k→∞

(
2⟨x̄− xnk

, u− x̄⟩+
1−βnk

αnk
βnk
∥xnk+1 − znk

∥2
)
. (3.18)

Since {xn} is bounded and lim inf
n→∞

Γn is finite, we have that 1−βnk

αnk
βnk
∥xnk+1 − znk

∥2 is bounded. Also, by
(C2), we have 1−βn

αnβn
≥ 1−δ

αnβn
> 0 and so we have that 1

αnk
βnk
∥xnk+1− znk

∥2 is bounded. Observe from (C1)
and (C2), we have

0 <
αnk

βnk

≤ αnk

β
→ 0, k →∞.

Therefore, we obtain from (3.12) and αnk

βnk
→ 0, k →∞ that

∥ynk
− znk

∥ → 0, k →∞. (3.19)
From the definition of xn+1, we have

∥xnk+1 − znk
∥ = βnk

∥ynk
− znk

∥ → 0, k →∞
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and
∥znk

− xnk
∥ = αnk

∥u− xnk
∥ → 0, k →∞. (3.20)

Hence,
∥xnk+1 − xnk

∥ ≤ ∥xnk+1 − znk
∥+ ∥znk

− xnk
∥ → 0, k →∞.

Now, using (3.7), we obtain

ρnk
(2ζ − ρnk

)
∑

j∈Ψnk

ξjnk

(hj(znk
)+l(znk

))2

θ2j (znk
)

≤ ∥znk
− x̄∥2 − ∥ynk

− x̄∥2

≤ (∥znk
− x̄∥ − ∥ynk

− x̄∥)(∥znk
− x̄∥+ ∥ynk

− x̄∥)
= ∥znk

− ynk
∥(∥znk

− x̄∥+ ∥ynk
− x̄∥).

(3.21)

Therefore, (3.19), (3.21) and (C5) gives

ρnk
(2ζ − ρnk

)
∑
j∈Ψnk

ξjn
(hj(znk

) + l(znk
))2

θ2j (znk
)

→ 0, k →∞. (3.22)

Again using (C5) together with (3.22) yields∑
j∈Ψnk

ξjn
(hj(znk

) + l(znk
))2

θ2j (znk
)

→ 0, k →∞. (3.23)

Hence, in view of (3.23) and restriction condition imposed on ξjn, we have
(hj(znk

) + l(znk
))2

θ2j (znk
)

→ 0, k →∞ (3.24)

for all j ∈ Ψnk
.

For each i ∈ Φ and for each j ∈ Ψ, ∇hj(.) and ∇li(.) are Lipschitz continuous with constant ∥A∥2 and 1,
respectively. Since the sequence {zn} is bounded and

∥∇hj(zn)∥ = ∥∇hj(zn)∥ = ∥∇hj(zn)−∇hj(x̄)∥ ≤ ∥A∥2∥zn − x̄∥, ∀j ∈ Ψ,

∥∇li(zn)∥ = ∥∇li(zn)∥ = ∥∇li(zn)−∇li(x̄)∥ ≤ ∥zn − x̄∥,∀i ∈ Φ,

we have the sequences {∥∇li(zn)∥}+∞
n=1 and {∥∇hj(zn)∥}+∞

n=1 are bounded. Hence, the boundedness of
{∥∇li(zn)∥}+∞

n=1 for all i ∈ Φ gives {∥∇l(zn)∥}+∞
n=1 is bounded. Thus, we have {θ2j (zn)}+∞

n=1 is bounded
and hence {θ2j (znk

)}+∞
k=1 is bounded. Consequently, using (3.24), we have for each j ∈ Ψnk

lim
k→+∞

(hj(znk
) + l(znk

)) = 0⇔ lim
k→+∞

hj(znk
) = lim

k→+∞
l(znk

) = 0.

Since θj(znk
) = 0 for each j /∈ Ψnk

and this results hj(znk
) = 0 = l(znk

) for each j /∈ Ψnk
. Hence, using

lim
n→+∞

hj(znk
) = lim

k→+∞
l(zn) = 0 for each j ∈ Ψnk

and hj(znk
) = 0 = l(znk

) for each j /∈ Ψnk
, we have

lim
k→+∞

hj(znk
) = lim

k→+∞
l(znk

) = 0, ∀j ∈ Ψ.

From the definition of l(znk
), we can have li(znk

) ≤ l(znk
), ∀i ∈ Φ. Therefore,

lim
k→+∞

hj(znk
) = lim

k→+∞
li(znk

) = 0, ∀i ∈ Φ, ∀j ∈ Ψ.

Since xnk
→ p and using (3.20), we have znk

→ p.
The lower-semicontinuity of hj(.) implies that

0 ≤ hj(p) ≤ lim inf
k→∞

hj(znk
) = lim

k→∞
hj(znk

) = 0, ∀j ∈ Ψ.

That is, hj(p) = 1
2∥(I − proxλgj )Ap∥2 = 0 for all j ∈ Ψ, i.e., Ap is a fixed point of the proximal mapping of

each gj or equivalently, 0 ∈ ∂gj(Ap) for all j ∈ Ψ. In other words, Ap is a minimizer of each gj for all j ∈ Ψ.
Likewise, the lower-semicontinuity of li(.) implies that

0 ≤ li(p) ≤ lim inf
k→∞

li(znk
) = lim

k→∞
li(znk

) = 0, ∀i ∈ Φ.
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That is, li(p) = 1
2∥(I − proxλfi)p∥2 = 0 for all i ∈ Φ, i.e., p is a fixed point of the proximal mapping of each

fi or equivalently, 0 ∈ ∂fi(p) for all i ∈ Φ. In other words, p is a minimizer of each fi for all i ∈ Φ. Thus,
p ∈ Γ.
Now, we obtain from (3.18), Lemma 2.1 and x̄ = PΓu that

lim inf
n→∞

Γn= lim inf
k→∞

(
2⟨x̄− xnk

, u− x̄⟩+
1−βnk

αnk
βnk
∥xnk+1 − znk

∥2
)

≥ 2 lim inf
k→∞

⟨x̄− xnk
, u− x̄⟩

≥ 2⟨x̄− p, u− x̄⟩ ≥ 0.

Then we have from (3.17) that

lim sup
n→∞

∥xn − x̄∥2 ≤ lim sup
n→∞

(−Γn) = − lim inf
n→∞

Γn ≤ 0.

Therefore, ∥xn − x̄∥ → 0 and this implies that {xn} converges strongly to x̄. This completes the proof. �

It is worth mentioning that our approach also works for approximation of solution of split minimization
problem (1.5). Let Ω1 denote the solution set of (1.5), i.e.,

Ω1 = {x̄ ∈ H1 : x̄ ∈ arg min f and Ax̄ ∈ arg min g}.

For x ∈ H1, set l(x) = 1
2∥(I − proxλf )x∥2, ∇l(x) = (I − proxλf )x, h(x) = 1

2∥(I − proxλg)Ax∥2, ∇h(x) =
A∗(I − proxλg)Ax and θ(x) = max{∥∇h(x)∥, ∥∇l(x)∥}. Thus, the following Corollary is an immediate
consequence of Theorem 3.3.

Corollary 3.4. If {αn}, {βn} and {ρn} are real sequences satisfying the following conditions:

(a) : 0 < αn < 1, lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

(b) : 0 < β ≤ βn ≤ δ < 1,
(c) : 0 < ρn < 2δ, lim inf

n→∞
ρn(2δ − ρn) > 0.

then the sequence {xn} generated by iterative algorithm

u, x1 ∈ H1,
zn = (1− αn)xn + αnu,

µn =

{
ρn0, if θ(zn) = 0

ρn
h(zn)+l(zn)
θ2(zn)

, if θ(zn) ̸= 0.
,

yn = zn − 1
2µn

(
∇l(zn) +∇h(zn)

)
,

xn+1 = (1− βn)zn + βnyn,

(3.25)

converges strongly to x̄ ∈ Ω1 where x̄ = PΩ1
u.

Proof. Setting fi = f for all i ∈ Φ and gj = g for all j ∈ Ψ in Theorem 3.3, we obtain the desired result. �

Remark 3.5. Iterative algorithm (3.25) seems to share a similar structure with the proposed algorithm in
[29]. However, the selection of the step-sizes and their restriction slightly different.

The feasibility problem (convex feasibility problem), equilibrium problem and inclusion problem can be
converted to the fixed point problem of firmly nonexpansive mapping. We can apply our algorithm to solve
split system of feasibility problems (MSSFPs), split system of equilibrium problems and split system of
inclusion problems.

1. Multiple-set split feasibility problem (1.1) by replacing proxλfi by projection mapping PCi
and

proxλgj by projection mapping PQj
in the Algorithm 1, for all i′ ∈ Φ′, i ∈ Φ = {1, 2, . . . , N} and

j ∈ Ψ = {1, 2, . . . ,M}.
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2. Split system of equilibrium problem: Let fi : H1 ×H1 → R and gj : H2 ×H2 → R be bifunctions
where i ∈ Φ = {1, . . . , N}, j ∈ Ψ = {1, . . . ,M}. Split system of equilibrium problem of a problem
of find x̄ ∈ H1 such that {

fi(x̄, x) ≥ 0, ∀x ∈ H1,∀i ∈ Φ,
gj(Ax̄, u) ≥ 0, ∀u ∈ H2, , ∀j ∈ Ψ.

(3.26)

Our iterative algorithm solves (3.26) by replacing proximal mappings by the resolvent operators
associated to monotone equilibrium bifunctions, see [11, 3, 22].

3. Split null point problem: Let Ti : H1 → 2H1 , Uj : H2 → 2H2 be maximal monotone mappings for
all i ∈ Φ = {1, . . . , N} and j ∈ Ψ = {1, . . . ,M}. The split system of inclusion problem is to find
x̄ ∈ H1 such that {

0 ∈ Ti(x̄), ∀i ∈ Φ,
0 ∈ Uj(Ax̄), ∀j ∈ Ψ.

(3.27)

Our iterative algorithm solves (3.27) by replacing proximal mappings by the resolvent operators
associated to the maximal monotone operators, see, [4, 25, 16, 20, 23, 36].

Our algorithm works for several split type problems and avoids the computational cost of finding operator
norm.

4. Numerical results

Now in this section we will consider SSMP (1.8) involving quadratic optimization problems. The algorithm
has been coded in Matlab R2017a running on MacBook 1.1 GHz Intel Core m3 8 GB 1867 MHz LPDDR3.
Let H1 = Rp and H2 = Rq. Consider

fi(x) =
1

2
xTBix+ xTDi, i ∈ Φ = {1, . . . , N},

g1(u) = ∥u∥q and g2(u) =

q∑
k=1

h(uk)

where for each i ∈ Φ, Bi is invertible symmetric positive semidefinite p× p matrix and each Di are vectors
in Rp, u = (u1, u2, . . . , uq) ∈ Rq, ∥.∥q is the Euclidean norm in Rq and

h(uk) = max{|uk| − 1, 0}
for k = 1, 2, . . . , q.
Now for λ = 1, the proximal operators are given by

proxλfi(x) = (I +Bi)
−1(x−Di), i ∈ Φ,

proxλg1(u) =

{ (
1− 1

∥u∥q

)
u, ∥u∥q ≥ 1

0, otherwise
(4.1)

and
proxλg2(u) = (proxλh(u1),proxλh(u2), . . . , proxλh(uq))

where

proxλh(uk) =

 uk, if |uk| < 1
sign(uk), if 1 ≤ |uk| ≤ 2
sign(uk − 1), if |uk| > 2.

The proximal operator (4.1) is called the block soft thresholding obtained in de-noising model.
We set Di = 0 (zero vector in Rp) for all i ∈ Φ. Let N = 3, p = q, A is identity p × p matrix and B1, B2

and B3 are randomly generated invertible symmetric positive semidefinite p× p matrices. Hence, with this
setting, it is clear to see that Γ = {0}. In all the experiments we took δin = i

6 and ξjn = j
3 for i ∈ Φ = {1, 2, 3},

j ∈ Ψ = {1, 2}, ρn = 1
10 as 0 < ρn < 2ζ for ζ = 1

6 . Table 1, 2 and 3 describe the average execution time in
second (CPU-t(s)) and the number of iterations (Iter(n)) of our algorithm for this example. The stopping
criteria in the tables 1, 2 and 3 is defined as ∥xn+1−xn∥

∥x2−x1∥ ≤ TOL.
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Table 1. For p = q = 4, αn = 1√
n+1

, βn = 0.9, u = (1, 1, 1, 1), x1 = 10u.

xn
Iter(n) TOL CPU-t(s) ∥xn+1 − xn∥

x1n x2n x3n x4n
1 10 10 10 10 9.0304
2 5.4841 5.4854 5.4842 5.4852 3.0046
3 3.9817 3.9834 3.9820 3.9826 1.5000
4 3.2317 3.2341 3.2314 3.2326 0.8991
5 2.7825 2.7839 2.7820 2.7831 0.5988
6 2.4828 2.4844 2.4827 2.4838 0.4277
7 2.2691 2.2702 2.2690 2.2699 0.3204
...

...
...

...
...

...
23 1.3796 1.3800 1.3796 1.3799 0.0323
24 10−3 0.0352 1.3634 1.3638 1.3634 1.3637 0.0297

Table 2. For p = q = 100, αn = 1
n+1 , βn = 0.5 and randomly generated starting points u

and x1 in R100.

Iter(n) TOL CPU-t(s) ∥xn+1 − xn∥
1 6383.1845
2 1519.9088
3 554.2387
4 247.0358
5 124.2771
...

...
15 1.5845
16 10−4 0.2923 0.5736

Table 3. For p = q = 200, αn = 1
10(n+1 ), βn = 0.1 and randomly generated starting points

u and x1 in R200.

Iter(n) TOL CPU-t(s) ∥xn+1 − xn∥
1 14554.8769
2 3475.8500
3 1270.6095
4 567.6027
5 286.1360
6 10−2 0.0093 156.6170

From the tables 1-3 we can see that our proposed algorithm is efficient and easy to implement.
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Abstract

Let K be a compact convex subspace of C and C (K;C) the space of
continuous functions from K into C. We consider bounded linear func-
tionals from C (K;C) into C and bounded linear operators from C (K;C)
into itself. We assume that these are bounded by companion real positive
linear entities, respectively. We study quantitatively the rate of conver-
gence of the approximation of these linearities to the corresponding unit
elements. Our results are inequalities of Korovkin type involving the com-
plex modulus of continuity and basic test functions.
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1 Introduction

The study of the convergence of positive linear operators became more intensive
and attractive when P. Korovkin (1953) proved his famous theorem (see [7], p.
14).
Korovkin�s First Theorem. Let [a; b] be a compact interval in R and

(Ln)n2N be a sequence of positive linear operators Ln mapping C ([a; b]) into
itself. Assume that (Lnf) converges uniformly to f for the three test functions
f = 1; x; x2. Then (Lnf) converges uniformly to f on [a; b] for all functions of
f 2 C ([a; b]).
So a lot of authors since then have worked on the theoretical aspects of the

above convergence. But R. A. Mamedov (1959) (see [8]) was the �rst to put
Korovkin�s theorem in a quantitative scheme.
Mamedov�s Theorem. Let fLngn2N be a sequence of positive linear

operators in the space C ([a; b]), for which Ln1 = 1, Ln (t; x) = x + �n (x),
Ln
�
t2; x

�
= x2 + �n (x). Then it holds

kLn (f; x)� f (x)k1 � 3!1
�
f;
p
dn

�
;

1
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where !1 is the �rst modulus of continuity and dn = k�n (x)� 2x�n (x)k1 :
An improvement of the last result was the following.
Shisha and Mond�s Theorem. (1968, see [10]). Let [a; b] � R be a

compact interval. Let fLngn2N be a sequence of positive linear operators acting
on C ([a; b]). For n = 1; 2; :::; suppose Ln (1) is bounded. Let f 2 C ([a; b]).
Then for n = 1; 2; :::; it holds

kLnf � fk1 � kfk1 � kLn1� 1k1 + kLn (1) + 1k1 � !1 (f; �n) ;

where

�n :=
�Ln �(t� x)2�� (x) 1

2

1
:

Shisha-Mond inequality generated and inspired a lot of research done by
many authors worldwide on the rate of convergence of a sequence of positive
linear operators to the unit operator, always producing similar inequalities how-
ever in many di¤erent directions, e.g., see the important work of H. Censka of
1983 in [6], etc.
The author (see [1]) in his 1993 research monograph, produces in many

directions best upper bounds for j(Lnf) (x0)� f (x0)j, x0 2 Q � Rn, n � 1,
compact and convex, which lead for the �rst time to sharp/attained inequalities
of Shisha-Mond type. The method of proving is probabilistic from the theory
of moments. His pointwise approach is closely related to the study of the weak
convergence with rates of a sequence of �nite positive measures to the unit
measure at a speci�c point.
The author in [3], pp. 383-412 continued this work in an abstract setting:

Let X be a normed vector space, Y be a Banach lattice; M � X is a compact
and convex subset. Consider the space of continuous functions from M into Y ,
denoted by C (M;Y ); also consider the space of bounded functions B (M;Y ).
He studied the rate of the uniform convergence of lattice homomorphisms T :
C (M;Y )! C (M;Y ) or T : C (M;Y )! B (M;Y ) to the unit operator I. See
also [2].
Also the author in [4], pp. 175-188 continued the last abstract work for

bounded linear operators that are bounded by companion real positive linear
operators. Here the invoved functions are from [a; b] � R into (X; k�k) a Banach
space.
All the above have inspired and motivated the work of this article. Our

results are of Shisha-Mond type, i.e., of Korovkin type.
Namely here let K be a convex and compact subset of C and l be a linear

functional from C (K;C) into C, and let el be a positive linear functional from
C (K;R) into R, such that jl (f)j � el (jf j), 8 f 2 C (K;C).
Clearly then l is a bounded linear functional. Initially we create a quantita-

tive Korovkin type theory over the last described setting, then we transfer these
results to related bounded linear operators with similar properties.

2
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2 Background

We need

Theorem 1 Let K � (C; j�j) and f a function from K into C. Consider the
�rst complex modulus of continuity

!1 (f; �) := sup
x;y2K
jx�yj<�

jf (x)� f (y)j , � > 0: (1)

We have:
(1)� If K is open convex or compact convex, then !1 (f; �) < 1, 8 � > 0,

where f 2 UC (K;C) (uniformly continuous functions).
(2)�If K is open convex or compact convex, then !1 (f; �) is continuous on

R+ in �, for f 2 UC (K;C) :
(3)�If K is convex, then

!1 (f; t1 + t2) � !1 (f; t1) + !1 (f; t2) , t1; t2 > 0; (2)

that is the subadditivity property is true. Also it holds

!1 (f; n�) � n!1 (f; �) (3)

and
!1 (f; ��) � d�e!1 (f; �) � (�+ 1)!1 (f; �) ; (4)

where n 2 N, � > 0, � > 0, d�e is the ceiling of the number.
(4)�Clearly in general !1 (f; �) � 0 and is increasing in � > 0 and !1 (f; 0) =

0:
(5)�If K is open or compact, then !1 (f; �)! 0 as � # 0, i¤ f 2 UC (K;C) :
(6)�It holds

!1 (f + g; �) � !1 (f; �) + !1 (g; �) ; (5)

for � > 0, any f; g : K ! C, K � C is arbitrary.

Proof. (1)�Here K is open convex. Let here f 2 UC (K;C), i¤ 8 " > 0,
9 � > 0 : jx� yj < � implies jf (x)� f (y)j < ". Let "0 > 0 then 9 �0 > 0 :
jx� yj � �0 with jf (x)� f (y)j < "0, hence !1 (f; �0) � "0 <1:
Let � > 0 arbitrary and x; y 2 K : jx� yj � �. Choose n 2 N : n�0 > �, and

set xi = x+ i
n (y � x), 0 � i � n. Notice that all xi 2 K. Then

jf (x)� f (y)j =
�����
n�1X
i=0

(f (xi)� f (xi+1))
����� �

jf (x)� f (x1)j+ jf (x1)� f (x2)j+ jf (x2)� f (x3)j+ :::+ jf (xn�1)� f (y)j �

n!1 (f; �0) � n"0 <1;

since jxi � xi+1j = 1
n jx� yj �

1
n� < �0:

3
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Thus !1 (f; �) � n"0 <1, proving the claim. If K is compact convex, then
claim is obvious.
(2)�Let x; y 2 K and let jx� yj � t1 + t2, then there exists a point z 2 xy,

z 2 K : jx� zj � t1 and jy � zj � t2, where t1; t2 > 0.
Notice that

jf (x)� f (y)j � jf (x)� f (z)j+ jf (z)� f (y)j � !1 (f; t1) + !1 (f; t2) :

Hence
!1 (f; t1 + t2) � !1 (f; t1) + !1 (f; t2) ;

proving (3)�. Then by the obvious property (4)�we get

0 � !1 (f; t1 + t2)� !1 (f; t1) � !1 (f; t2) ;

and
j!1 (f; t1 + t2)� !1 (f; t1)j � !1 (f; t2) :

Let f 2 UC (K;C), then lim
t2#0

!1 (f; t2) = 0, by property (5)�. Hence !1 (f; �)
is continuous on R+:
(5)�()) Let !1 (f; �)! 0 as � # 0. Then 8 " > 0; 9 � > 0 with !1 (f; �) � ".

I.e. 8 x; y 2 K : jx� yj � � we get jf (x)� f (y)j � ": That is f 2 UC (K;C).
(() Let f 2 UC (K;C). Then 8 " > 0; 9 � > 0 : whenever jx� yj � �,

x; y 2 K, it implies jf (x)� f (y)j � ". I.e. 8 " > 0; 9 � > 0 : !1 (f; �) � ".
That is !1 (f; �)! 0 as � # 0:
(6)�Notice that

j(f (x) + g (x))� (f (y) + g (y))j � jf (x)� f (y)j+ jg (x)� g (y)j :

That is property (6)�now is clear.
We need

Theorem 2 ([1], p. 208) Let (V1; k�k) ; (V2; k�k) be real normed vector spaces
and Q � V1 which is star- shaped relative to the �xed point x0. Consider f :
Q! V2 with the properties:

f (x0) = 0, and ks� tk � h implies kf (s)� f (t)k � w; w; h > 0: (6)

Then, there exists a maximal such function �, namely

� (t) :=

�
kt� x0k

h

�
� w � �!i ; (7)

where
�!
i is any unit vector in V2.

That is
kf (t)k � k� (t)k , all t 2 Q: (8)

4
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Corollary 3 Let K � (C; j�j) be a compact convex subset, and f 2 C (K;C).
Then

jf (x)� f (x0)j � !1 (f; �)
�
jx� x0j
�

�
; � > 0; (9)

8 x; x0 2 K:

We make

Remark 4 Let K � (C; j�j) be a compact subset and g 2 C (K;R).
A linear functional I from C (K;R) into R is positive, i¤ I (g1) � I (g2),

whenever g1 � g2, where g1; g2 2 C (K;R) :
Let us assume that I is a positive linear functional. Then by Riesz represen-

tation theorem, [9], p. 304, there exists a unique Borel measure � on K such
that

I (g) =

Z
K

g (t) d� (t) ; (10)

8 g 2 C (K;R) :

We make

Remark 5 Here initially we follow [5].
Suppose  is a smooth path parametrized by z (t), t 2 [a; b] and f is a complex

function which is continuous on . Put z (a) = u and z (b) = w with u;w 2 C.
We de�ne the integral of f on u;w =  asZ



f (z) dz =

Z
u;w

f (z) dz :=

Z b

a

f (z (t)) z0 (t) dt: (11)

By triangle inequality we have����Z


f (z) dz

���� =
�����
Z b

a

f (z (t)) z0 (t) dt

����� �
Z b

a

jf (z (t))j jz0 (t)j dt :=
Z


jf (z)j jdzj :

(12)
Inequalities (12) provide a typical example on linear functionals: clearly

R

f (z) dz

induces a linear functional from C (;C) into C, and
R

jf (z)j jdzj involves a

positive linear functional from C (;R) into R.
Thus, be given K a convex and compact subset of C and l be a linear func-

tional from C (K;C) into C, it is not strange to assume that there exists a
positive linear functional el from C (K;R) into R, such that

jl (f)j � el (jf j) ; 8 f 2 C (K;C) : (13)

Furthermore, we may assume that el (1 (�)) = 1, where 1 (t) = 1, 8 t 2 K; l (c (�)) =
c;8c 2 C where c (t) = c, 8 t 2 K�
We call el the companion functional to l.
Here C is a vector space over the �eld of reals. The functional l is linear

over R and the functional el is linear over R.
Next we study approximation properties of

�
ln;eln� pairs, n 2 N:

5
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3 Main Results - I

First about linear functionals:
We present the following quantitative approximation result of Korovkin type.

Theorem 6 Here K is a convex and compact subset of C and ln is a sequence
of linear functionals from C (K;C) into C, n 2 N. There is a sequence of
companion positive linear functionals eln from C (K;R) into R, such that

jln (f)j � eln (jf j) , 8 f 2 C (K;C) ; 8 n 2 N: (14)

Additionally, we assume that eln (1 (�)) = 1 and ln (c (�)) = c;8c 2 C 8 n 2 N:
Then

jln (f)� f (x0)j � 2!1
�
f;eln (j� � x0j)� ; 8 n 2 N; 8 x0 2 K, (15)

8 f 2 C (K;C) :

Proof. We notice that

jln (f)� f (x0)j = jln (f)� ln (f (x0) (�))j =

jln (f (�)� f (x0) (�))j
(14)
� eln (jf (�)� f (x0) (�)j) (by �>0; (9))�

eln�!1 (f; �)� j� � x0j
�

��
� !1 (f; �)eln�1 (�) + j� � x0j

�

�
=

!1 (f; �)

�eln (1(�)) + 1
�
eln (j� � x0j)� =

!1 (f; �)

�
1 +

1

�
eln (j� � x0j)� = 2!1 �f;eln (j� � x0j)� ; (16)

by choosing
� := eln (j� � x0j) ;

if eln (j� � x0j) > 0, that is proving (15).
Next, we consider the case of eln (j� � x0j) = 0. By Riesz representation

theorem, see (10) there exists a probability measure � such that

eln (g) = Z
K

g (t) d� (t) ; 8 g 2 C (K;R) : (17)

That is, here it holds Z
K

jt� x0j d� (t) = 0;

which implies jt� x0j = 0, a.e, hence t � x0 = 0, a.e, and t = x0, a.e. Con-
sequently � (ft 2 K : t 6= x0g) = 0. Hence � = �x0 , the Dirac measure with
support only fx0g :
Therefore in that case eln (g) = g (x0), 8 g 2 C (K;R). Thus, it holds

!1

�
f;eln (j� � x0j)� = !1 (f; 0) = 0, and eln (jf (�)� f (x0) (�)j) = jf (x0)� f (x0)j =

0, giving jln (f)� f (x0)j = 0. That is (15) is again true.

6
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Remark 7 We have that

eln (j� � x0j) = Z
K

jt� x0j d� (t)

(by Schwarz�s inequality)

�
�Z

K

1d� (t)

� 1
2
�Z

K

jt� x0j2 d� (t)
� 1

2

=

�eln (1)� 1
2

�Z
K

jt� x0j2 d� (t)
� 1

2

=
�eln �j� � x0j2�� 1

2

: (18)

We give

Corollary 8 All as in Theorem 6. Then

jln (f)� f (x0)j � 2!1
�
f;
�eln �j� � x0j2�� 1

2

�
; 8 n 2 N; 8 x0 2 K. (19)

Conclusion 9 All as in Theorem 6. By (15) and/or (19), as eln (j� � x0j)! 0,

or eln �j� � x0j2�! 0, as n! +1, we obtain that ln (f)! f (x0) with rates, 8
x0 2 K.

Next comes a more general quantitative approximation result of Korovkin
type.

Theorem 10 Here K is a convex and compact subset of C and ln is a sequence
of linear functionals from C (K;C) into C, n 2 N. There is a sequence of
companion positive linear functionals eln from C (K;R) into R, such that

jln (f)j � eln (jf j) , 8 f 2 C (K;C) ; 8 n 2 N: (20)

Additionally, we assume that

ln (cg) = celn (g) ; 8 g 2 C (K;R) ; 8 c 2 C: (21)

Then, for any f 2 C (K;C), we have

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+ �eln (1 (�)) + 1�!1 �f;eln (j� � x0j)� ;

(22)
8 x0 2 K, 8 n 2 N:
(Notice if eln (1 (�)) = 1, then (22) collapses to (15). So Theorem 10 gener-

alizes Theorem 6).
By (22), as eln (1 (�)) ! 1 and eln (j� � x0j) ! 0, then ln (f) ! f (x0), as

n! +1, with rates, and as here eln (1 (�)) is bounded.
7
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Proof. We observe that

jln (f)� f (x0)j = jln (f)� ln (f (x0) (�)) + ln (f (x0) (�))� f (x0)j �

jln (f)� ln (f (x0) (�))j+
���f (x0)eln (1 (�))� f (x0)��� =

jln (f (�)� f (x0) (�))j+ jf (x0)j
���eln (1 (�))� 1��� � (23)

jf (x0)j
���eln (1 (�))� 1���+ eln (jf (�)� f (x0) (�)j) �

jf (x0)j
���eln (1 (�))� 1���+ eln�!1 (f; �)� j� � x0j

�

��
�

jf (x0)j
���eln (1 (�))� 1���+ eln (!1 (f; �))�1 (�) + j� � x0j

�

�
=

jf (x0)j
���eln (1 (�))� 1���+ !1 (f; �) �eln (1 (�)) + 1

�
eln (j� � x0j)� =

jf (x0)j
���eln (1 (�))� 1���+ �eln (1 (�)) + 1�!1 �f;eln (j� � x0j)� ;

by choosing
� := eln (j� � x0j) ; (24)

if eln (j� � x0j) > 0:
Next we consider the case ofeln (j� � x0j) = 0: (25)

By Riesz representation theorem there exists a positive �nite measure � such
that eln (g) = Z

K

g (t) d� (t) , 8 g 2 C (K;R) : (26)

That is Z
K

jt� x0j d� (t) = 0; (27)

which implies jt� x0j = 0, a.e., hence t � x0 = 0, a.e, and t = x0, a.e.
on K. Consequently � (ft 2 K : t 6= x0g) = 0. That is � = �x0M (where
0 < M := � (K) = eln (1 (�))). Hence, in that case eln (g) = g (x0)M . Conse-

quently it holds !1
�
f;eln (j� � x0j)� = 0, and the right hand side of (22) equals

jf (x0)j jM � 1j. Also, it is eln (jf (�)� f (x0) (�)j) = jf (x0)� f (x0)jM = 0.
Hence from the �rst part of this proof we get jln (f)� ln (f (x0) (�))j = 0, and
ln (f) = ln (f (x0) (�)) = f (x0)eln (1 (�)) =Mf (x0) :
Consequently the left hand side of (22) becomes

jln (f)� f (x0)j = jMf (x0)� f (x0)j = jf (x0)j jM � 1j :

So that (22) becomes an equality, and both sides equal jf (x0)j jM � 1j in the
extreme case of eln (j� � x0j) = 0: Thus inequality (22) is proved completely in
all cases.
We make

8
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Remark 11 By Schwartz�s inequality we get

eln (j� � x0j) � �eln �j� � x0j2�� 1
2
�eln (1 (�))� 1

2

: (28)

We give

Corollary 12 All as in Theorem 10. Then

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+

�eln (1 (�)) + 1�!1�f;�eln (1 (�))� 1
2
�eln �j� � x0j2�� 1

2

�
; (29)

8 x0 2 K, 8 n 2 N:

Next we give another version of our Korovkin type result.

Theorem 13 Here all are as in Theorem 10. Then, for any f 2 C (K;C), we
have

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+�eln (1 (�)) + 1�!1�f;�eln �j� � x0j2�� 1

2

�
;

(30)
8 x0 2 K, 8 n 2 N:
By (30), as eln (1 (�)) ! 1 and eln �j� � x0j2� ! 0, then ln (f) ! f (x0), as

n! +1, with rates, and as here eln (1 (�)) is bounded.
Proof. Let t; x0 2 K and � > 0. If jt� x0j > �, then

jf (t)� f (x0)j � !1 (f; jt� x0j) = !1
�
f; jt� x0j ��1�

�
� (31)�

1 +
jt� x0j
�

�
!1 (f; �) �

 
1 +

jt� x0j2

�2

!
!1 (f; �) :

The estimate

jf (t)� f (x0)j �
 
1 +

jt� x0j2

�2

!
!1 (f; �) (32)

also holds trivially when jt� x0j � �.
So (32) is true always, 8 t 2 K, for any x0 2 K:
We can rewrite

jf (�)� f (x0)j �
 
1 +

j� � x0j2

�2

!
!1 (f; �) : (33)

As in the proof of Theorem 10 we have

jln (f)� f (x0)j � ::: � jf (x0)j
���eln (1 (�))� 1���+
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eln !1 (f; �) 1 (�) + j� � x0j2
�2

!!
=

jf (x0)j
���eln (1 (�))� 1���+ !1 (f; �) �eln (1 (�)) + 1

�2
eln �j� � x0j2�� = (34)

jf (x0)j
���eln (1 (�))� 1���+ !1�f;�eln �j� � x0j2�� 1

2

��eln (1 (�)) + 1� ;
by choosing

� :=
�eln �j� � x0j2�� 1

2

; (35)

if eln �j� � x0j2� > 0.
Next we consider the case ofeln �j� � x0j2� = 0: (36)

By Riesz representation theorem there exists a positive �nite measure � such
that eln (g) = Z

K

g (t) d� (t) , 8 g 2 C (K;R) : (37)

That is Z
K

jt� x0j2 d� (t) = 0;

which implies jt� x0j2 = 0, a.e., hence t � x0 = 0, a.e, and t = x0, a.e. on
K. Consequently � (ft 2 K : t 6= x0g) = 0. That is � = �x0M (where 0 <
M := � (K) = eln (1 (�))). Hence, in that case eln (g) = g (x0)M . Consequently
it holds !1

�
f;
�eln �j� � x0j2�� 1

2

�
= 0, and the right hand side of (30) equals

jf (x0)j jM � 1j.
Also, it is eln (jf (�)� f (x0) (�)j) = jf (x0)� f (x0)jM = 0. Hence from

the �rst part of this proof we get: jln (f)� ln (f (x0) (�))j = 0, and ln (f) =
ln (f (x0) (�)) = f (x0)eln (1 (�)) =Mf (x0) :
Consequently the left hand side of (30) becomes

jln (f)� f (x0)j = jf (x0)j jM � 1j :

So that (30) is true again. The proof of the theorem is now complete.

Corollary 14 Here all are as in Theorem 10. Then

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+ �eln (1 (�)) + 1� �

min

�
!1

�
f;
�eln (1 (�))� 1

2
�eln �j� � x0j2�� 1

2

�
; !1

�
f;
�eln �j� � x0j2�� 1

2

��
;

(38)
8 x0 2 K, 8 n 2 N:

10
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Proof. By (29) and (30).
So (29) is better that (30) only if eln (1 (�)) < 1:
We need

Theorem 15 Let K � C convex, x0 2 K0(interior of K) and f : K ! R such
that jf (t)� f (x0)j is convex in t 2 K. Furthermore let � > 0 so that the closed
disk D (x0; �) � K. Then

jf (t)� f (x0)j �
!1 (f; �)

�
jt� x0j ; 8 t 2 K: (39)

Proof. Let g (t) := jf (t)� f (x0)j, t 2 K, which is convex in t 2 K and
g (x0) = 0.
Then by Lemma 8.1.1, p. 243 of [1], we obtain

g (t) � !1 (g; �)

�
jt� x0j ; 8 t 2 K: (40)

We notice the following

jf (t1)� f (x0)j = jf (t1)� f (t2) + f (t2)� f (x0)j �

jf (t1)� f (t2)j+ jf (t2)� f (x0)j ;

hence
jf (t1)� f (x0)j � jf (t2)� f (x0)j � jf (t1)� f (t2)j : (41)

Similarly, it holds

jf (t2)� f (x0)j � jf (t1)� f (x0)j � jf (t1)� f (t2)j : (42)

Therefore for any t1; t2 2 K : jt1 � t2j � � we get

j jf (t1)� f (x0)j � jf (t2)� f (x0)j j � jf (t1)� f (t2)j � !1 (f; �) : (43)

That is
!1 (g; �) � !1 (f; �) : (44)

The last and (40) imply

jf (t)� f (x0)j �
!1 (f; �)

�
jt� x0j ; 8 t 2 K; (45)

proving (39).
We continue with a convex Korovkin type result:

Theorem 16 All as in Theorem 10. Let x0 2 K0 and assume that jf (t)� f (x0)j
is convex in t 2 K. Let � > 0,such that the closed disk D (x0; �) � K. Then

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+!1 �f;eln (j� � x0j)� ; 8 n 2 N: (46)
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Proof. As in the proof Theorem 10 we have

jln (f)� f (x0)j � ::: � jf (x0)j
���eln (1 (�))� 1���+ eln (jf (�)� f (x0) (�)j) (39)� (47)

jf (x0)j
���eln (1 (�))� 1���+ !1 (f; �)

�
eln (j� � x0j) =

jf (x0)j
���eln (1 (�))� 1���+ !1 �f;eln (j� � x0j)� ;

by choosing
� := eln (j� � x0j) > 0;

if the last is positive. The case of eln (j� � x0j) = 0 is treated similarly as in the
proof of Theorem 10. The theorem is proved.

Theorem 17 All as in Theorem 16. Inequality (46) is sharp, in fact it is
attained by f� (t) =

�!
j jt� x0j, where

�!
j is a unit vector of (C; j�j); t; x0 2 K:

Proof. Indeed, f� here ful�lls the assumptions of the theorem. We further
notice that f� (x0) = 0, and jf� (t)� f� (x0)j = jt� x0j is convex in t 2 K. The
left hand side of (46) is

jln (f�)� f� (x0)j = jln (f�)j =
���ln ��!j j� � x0j���� (21)=����!j eln (j� � x0j)��� = ���eln (j� � x0j)��� : (48)

The right hand side of (46) is

!1

�
f�;eln (j� � x0j)� = !1 ��!j j� � x0j ;eln (j� � x0j)� =

sup
t1;t22K

jt1�t2j�eln(j��x0j)
����!j jt1 � x0j � �!j jt2 � x0j��� =

sup
t1;t22K

jt1�t2j�eln(j��x0j)
jjt1 � x0j � jt2 � x0jj � (49)

sup
t1;t22K

jt1�t2j�eln(j��x0j)
jt1 � t2j = eln (j� � x0j) :

Hence we have found that

!1

�
f�;eln (j� � x0j)� � eln (j� � x0j) : (50)

Clearly (46) is attained.
The theorem is proved.
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4 Main Results - II

Next we give results on linear operators:
Let K be a compact convex subset of C. Consider L : C (K;C)! C (K;C)

a linear operator and eL : C (K;R)! C (K;R) a positve linear operator (i.e. for
f1:f2 2 C (K;R) with f1 � f2 we get eL (f1) � eL (f2)) both over the �eld of R:
We assume that

jL (f)j � eL (jf j) , 8 f 2 C (K;C) ;
(i.e. jL (f) (z)j � eL (jf j) (z), 8 z 2 K).
We call eL the companion operator of L:
Let x0 2 K. Clearly, then L (�) (x0) is a linear functional from C (K;C) into

C, and eL (�) (x0) is a positive linear functional from C (K;R) into R. Notice
L (f) (z) 2 C and eL (jf j) (z) 2 R, 8 f 2 C (K;C) (thus jf j 2 C (K;R)). Here
L (f) 2 C (K;C), and eL (jf j) 2 C (K;R), 8 f 2 C (K;C) :
Notice that C (K;C) = UC (K;C), also C (K;R) = UC (K;R) (uniformly

continuous functions).
By [3], p. 388, we have that eL (j� � x0jr) (x0), r > 0, is a continuous function

in x0 2 K:
After this preparation we transfer the main results from section 3 to linear

operators.
We have the following approximation results with rates of Korovkin type.

Theorem 18 Here K is a convex and compact subset of C and Ln is a sequence
of linear operators from C (K;C) into itself, n 2 N. There is a sequence of
companion positive linear operators eLn from C (K;R) into itself, such that

jLn (f)j � eLn (jf j) , 8 f 2 C (K;C) ; 8 n 2 N (51)

(i.e. jLn (f) (x0)j �
�eLn (jf j)� (x0), 8 x0 2 K).

Additionally, we assume that

Ln (cg) = ceLn (g) ; 8 g 2 C (K;R) ; 8 c 2 C (52)

(i.e. (Ln (cg)) (x0) = c
�eLn (g)� (x0) ; 8 x0 2 K).

Then, for any f 2 C (K;C), we have

j(Ln (f)) (x0)� f (x0)j � jf (x0)j
���eLn (1 (�)) (x0)� 1���+�eLn (1 (�)) (x0) + 1�!1 �f; eLn (j� � x0j) (x0)� ; (53)

8 x0 2 K, 8 n 2 N:

Proof. By Theorem 10.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

993 Anastassiou 981-996



Corollary 19 All as in Theorem 18. Then

kLn (f)� fk1;K � kfk1;K

eLn (1 (�))� 1
1;K

+

eLn (1 (�)) + 1
1;K

!1

�
f;
eLn (j� � x0j) (x0)

1;K

�
; (54)

8 n 2 N:
If eLn (1 (�)) = 1, 8 n 2 N, then

kLn (f)� fk1;K � 2!1
�
f;
eLn (j� � x0j) (x0)

1;K

�
; (55)

8 n 2 N:
As eLn (1 (�)) u! 1,

eLn (j� � x0j) (x0)
1;K

u! 0, then (by (54)) Ln (f)
u! f ,

as n! +1, where u means uniformly. Notice eLn (1 (�)) is bounded, and all the
suprema in (54) are �nite.

We continue with

Theorem 20 Here all as in Theorem 18. Then, for any f 2 C (K;C), we have

j(Ln (f)) (x0)� f (x0)j � jf (x0)j
���eLn (1 (�)) (x0)� 1���+

�eLn (1 (�)) (x0) + 1�!1�f;�eLn �j� � x0j2� (x0)� 1
2

�
; (56)

8 x0 2 K, 8 n 2 N:

Proof. By Theorem 13.

Corollary 21 All as in Theorem 18. Then, for any f 2 C (K;C), we have

kLn (f)� fk1;K � kfk1;K

eLn (1 (�))� 1
1;K

+

eLn (1 (�)) + 1
1;K

!1

�
f;
eLn �j� � x0j2� (x0) 1

2

1;K

�
; (57)

8 n 2 N:
If eLn (1 (�)) = 1, then

kLn (f)� fk1;K � 2!1
�
f;
eLn �j� � x0j2� (x0) 1

2

1;K

�
; (58)

8 n 2 N:
As eLn (1 (�)) u! 1,

eLn �j� � x0j2� (x0)
1;K

u! 0, then (by (57)) Ln (f)
u!

f , as n! +1.
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We continue with a convex Korovkin type result:

Theorem 22 All as in Theorem 18. Let a �xed x�0 2 K0 and assume that
jf (t)� f (x�0)j is convex in t 2 K. Let � > 0,such that the closed disk D (x�0; �) �
K. Then

j(Ln (f)) (x�0)� f (x�0)j � jf (x�0)j
���eLn (1 (�)) (x�0)� 1���

+!1

�
f; eLn (j� � x�0j) (x�0)� ; 8 n 2 N: (59)

As eLn (1 (�)) (x�0) ! 1, and eLn (j� � x�0j) (x�0) ! 0, we get that (Ln (f)) (x�0) !
f (x�0), as n! +1; a pointwise convergence.

Proof. By Theorem 16.
Note: Theorem 22 goes throw if (51), (52) are valid only for the particular

x�0:
We �nish with

Proposition 23 All as in Theorem 22. Inequality (59) is sharp, in fact it is
attained by f (t) =

�!
j jt� x�0j, where

�!
j is a unit vector of C; x�0; t 2 K:

Proof. By Theorem 17.
Note: Let K be a convex compact subset of a real normed vector space

(V; k�k1) and (X; k�k2) is a Banach space. We can consider bounded linear
functionals and bounded operators on C (K;X). This paper�s methodology can
be applied to this more general setting and produce a similar Korovkin theory
in full strength.
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ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN

BANACH SPACES

INHO HWANG

Abstract. In this paper, we solve the additive ρ-functional inequalities

∥f(x+ y) + f(x− y)− 2f(x)∥ ≤
∥∥∥ρ(2f (x+ y

2

)
+ f(x− y)− 2f(x)

)∥∥∥ , (0.1)

where ρ is a fixed non-Archimedean number with |ρ| < 1, and∥∥∥2f (x+ y

2

)
+ f(x− y)− 2f(x)

∥∥∥ ≤ ∥ρ(f(x+ y) + f(x− y)− 2f(x))∥, (0.2)

where ρ is a fixed non-Archimedean number with |ρ| < |2|.
Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities

(0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element

having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. The usual absolute values of R and

C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.

If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the field is called a non-

Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of

a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and

|0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call

it simply a field.

Definition 1.1. ([6]) Let X be a vector space over a field K with a non-Archimedean valuation

| · |. A function ∥ · ∥ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies the

following conditions:

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥rx∥ = |r|∥x∥ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality

∥x+ y∥ ≤ max{∥x∥, ∥y∥}, ∀x, y ∈ X

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; non-Archimedean normed space; additive ρ-functional

inequality.
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holds. Then (X, ∥ · ∥) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X. Then the

sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer N such that

∥xn − xm∥ ≤ ε

for all n,m ≥ N .

(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence {xn}
is called convergent if for a given ε > 0 there are a positive integer N and an x ∈ X such that

∥xn − x∥ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X

is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [13] con-

cerning the stability of group homomorphisms. The functional equation f(x+y) = f(x)+f(y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be

an additive mapping. Hyers [5] gave a first affirmative partial answer to the question of Ulam

for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by

Rassias [10] for linear mappings by considering an unbounded Cauchy difference. A generaliza-

tion of the Rassias theorem was obtained by Găvruta [4] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Rassias’ approach. The functional

equation f (x+ y) + f(x− y) = 2f(x) is called the Jensen type additive functional equation.

The functional equation f(x+y)+f(x−y) = 2f(x)+2f(y) is called the quadratic functional

equation. In particular, every solution of the quadratic functional equation is said to be a

quadratic mapping. The stability of quadratic functional equation was proved by Skof [12] for

mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa

[3] noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by an

Abelian group. The stability problems of various functional equations have been extensively

investigated by a number of authors (see [2, 7, 8, ?, 11]).

In this paper, we solve the additive ρ-functional inequalities (0.1) and (0.2) and prove the

Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in non-Archimedean

Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a

non-Archimedean Banach space. Let |2| ̸= 1.

2. Additive ρ-functional inequality (0.1) in non-Archimedean normed spaces

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < 1.

In this section, we solve the additive ρ-functional inequality (0.1) in non-Archimedean

normed spaces.

Lemma 2.1. If a mapping f : X → Y satisfies f(0) = 0 and

∥f(x+ y) + f(x− y)− 2f(x)∥ ≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ f (x− y)− 2f(x)

)∥∥∥∥ (2.1)

for all x, y ∈ X, then f : X → Y is additive.
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Proof. Assume that f : X → Y satisfies (2.1).

Letting y = x in (2.1), we get ∥f(2x) − 2f(x)∥ ≤ 0 and so f(2x) = 2f(x) for all x ∈ X.

Thus

f

(
x

2

)
=

1

2
f(x) (2.2)

for all x ∈ X.

It follows from (2.1) and (2.2) that

∥f(x+ y) + f(x− y)− 2f(x)∥ ≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ f (x− y)− 2f(x)

)∥∥∥∥
= |ρ|∥f(x+ y) + f(x− y)− 2f(x)∥

and so f(x+ y) + f(x− y) = 2f(x) for all x, y ∈ X. It is easy to show that f is additive. �

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1) in non-

Archimedean Banach spaces.

Theorem 2.2. Let r < 1 and θ be nonnegative real numbers and let f : X → Y be a mapping

satisfying f(0) = 0 and

∥f(x+ y) + f(x− y)− 2f(x)∥ ≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ f (x− y)− 2f(x)

)∥∥∥∥
+ θ(∥x∥r + ∥y∥r) (2.3)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ 2θ

|2|r
∥x∥r (2.4)

for all x ∈ X.

Proof. Letting y = x in (2.3), we get

∥f(2x)− 2f(x)∥ ≤ 2θ∥x∥r (2.5)

for all x ∈ X. So
∥∥f(x)− 2f

(
x
2

)∥∥ ≤ 2
|2|r θ∥x∥

r for all x ∈ X. Hence∥∥∥∥2lf ( x2l
)
− 2mf

(
x

2m

)∥∥∥∥ (2.6)

≤ max

{∥∥∥∥2lf ( x2l
)
− 2l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥2m−1f

(
x

2m−1

)
− 2mf

(
x

2m

)∥∥∥∥}
= max

{
|2|l

∥∥∥∥f ( x2l
)
− 2f

(
x

2l+1

)∥∥∥∥ , · · · , |2|m−1

∥∥∥∥f ( x

2m−1

)
− 2f

(
x

2m

)∥∥∥∥}
≤ max

{
|2|l

|2|rl+r
, · · · , |2|m−1

|2|r(m−1)+r

}
2θ∥x∥r =

2θ

|2|(r−1)l+r
∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6) that the

sequence {2nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{2nf( x
2n )} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.6), we get (2.4).
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It follows from (2.3) that

∥A(x+ y) +A(x− y)− 2A(x)∥ = lim
n→∞

|2|n
∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)∥∥∥∥
≤ lim

n→∞
|2|n|ρ|

∥∥∥∥2f (x+ y

2n+1

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)∥∥∥∥+ lim
n→∞

|2|nθ
|2|nr

(∥x∥r + ∥y∥r)

= |ρ|
∥∥∥∥2A(x+ y

2

)
+A(x− y)− 2A(x)

∥∥∥∥
for all x, y ∈ X. So

∥A(x+ y) +A(x− y)− 2A(x)∥ ≤
∥∥∥∥ρ(2A

(
x+ y

2

)
+A(x− y)− 2A(x)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is additive .

Now, let T : X → Y be another additive mapping satisfying (2.4). Then we have

∥A(x)− T (x)∥ =

∥∥∥∥2qA( x2q
)
− 2qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥2qA( x2q
)
− 2qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥2qT ( x2q
)
− 2qf

(
x

2q

)∥∥∥∥} ≤ 2θ

|2|(r−1)q+r
∥x∥r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all

x ∈ X. This proves the uniqueness of h. Thus the mapping A : X → Y is a unique additive

mapping satisfying (2.4). �

Theorem 2.3. Let r > 1 and θ be nonnegative real numbers and let f : X → Y be a mapping

satisfying f(0) = 0 and (2.3). Then there exists a unique additive mapping A : X → Y such

that

∥f(x)−A(x)∥ ≤ 2θ

|2|
∥x∥r

for all x ∈ X.

Proof. It follows from (2.5) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 2

|2|
θ∥x∥r

for all x ∈ X. Hence∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2m
f (2mx)

∥∥∥∥
≤ max

{∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
= max

{
1

|2|l

∥∥∥∥f (2lx
)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥}
≤ max

{
|2|lr

|2|l+1
, · · · , |2|

r(m−1)

|2|(m−1)+1

}
2θ∥x∥r =

2θ

|2|(1−r)l+1
∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �
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3. Additive ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < |2|.
In this section, we solve the additive ρ-functional inequality (0.2) in non-Archimedean

normed spaces.

Lemma 3.1. If a mapping f : X → Y satisfies∥∥∥∥2f (x+ y

2

)
+ f (x− y)− 2f(x)

∥∥∥∥ ≤ ∥ρ(f(x+ y) + f(x− y)− 2f(x))∥ (3.1)

for all x, y ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1).

Letting x = y = 0 in (3.1), we get ∥f(0)∥ ≤ 0. So f(0) = 0.

Letting y = 0 in (3.1), we get
∥∥2f (x2 )− f(x)

∥∥ ≤ 0 and so

2f

(
x

2

)
= f(x) (3.2)

for all x ∈ X.

It follows from (3.1) and (3.2) that

∥f(x+ y) + f(x− y)− 2f(x)∥ =

∥∥∥∥2f (x+ y

2

)
+ f (x− y)− 2f(x)

∥∥∥∥
≤ |ρ|∥f(x+ y) + f(x− y)− 2f(x)∥

and so f(x+ y) + f(x− y) = 2f(x) for all x, y ∈ X. It is easy to show that f is additive. �

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1) in non-

Archimedean Banach spaces.

Theorem 3.2. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping

such that ∥∥∥∥2f (x+ y

2

)
+ f (x− y)− 2f(x)

∥∥∥∥ ≤ ∥ρ(f(x+ y) + f(x− y)− 2f(x))∥

+ θ(∥x∥r + ∥y∥r) (3.3)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ θ∥x∥r (3.4)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.3), we get f(0) = 0.

Letting y = 0 in (3.3), we get∥∥∥∥2f (x2
)
− f(x)

∥∥∥∥ ≤ θ∥x∥r (3.5)
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for all x ∈ X. So∥∥∥∥2lf ( x2l
)
− 2mf

(
x

2m

)∥∥∥∥ (3.6)

≤ max

{∥∥∥∥2lf ( x2l
)
− 2l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥2m−1f

(
x

2m−1

)
− 2mf

(
x

2m

)∥∥∥∥}
= max

{
|2|l

∥∥∥∥f ( x2l
)
− 2f

(
x

2l+1

)∥∥∥∥ , · · · , |2|m−1

∥∥∥∥f ( x

2m−1

)
− 2f

(
x

2m

)∥∥∥∥}
≤ max

{
|2|l

|2|rl
, · · · , |2|

m−1

|2|r(m−1)

}
θ∥x∥r =

θ

|2|(r−1)l
∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6) that the

sequence {2nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{2nf( x
2n )} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.4).

The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 3.3. Let r > 1 and θ be positive real numbers, and let f : X → Y be a mapping

satisfying (3.3). Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ |2|
rθ

|2|
∥x∥r (3.7)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ |2|rθ|2| ∥x∥r
for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ (3.8)

≤ max

{∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
= max

{
1

|2|l

∥∥∥∥f (2lx
)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥}
≤ max

{
|2|rl

|2|l+1
, · · · , |2|

r(m−1)

|2|(m−1)+1

}
|2|rθ∥x∥r =

|2|rθ
|2|(1−r)l+1

∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8) that the

sequence { 1
2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1
n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.8), we get (3.7).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2. �
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Square root and 3rd root functional equations in C∗-algebras

Choonkil Park ,Sun Young Jang∗ and, Jieun Ahn

Abstract. In this paper, we introduce a square root functional equation and a 3rd root functional

equation. We prove the Hyers-Ulam stability of the square root functional equation and of the 3rd

root functional equation in C∗-algebras.

1. Introduction and preliminaries

The stability problem of functional equations was originated from a question of Ulam [7] concerning
the stability of group homomorphisms. Hyers [5] gave a first affirmative partial answer to the question
of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and
by Rassias [6] for linear mappings by considering an unbounded Cauchy difference. A generalization
of the Th.M. Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy
difference by a general control function in the spirit of the Rassias’ approach.

Definition 1.1. [2] Let A be a C∗-algebra and x ∈ A a self-adjoint element, i.e., x∗ = x. Then x is
said to be positive if it is of the form yy∗ for some y ∈ A.

The set of positive elements of A is denoted by A+.

Note that A+ is a closed convex cone (see [2]).
It is well-known that for a positive element x and a positive integer n there exists a unique positive

element y ∈ A+ such that x = yn. We denote y by x
1
n (see [4]).

In this paper, we introduce a square root functional equation

S
(
x+ y + x

1
4 y

1
2x

1
4 + y

1
4x

1
2 y

1
4

)
= S(x) + S(y) (1.1)

and a 3rd root functional equation

T
(
x+ y + 3x

1
3 y

1
3x

1
3 + 3y

1
3x

1
3 y

1
3

)
= T (x) + T (y) (1.2)

for all x, y ∈ A+. Each solution of the square root functional equation is called a square root mapping
and each solution of the 3rd root functional equation is called a 3rd root mapping.

Note that the functions S(x) =
√
x = x

1
2 and T (x) = 3

√
x = x

1
3 in the set of non-negative real

numbers are solutions of the functional equations (1.1) and (1.2), respectively.
In this paper, we prove the Hyers-Ulam stability of the functional equations (1.1) and (1.2) in

C∗-algebras.
Throughout this paper, let A+ and B+ be the sets of positive elements in C∗-algebras A and B,

respectively.

02010 Mathematics Subject Classification: 46L05, 39B52.
0Keywords: Hyers-Ulam stability, C∗-algebra, square root functional equation, 3rd root functional

equation.
∗Corresponding author: Sun Young Jang (email: jsym@ulsan.ac.kr).
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2. Stability of the square root functional equation

In this section, we investigate the square root functional equation in C∗-algebras.

Lemma 2.1. Let S : A+ → B+ be a square root mapping satisfying (1.1). Then S satisfies

S(4nx) = 2nS(x) (2.1)

for all x ∈ A+ and all n ∈ Z.

Proof. Putting x = y = 0 in (1.1), we obtain S(0) = 0. Letting y = 0 in (1.1), we obtain

S(40x) = S(x) = 20S(x)

for all x ∈ A+.
First of all, we use the induction on n to prove the equality (2.1) for all positive integers n.
Replacing y by x in (1.1), we get

S(4x) = 2S(x) (2.2)

for all x ∈ A+. So the equality (2.1) holds for n = 1.
Assume that

S(4kx) = 2kS(x) (2.3)

holds for a positive integer k. Replacing x by 4x in (2.3) and using (2.2), we obtain

S(4k+1x) = S(4k · 4x) = 2kS(4x) = 2k+1S(x)

for all x ∈ A+. So the equality (2.1) holds for n = k + 1. Thus

S(4nx) = 2nS(x) (2.4)

for all x ∈ A+ and all positive integers n.
Next, replacing x by 4−nx in (2.4), we obtain

S(x) = S(4n · 4−nx) = 2nS(4−nx)

for all x ∈ A+ and all positive integers n. So

S(4nx) = 2nS(x)

for all x ∈ A+ and all negative integers n.
Therefore,

S(4nx) = 2nS(x)

for all x ∈ A+ and all n ∈ Z. �

We prove the Hyers-Ulam stability of the square root functional equation in C∗-algebras.

Theorem 2.2. Let f : A+ → B+ be a mapping for which there exists a function ϕ : A+×A+ → [0,∞)
such that

ϕ̃(x, y) :=
∞∑
j=1

2jϕ
( x

4j
,
y

4j

)
< ∞, (2.5)∥∥∥f (x+ y + x

1
4 y

1
2x

1
4 + y

1
4x

1
2 y

1
4

)
− f(x)− f(y)

∥∥∥ ≤ ϕ(x, y) (2.6)

for all x, y ∈ A+. Then there exists a unique square root mapping S : A+ → A+ satisfying (1.1) and

‖f(x)− S(x)‖ ≤ 1

2
ϕ̃(x, y) (2.7)

for all x ∈ A+.
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Proof. Letting y = x in (2.6), we get

‖f(4x)− 2f(x)‖ ≤ ϕ(x, x) (2.8)

for all x ∈ A+. It follows from (2.8) that∥∥∥f (x)− 2f
(x

4

)∥∥∥ ≤ ϕ(x
4
,
x

4

)
for all x ∈ A+. Hence ∥∥∥2lf

( x
4l

)
− 2mf

( x

4m

)∥∥∥ ≤ 1

2

m∑
j=l+1

2jϕ
( x

4j
,
x

4j

)
(2.9)

for all nonnegative integers m and l with m > l and all x ∈ A+. It follows from (2.5) and (2.9) that
the sequence

{
2kf

(
x
4k

)}
is Cauchy for all x ∈ A+. Since B+ is complete, the sequence

{
2kf

(
x
4k

)}
converges. So one can define the mapping S : A+ → B+ by

S(x) := lim
k→∞

2kf
( x

4k

)
for all x ∈ A+.

By (2.8) and (2.9),∥∥∥S (x+ y + x
1
4 y

1
2x

1
4 + y

1
4x

1
2 y

1
4

)
− S(x)− S(y)

∥∥∥
= lim

k→∞
2k

∥∥∥∥∥f
(
x+ y + x

1
4 y

1
2x

1
4 + y

1
4x

1
2 y

1
4

4k

)
− f

( x
4k

)
− f

( y
4k

)∥∥∥∥∥
≤ lim

k→∞
2kϕ

( x
4k
,
y

4k

)
= 0

for all x, y ∈ A+. So

S
(
x+ y + x

1
4 y

1
2x

1
4 + y

1
4x

1
2 y

1
4

)
− S(x)− S(y) = 0.

Hence the mapping S : A+ → B+ is a square root mapping. Moreover, letting l = 0 and passing the
limit m → ∞ in (2.9), we get (2.7). So there exists a square root mapping S : A+ → B+ satisfying
(1.1) and (2.7).

Now, let S′ : A+ → B+ be another square root mapping satisfying (1.1) and (2.7). Then we have

‖S(x)− S′(x)‖ = 2q
∥∥∥S ( x

4q

)
− S′

( x
4q

)∥∥∥
≤ 2q

∥∥∥S ( x
4q

)
− f

( x
4q

)∥∥∥+ 2q
∥∥∥S′ ( x

4q

)
− f

( x
4q

)∥∥∥
≤ 2 · 2q

2
ϕ̃
( x

4q
,
x

4q

)
,

which tends to zero as q →∞ for all x ∈ A+. So we can conclude that S(x) = S′(x) for all x ∈ A+.
This proves the uniqueness of S. �

Corollary 2.3. Let p > 1
2 and θ1, θ2 be non-negative real numbers, and let f : A+ → B+ be a

mapping such that∥∥∥f (x+ y + x
1
4 y

1
2x

1
4 + y

1
4x

1
2 y

1
4

)
− f(x)− f(y)

∥∥∥ ≤ θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 (2.10)

for all x, y ∈ A+. Then there exists a unique square root mapping S : A+ → B+ satisfying (1.1) and

‖f(x)− S(x)‖ ≤ 2θ1 + θ2
4p − 2

||x||p
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for all x ∈ A+.

Proof. Define ϕ(x, y) = θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 , and apply Theorem 2.2. Then we get the

desired result. �

Theorem 2.4. Let f : A+ → B+ be a mapping for which there exists a function ϕ : A+×A+ → [0,∞)
satisfying (2.6) such that

ϕ̃(x, y) :=
∞∑
j=0

2−jϕ(4jx, 4jy) <∞

for all x, y ∈ A+. Then there exists a unique square root mapping S : A+ → B+ satisfying (1.1) and

‖f(x)− S(x)‖ ≤ 1

2
ϕ̃(x, x)

for all x ∈ A+.

Proof. It follows from (2.8) that ∥∥∥∥f(x)− 1

2
f(4x)

∥∥∥∥ ≤ 1

2
ϕ(x, x)

for all x ∈ A+.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let 0 < p < 1
2 and θ1, θ2 be non-negative real numbers, and let f : A+ → B+ be a

mapping satisfying (2.10). Then there exists a unique square root mapping S : A+ → B+ satisfying
(1.1) and

‖f(x)− S(x)‖ ≤ 2θ1 + θ2
2− 4p

||x||p

for all x ∈ A+.

Proof. Define ϕ(x, y) = θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 , and apply Theorem 2.4. Then we get the

desired result. �

3. Stability of the 3rd root functional equation

In this section, we investigate the 3rd root functional equation in C∗-algebras.

Lemma 3.1. Let T : A+ → B+ be a 3rd root mapping satisfying (1.2). Then T satisfies

T (8nx) = 2nT (x)

for all x ∈ A+ and all n ∈ Z.

Proof. The proof is similar to the proof of Lemma 2.1. �

We prove the Hyers-Ulam stability of the 3rd root functional equation in C∗-algebras.

Theorem 3.2. Let f : A+ → B+ be a mapping for which there exists a function ϕ : A+×A+ → [0,∞)
such that

ϕ̃(x, y) :=
∞∑
j=1

2jϕ
( x

8j
,
y

8j

)
< ∞,∥∥∥f (x+ y + 3x

1
3 y

1
3x

1
3 + 3y

1
3x

1
3 y

1
3

)
− f(x)− f(y)

∥∥∥ ≤ ϕ(x, y) (3.1)
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for all x, y ∈ A+. Then there exists a unique 3rd root mapping T : A+ → A+ satisfying (1.2) and

‖f(x)− T (x)‖ ≤ 1

2
ϕ̃(x, y)

for all x ∈ A+.

Proof. Letting y = x in (3.1), we get

‖f(8x)− 2f(x)‖ ≤ ϕ(x, x) (3.2)

for all x ∈ A+.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.3. Let p > 1
3 and θ1, θ2 be non-negative real numbers, and let f : A+ → B+ be a

mapping such that∥∥∥f (x+ y + 3x
1
3 y

1
3x

1
3 + 3y

1
3x

1
3 y

1
3

)
− f(x)− f(y)

∥∥∥ ≤ θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 (3.3)

for all x, y ∈ A+. Then there exists a unique 3rd root mapping T : A+ → B+ satisfying (1.2) and

‖f(x)− T (x)‖ ≤ 2θ1 + θ2
8p − 2

||x||p

for all x ∈ A+.

Proof. Define ϕ(x, y) = θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 , and apply Theorem 3.2. Then we get the

desired result. �

Theorem 3.4. Let f : A+ → B+ be a mapping for which there exists a function ϕ : A+×A+ → [0,∞)
satisfying (3.1) such that

ϕ̃(x, y) :=

∞∑
j=0

2−jϕ(8jx, 8jy) <∞

for all x, y ∈ A+. Then there exists a unique 3rd root mapping T : A+ → B+ satisfying (1.2) and

‖f(x)− T (x)‖ ≤ 1

2
ϕ̃(x, x)

for all x ∈ A+.

Proof. It follows from (3.2) that ∥∥∥∥f(x)− 1

2
f(8x)

∥∥∥∥ ≤ 1

2
ϕ(x, x)

for all x ∈ A+.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.5. Let 0 < p < 1
3 and θ1, θ2 be non-negative real numbers, and let f : A+ → B+ be a

mapping satisfying (3.3). Then there exists a unique 3rd root mapping T : A+ → B+ satisfying (1.2)
and

‖f(x)− T (x)‖ ≤ 2θ1 + θ2
2− 8p

||x||p

for all x ∈ A+.

Proof. Define ϕ(x, y) = θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 , and apply Theorem 3.4. Then we get the

desired result. �
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4. Square root and 3rd root functional equations in C∗-algebras

We have defined a square root functional equation

S
(
x+ y + x

1
4 y

1
2x

1
4 + y

1
4x

1
2 y

1
4

)
= S(x) + S(y)

and a 3rd root functional equation

T
(
x+ y + 3x

1
3 y

1
3x

1
3 + 3y

1
3x

1
3 y

1
3

)
= T (x) + T (y)

for all x, y ∈ A+. Each solution of the square root functional equation is called a square root mapping
and each solution of the 3rd root functional equation is called a 3rd root mapping.

It was shown that each square root mapping S : A+ → B+ satisfies S(4nx) = 2nS(x) for all
x ∈ A+ and all n ∈ Z and that each 3rd root mapping T : A+ → B+ satisfies T (8nx) = 2nT (x) for
all x ∈ A+ and all n ∈ Z. Moreover, we prove that there exists a square root mapping near a given
approximate square root mapping and that there exists a 3rd root mapping near a given approximate
3rd root mapping by using the Hyer-Ulam-Rassias approach.
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Approximation by Multivariate Sublinear and
Max-product Operators, Revisited

George A. Anastassiou
Department of Mathematical Sciences

University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we study quantitatively the approximation of multivariate func-
tion by general multivariate positive sublinear operators with applications
to multivariate Max-product operators. These are of Bernstein type, of
Favard-Szász-Mirakjan type, of Baskakov type, of sampling type, of La-
grange interpolation type and of Hermite-Fejér interpolation type. Our re-
sults are both: under the presence of smoothness and without any smooth-
ness assumption on the function to be approximated.

2010 AMSMathematics Subject Classi�cation: 41A17, 41A25, 41A36,
41A63.
Keywords and Phrases: multivariate positive sublinear operators, multi-

variate Max-product operators, multivariate modulus of continuity.

1 Background

Let Q be a compact and convex subset of Rk, k 2 N � f1g and let x0 :=
(x01; :::; x0k) 2 Q be �xed. Let f 2 Cn (Q) and suppose that each nth partial
derivative f� =

@�f
@x� , where � := (�1; :::; �k), �i 2 Z+, i = 1; :::; k, and j�j :=Pk

i=1 �i = n, has relative to Q and the l1-norm k�k, a modulus of continuity
!1 (f�; h) � w, where h and w are �xed positive numbers. Here

!1 (f�; h) := sup
x;y2Q

kx�ykl1�h

jf� (x)� f� (y)j : (1)

1
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The jth derivative of gz (t) = f (x0 + t (z � x0)), (z = (z1; :::; zk) 2 Q) is given
by

g(j)z (t) =

24 kX
i=1

(zi � x0i)
@

@xi

!j
f

35 (x01 + t (z1 � x01) ; :::; x0k + t (zk � x0k)) :
(2)

Consequently it holds

f (z1; :::; zk) = gz (1) =
nX
j=0

g
(j)
z (0)

j!
+Rn (z; 0) ; (3)

where

Rn (z; 0) :=

Z 1

0

�Z t1

0

:::

�Z tn�1

0

�
g(n)z (tn)� g(n)z (0)

�
dtn

�
:::

�
dt1: (4)

We apply Lemma 7.1.1, [1], pp. 208-209, to (f� (x0 + t (z � x0))� f� (x0)) as a
function of z, when !1 (f�; h) � w:

jf� (x0 + t (z � x0))� f� (x0)j � w
�
t kz � x0k

h

�
; (5)

all t � 0, where d�e is the ceiling function.
For kz � x0k 6= 0, it follows from (2)

jRn (z; 0)j �

Z 1

0

Z t1

0

:::

Z tn�1

0

0@X
j�j=n

n!

�1!:::�k!
jz1 � x01j�1 ::: jzk � x0kj�k w

�
tn kz � x0k

h

�1A dtn:::dt1
(6)

=
X
j�j=n

n!

�1!:::�k!

Qk
i=1 jzi � x0ij

�i

kz � x0kn
w�n (kz � x0k) = w� (kz � x0k) ;

since kz � x0k =
Pk

i=1 jzi � x0ij. Above we denote (for h > 0 �xed):

�n (x) :=

Z jxj

0

�
t

h

�
(jxj � t)n�1

(n� 1)! dt; (x 2 R), (7)

equivalently

�n (x) =

Z jxj

0

Z x1

0

:::

�Z xn�1

0

lxn
h

m
dxn

�
:::dx1; (8)

see [1], p. 210-211.

2
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Therefore we have

jRn (z; 0)j � w�n (kz � x0k) ; for all z 2 Q: (9)

Also we have gz (0) = f (x0) :
One obtains ([1], p. 210)

�n (x) =
1

n!

0@ 1X
j=0

(jxj � jh)n+

1A ; (10)

which is a polynomial spline function.
Furthermore we get ([1], pp. 210-211)

�n (x) � ��n (x) :=
 

jxjn+1

(n+ 1)!h
+
jxjn

2n!
+
h jxjn�1

8 (n� 1)!

!
; (11)

with equality only at x = 0.
Moreover, �n is convex on R and strictly increasing on R+, n � 1.
In case of Q := fx 2 R� : kxk � 1g, where k�k is the l1-norm in Rk we have

0 � kz � x0k � kzk+ kx0k � 1 + kx0k , 8 z 2 Q;

hence �n (kz � x0k) � �n (1 + kx0k), and by convexity of �n we get

�n (kz � x0k)
kz � x0k

� �n (1 + kx0k)
(1 + kx0k)

; (12)

8 z 2 Q : kz � x0k 6= 0;
and hence

�n (kz � x0k) � kz � x0k
�n (1 + kx0k)
(1 + kx0k)

; 8 z 2 Q: (13)

Let Q be a compact and convex subset of Rk, k 2 N � f1g, x0 2 Q �xed,
f 2 Cn (Q). Then for j = 1; :::; n, we have

g(j)z (0) =
X

�:=(�1;:::;�k); �i2Z+;
i=1;:::;k, j�j:=

Pk
i=1 �i=j

 
j!Qk

i=1 �i!

! 
kY
i=1

(zi � x0i)�i
!
f� (x0) : (14)

If f� (x0) = 0, for all � : j�j = 1; :::; n; then g(j)z (0) = 0, j = 1; :::; n, and by (3):

f (z)� f (x0) = Rn (z; 0) ; (15)

that is
jf (z)� f (x0)j � w�n (kz � x0k) , 8 z 2 Q; (16)

3
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where x0 2 Q is �xed.
Using (11) we derive

kf (z)� f (x0)k � w
 
kz � x0kn+1

(n+ 1)!h
+
kz � x0kn

2n!
+ h

kz � x0kn�1

8 (n� 1)!

!
; 8 z 2 Q:

(17)
We have proved the following fundamental result:

Theorem 1 Let (Q; k�k), where k�k is the l1-norm, be a compact and convex
subset of Rk, k 2 N � f1g and let x0 2 Q be �xed. Let f 2 Cn (Q), n 2 N,
h > 0. We assume that f� (x0) = 0, for all � : j�j = 1; :::; n: Then

kf (z)� f (x0)k �
�
max
�:j�=nj

!1 (f�; h)

�
�

 
kz � x0kn+1

(n+ 1)!h
+
kz � x0kn

2n!
+ h

kz � x0kn�1

8 (n� 1)!

!
; 8 z 2 Q: (18)

In conclusion we have

Theorem 2 Let (Q; k�k), where k�k is the l1-norm, be a compact and convex
subset of Rk, k 2 N � f1g and let x 2 Q (x = (x1; :::; xk)) be �xed. Let
f 2 Cn (Q), n 2 N, h > 0. We assume that f� (x) = 0, for all � : j�j = 1; :::; n:
Then

kf (t)� f (x)k �
�
max
�:j�j=n

!1 (f�; h)

�
� (19) 

kt� xkn+1

(n+ 1)!h
+
kt� xkn

2n!
+ h

kt� xkn�1

8 (n� 1)!

!
�

�
max
�:j�j=n

!1 (f�; h)

�0@kn
�Pk

i=1 jti � xij
n+1
�

(n+ 1)!h
+
kn�1

�Pk
i=1 jti � xij

n
�

2n!

+
hkn�2

8 (n� 1)!

 
kX
i=1

jti � xijn�1
!!

; 8 t 2 Q; (20)

where t = (t1; :::; tk) :

Proof. By Theorem 1 and a convexity argument.
We need

De�nition 3 Let Q be a compact and convex subset of Rk, k 2 N� f1g. Here
we denote

C+ (Q) = ff : Q! R+ and continuousg :

4
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Let LN : C+ (Q) ! C+ (Q), N 2 N, be a sequence of operators satisfying the
following properties:
(i) (positive homogeneous)

LN (�f) = �LN (f) , 8 � � 0, f 2 C+ (Q) ; (21)

(ii) (monotonicity)
if f; g 2 C+ (Q) satisfy f � g, then

LN (f) � LN (g) , 8 N 2 N, (22)

and
(iii) (subadditivity)

LN (f + g) � LN (f) + LN (g) , 8 f; g 2 C+ (Q) : (23)

We call LN positive sublinear operators.

Remark 4 (to De�nition 3) Let f; g 2 C+ (Q). We see that f = f � g + g �
jf � gj + g. Then LN (f) � LN (jf � gj) + LN (g), and LN (f) � LN (g) �
LN (jf � gj).
Similarly g = g�f +f � jg � f j+f , hence LN (g) � LN (jf � gj)+LN (f),

and LN (g)� LN (f) � LN (jf � gj).
Consequently it holds

jLN (f) (x)� LN (g) (x)j � LN (jf � gj) (x) , 8 x 2 Q: (24)

In this article we treat LN : LN (1) = 1:
We observe that

jLN (f) (x)� f (x)j = jLN (f) (x)� LN (f (x)) (x)j
(24)
�

LN (jf (�)� f (x)j) (x) , 8 x 2 Q: (25)

We give

Theorem 5 Let Q be a compact and convex subset of Rk, k 2 N� f1g and let
x 2 Q be �xed. Let f 2 Cn (Q;R+), n 2 N, h > 0. We assume that f� (x) = 0,
for all � : j�j = 1; :::; n: Let fLNgN2N positive sublinear operators mapping
C+ (Q) into itself, such that LN (1) = 1. Then

jLN (f) (x)� f (x)j �
�
max
�:j�j=n

!1 (f�; h)

�
� 

kn

(n+ 1)!h

 
kX
i=1

LN

�
jti � xijn+1

�
(x)

!
+
kn�1

2n!

 
kX
i=1

LN (jti � xijn) (x)
!

+
hkn�2

8 (n� 1)!

 
kX
i=1

LN

�
jti � xijn�1

�
(x)

!!
; 8 N 2 N: (26)

5
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Proof. By Theorem 2, see De�nition 3, and by (25).
We need

The Maximum Multiplicative Principle 6 Here _ stands for maximum.
Let �i > 0, i = 1; :::; n; �j > 0, j = 1; :::;m. Then

_ni=1 _mj=1 �i�j = (_ni=1�i)
�
_mj=1�j

�
: (27)

Proof. Obvious.
We make

Remark 7 In [4], p. 10, the authors introduced the basic Max-product Bern-
stein operators

B
(M)
N (f) (x) =

WN
k=0 pN;k (x) f

�
k
N

�WN
k=0 pN;k (x)

; N 2 N, (28)

where pN;k (x) =
�
N

k

�
xk (1� x)N�k ; x 2 [0; 1] ; and f : [0; 1]! R+ is contin-

uous.
In [4], p. 31, they proved that

B
(M)
N (j� � xj) (x) � 6p

N + 1
, 8 x 2 [0; 1] , 8 N 2 N. (29)

And in [2] was proved that

B
(M)
N (j� � xjm) (x) � 6p

N + 1
, 8 x 2 [0; 1] , 8 m;N 2 N. (30)

We will also use

Corollary 8 (to Theorem 5, case of n = 1) Let Q be a compact and convex
subset of Rk, k 2 N�f1g and let x 2 Q. Let f 2 C1 (Q;R+), h > 0. We assume
that @f(x)@xi

= 0, for i = 1; :::; k: Let fLNgN2N be positive sublinear operators from
C+ (Q) into C+ (Q) : LN (1) = 1, 8 N 2 N. Then

jLN (f) (x)� f (x)j �
�
max

i=1;:::;k
!1

�
@f

@xi
; h

��
�

"
k

2h

 
kX
i=1

LN

�
(ti � xi)2

�
(x)

!
+
1

2

 
kX
i=1

LN (jti � xij) (x)
!
+
h

8

#
; (31)

8 N 2 N.

In this article we study quantitatively the approximation properties of mul-
tivariate Max-product operators to the unit. These are special cases of positive
sublinear operators. We give also general results regarding the convergence to
the unit of positive sublinear operators. Special emphasis is given in our study
about approximation under di¤erentiability. Our work is motivated by [4].

6
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2 Main Results

From now on Q = [0; 1]k, k 2 N� f1g, except otherwise speci�ed.
We mention

De�nition 9 Let f 2 C+
�
[0; 1]

k
�
, and

�!
N = (N1; :::; Nk) 2 Nk. We de�ne the

multivariate Max-product Bernstein operators as follows:

B
(M)
�!
N

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

pN1;i1 (x1) pN2;i2 (x2) :::pNk;ik (xk) f
�
i1
N1
; :::; ikNk

�
_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

pN1;i1 (x1) pN2;i2 (x2) :::pNk;ik (xk)
; (32)

8 x = (x1; :::; xk) 2 [0; 1]k. Call Nmin := minfN1; :::; Nkg:
The operators B(M)

�!
N

(f) (x) are positive sublinear and they map C+
�
[0; 1]

k
�

into itself, and B(M)
�!
N

(1) = 1:

See also [4], p. 123 the bivariate case. We also have

B
(M)
�!
N

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

pN1;i1 (x1) pN2;i2 (x2) :::pNk;ik (xk) f
�
i1
N1
; :::; ikNk

�
Qk
�=1

�
_N�
i�=0

pN�;i� (x�)
� ; (33)

8 x 2 [0; 1]k, by the maximum multiplicative principle, see (27).

We make

Remark 10 The coordinate Max-product Bernstein operators are de�ned as
follows (� = 1; :::; k):

B
(M)
N�

(g) (x�) :=
_N�
i�=0

pN�;i� (x�) g
�
i�
N�

�
_N�
i�=0

pN�;i� (x�)
; (34)

8 N� 2 N, and 8 x� 2 [0; 1], 8 g 2 C+ ([0; 1]) := fg : [0; 1]! R+ continuousg:
Here we have

pN�;i� (x�) =

�
N�
i�

�
xi�� (1� x�)

N��i� ; for all � = 1; :::; k; x� 2 [0; 1] : (35)

In case of f 2 C+
�
[0; 1]

k
�
is such that f (x) := g (x�), 8 x 2 [0; 1]k ; where

x = (x1; :::; x�; :::; xk) and g 2 C+ ([0; 1]), we get that

B
(M)
�!
N

(f) (x) = B
(M)
N�

(g) (x�) ; (36)

7
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by the maximum multiplicative principle (27) and simpli�cation of (33).
Clearly it holds that

B
(M)
�!
N

(f) (x) = f (x) , 8 x = (x1; :::; xk) 2 [0; 1]k : x� 2 f0; 1g; � = 1; :::; k:
(37)

We present

Theorem 11 Let x 2 [0; 1]k, k 2 N�f1g, be �xed, and let f 2 Cn
�
[0; 1]

k
;R+

�
,

n 2 N� f1g. We assume that f� (x) = 0, for all � : j�j = 1; :::; n: Then���B(M)
�!
N

(f) (x)� f (x)
��� � 6 max

�:j�j=n

 
!1

 
f�;

�
1p

Nmin + 1

� 1
n+1

!!!
� (38)

"
kn+1

(n+ 1)!

�
1p

Nmin + 1

� n
n+1

+
kn

2n!

�
1p

Nmin + 1

�
+

kn�1

8 (n� 1)!

�
1p

Nmin + 1

�n+2
n+1

#
;

8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

B
(M)
�!
N

(f) (x) = f (x) :

Proof. By (26) we get:���B(M)
�!
N

(f) (x)� f (x)
��� (36)� �

max
�:j�j=n

!1 (f�; h)

�
�

"
kn

(n+ 1)!h

 
kX
i=1

B
(M)
Ni

�
jti � xijn+1

�
(xi)

!
+
kn�1

2n!

 
kX
i=1

B
(M)
Ni

(jti � xijn) (xi)
!

(39)

+
hkn�2

8 (n� 1)!

 
kX
i=1

B
(M)
Ni

�
jti � xijn�1

�
(xi)

!#
(30)
�

�
6p

Nmin + 1

��
max
�:j�j=n

!1 (f�; h)

��
kn+1

(n+ 1)!h
+
kn

2n!
+

hkn�1

8 (n� 1)!

�
=: (�) :

Above notice
Pk

i=1B
(M)
Ni

(jti � xijn) (xi)
(30)
�
Pk

i=1
6p
Ni+1

� 6kp
Nmin+1

, etc.

Next we choose h :=
�

1p
Nmin+1

� 1
n+1

, then hn =
�

1p
Nmin+1

� n
n+1

and hn+1 =
1p

Nmin+1
:

We have

(�) = 6

 
max
�:j�j=n

 
!1

 
f�;

�
1p

Nmin + 1

� 1
n+1

!!!
� (40)

8
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"
kn+1

(n+ 1)!

�
1p

Nmin + 1

� n
n+1

+
kn

2n!

�
1p

Nmin + 1

�
+

kn�1

8 (n� 1)!

�
1p

Nmin + 1

�n+2
n+1

#
;

proving the claim.
We also give

Proposition 12 Let x 2 [0; 1]k, k 2 N�f1g, be �xed and let f 2 C1
�
[0; 1]

k
;R+

�
.

We assume that @f(x)@xi
= 0, for i = 1; :::; k. Then���B(M)

�!
N

(f) (x)� f (x)
��� � � max

i=1;:::;k
!1

�
@f

@xi
;

1
4
p
Nmin + 1

��
� (41)

"
3k2

4
p
Nmin + 1

+
3kp

Nmin + 1
+

1

8
�
4
p
Nmin + 1

�# ;
8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
Also it holds lim�!

N!(1;:::;1)

B
(M)
�!
N

(f) (x) = f (x) :

Proof. By (31) we get:���B(M)
�!
N

(f) (x)� f (x)
��� (36)� �

max
i=1;:::;k

!1

�
@f

@xi
; h

��
�

"
k

2h

 
kX
i=1

B
(M)
Ni

�
(ti � xi)2

�
(xi)

!
+
1

2

 
kX
i=1

B
(M)
Ni

(jti � xij) (xi)
!
+
h

8

#
(42)

(next we choose h :=
�

1p
Nmin+1

� 1
2

, then h2 = 1p
Nmin+1

)

(30)
�
 
max

i=1;:::;k
!1

 
@f

@xi
;

�
1p

Nmin + 1

� 1
2

!!
� (43)

"
3k2

�
1p

Nmin + 1

� 1
2

+ 3k

�
1p

Nmin + 1

�
+
1

8

�
1p

Nmin + 1

� 1
2

#
;

proving the claim.
We need

Theorem 13 Let Q with k�k the l1-norm, be a compact and convex subset of Rk,
k 2 N�f1g, and f 2 C+ (Q); h > 0. We denote !1 (f; h) := sup

x;y2Q:
kx�yk�h

jf (x)� f (y)j,

the modulus of continuity of f . Let fLNgN2N be positive sublinear operators
from C+ (Q) into itself such that LN (1) = 1, 8 N 2 N. Then

jLN (f) (x)� f (x)j � !1 (f; h)
�
1 +

1

h
LN (kt� xk) (x)

�
�

9
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!1 (f; h)

 
1 +

1

h

 
kX
i=1

LN (jti � xij) (x)
!!

; (44)

8 N 2 N, 8 x 2 Q, where x := (x1; :::; xk) ; t = (t1; :::; tk) 2 Q:

Proof. We have that ([1], pp. 208-209)

jf (t)� f (x)j � !1 (f; h)
�
kt� xk
h

�
� !1 (f; h)

�
1 +

kt� xk
h

�
; (45)

8 t; x 2 Q:
By (25) we get:

jLN (f) (x)� f (x)j � LN (jf (t)� f (x)j) (x) � (46)

!1 (f; h)

�
1 +

1

h
LN (kt� xk) (x)

�
, 8 N 2 N;

proving the claim.
We give

Theorem 14 Let f 2 C+
�
[0; 1]

k
�
, k 2 N� f1g. Then

���B(M)
�!
N

(f) (x)� f (x)
��� � (6k + 1)!1�f; 1p

Nmin + 1

�
; (47)

8 x 2 [0; 1]k, 8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
That is B(M)

�!
N

(f)� f

1
� (6k + 1)!1

�
f;

1p
Nmin + 1

�
: (48)

It holds that lim�!
N!(1;:::;1)

B
(M)
�!
N

(f) (x) = f (x), uniformly.

Proof. We get that (use of (44))���B(M)
�!
N

(f) (x)� f (x)
��� (36)� !1 (f; h)

 
1 +

1

h

 
kX
i=1

B
(M)
Ni

(jti � xij) (xi)
!!

(29)
� !1 (f; h)

�
1 +

1

h

�
6kp

Nmin + 1

��
(49)

(setting h := 1p
Nmin+1

)

= !1

�
f;

1p
Nmin + 1

�
(6k + 1) ; 8 x 2 [0; 1]k ; 8 �!N 2 Nk;

proving the claim.
We continue with

10
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De�nition 15 ([4], p. 123) We de�ne the bivariate Max-product Bernstein
type operators:

A
(M)
N (f) (x; y) :=

_Ni=0 _N�ij=0

�
N

i

��
N � i
j

�
xiyj (1� x� y)N�i�j f

�
i
N ;

j
N

�
_Ni=0 _

N�i
j=0

�
N

i

��
N � i
j

�
xiyj (1� x� y)N�i�j

;

(50)
8 (x; y) 2 � := f(x; y) : x � 0, y � 0, x+ y � 1g ; 8 N 2 N, and 8 f 2 C+ (�) :

Remark 16 By [4], p. 137, Theorem 2.7.5 there, A(M)
N is a positive sublinear

operator mapping C+ (�) into itself and A
(M)
N (1) = 1, furthermore it holds���A(M)

N (f)�A(M)
N (g)

��� � A(M)
N (jf � gj) , 8 f; g 2 C+ (�) , 8 N 2 N: (51)

By [4], p. 125 we get that A(M)
N (f) (1; 0) = f (1; 0), A(M)

N (f) (0; 1) = f (0; 1),

and A(M)
N (f) (0; 0) = f (0; 0) :

By [4], p. 139, we have that ((x; y) 2 �):

A
(M)
N (j� � xj) (x; y) = B(M)

N (j� � xj) (x) ; (52)

and
A
(M)
N (j� � yj) (x; y) = B(M)

N (j� � yj) (y) : (53)

Working exactly the same way as (52), (53) are proved we also derive (m 2 N,
(x; y) 2 �):

A
(M)
N (j� � xjm) (x; y) = B(M)

N (j� � xjm) (x) ; (54)

and
A
(M)
N (j� � yjm) (x; y) = B(M)

N (j� � yjm) (y) : (55)

We present

Theorem 17 Let x := (x1; x2) 2 � be �xed, and f 2 Cn (�;R+), n 2 N�f1g.
We assume that f� (x) = 0, for all � : j�j = 1; :::; n. Then���A(M)

N (f) (x1; x2)� f (x1; x2)
��� � 6 max

�:j�j=n
!1

 
f�;

�
1p
N + 1

� 1
n+1

!!
� (56)

"
2n+1

(n+ 1)!

�
1p
N + 1

� n
n+1

+
2n�1

n!

�
1p
N + 1

�
+

2n�4

(n� 1)!

�
1p
N + 1

�n+2
n+1

#
;

8 N 2 N:
It holds lim

N!1
A
(M)
N (f) (x1; x2) = f (x1; x2) :

11
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Proof. By (26) we get (here x := (x1; x2) 2 �):���A(M)
N (f) (x1; x2)� f (x1; x2)

��� � � max
�:j�j=n

!1 (f�; h)

�
�

"
2n

(n+ 1)!h

 
2X
i=1

A
(M)
N

�
jti � xijn+1

�
(x)

!
+
2n�2

n!

 
2X
i=1

A
(M)
N (jti � xijn) (x)

!
(57)

+
h2n�5

(n� 1)!

 
2X
i=1

A
(M)
N

�
jti � xijn�1

�
(x)

!#
(by (54), (55))

=

�
max
�:j�j=n

!1 (f�; h)

�"
2n

(n+ 1)!h

 
2X
i=1

B
(M)
N

�
jti � xijn+1

�
(xi)

!
+

2n�2

n!

 
2X
i=1

B
(M)
N (jti � xijn) (xi)

!
+
h2n�5

(n� 1)!

 
2X
i=1

B
(M)
N

�
jti � xijn�1

�
(xi)

!#
(58)

(30)
�
6

�
max
�:j�j=n

!1 (f�; h)

�
p
N + 1

�
2n+1

(n+ 1)!h
+
2n�1

n!
+
h2n�4

(n� 1)!

�
=: (�) :

Next we choose h :=
�

1p
N+1

� 1
n+1

, then hn =
�

1p
N+1

� n
n+1

and hn+1 = 1p
N+1

:

We have

(�) = 6

 
max
�:j�j=n

!1

 
f�;

�
1p
N + 1

� 1
n+1

!!
� (59)

"
2n+1

(n+ 1)!

�
1p
N + 1

� n
n+1

+
2n�1

n!

�
1p
N + 1

�
+

2n�4

(n� 1)!

�
1p
N + 1

�n+2
n+1

#
;

proving the claim.
We also give

Theorem 18 Let x := (x1; x2) 2 � be �xed, and f 2 C1 (�;R+). We assume
that @f

@xi
(x) = 0, for i = 1; 2. Then���A(M)

N (f) (x1; x2)� f (x1; x2)
��� � �max

i=1;2
!1

�
@f

@xi
;

1
4
p
N + 1

��
� (60)

�
12

4
p
N + 1

+
6p
N + 1

+
1

8

�
1

4
p
N + 1

��
;

8 N 2 N:
It holds lim

N!1
A
(M)
N (f) (x1; x2) = f (x1; x2) :

12
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Proof. By (31) we get (here x := (x1; x2) 2 �):���A(M)
N (f) (x1; x2)� f (x1; x2)

��� � �max
i=1;2

!1

�
@f

@xi
; h

��
�

"
1

h

 
2X
i=1

A
(M)
N

�
(ti � xi)2

�
(x)

!
+
1

2

 
2X
i=1

A
(M)
N (jti � xij) (x)

!
+
h

8

#
(61)

(by (54), (55))
=

�
max
i=1;2

!1

�
@f

@xi
; h

��"
1

h

 
2X
i=1

B
(M)
N

�
(ti � xi)2

�
(xi)

!
+

1

2

 
2X
i=1

B
(M)
N (jti � xij) (xi)

!
+
h

8

#

(next we choose h :=
�

1p
N+1

� 1
2

, then h2 = 1p
N+1

)

(30)
�
 
max
i=1;2

!1

 
@f

@xi
;

�
1p
N + 1

� 1
2

!!
� (62)

"
12

�
1p
N + 1

� 1
2

+

�
6p
N + 1

�
+
1

8

�
1p
N + 1

� 1
2

#
;

proving the claim.
We further obtain

Theorem 19 Let f 2 C+ (�). Then���A(M)
N (f) (x1; x2)� f (x1; x2)

��� � 13!1�f; 1p
N + 1

�
; (63)

8 (x1; x2) 2 �, 8 N 2 N.
That is A(M)

N (f)� f

1;�

� 13!1
�
f;

1p
N + 1

�
; (64)

8 N 2 N.
It holds that lim

N!1
A
(M)
N (f) = f; uniformly, 8 f 2 C+ (�) :

Proof. Using (44) (x := (x1; x2) 2 �) we get:���A(M)
N (f) (x1; x2)� f (x1; x2)

��� �
!1 (f; h)

 
1 +

1

h

 
2X
i=1

A
(M)
N (jti � xij) (x)

!!
(by (52), (53))

=

13
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!1 (f; h)

 
1 +

1

h

 
2X
i=1

B
(M)
N (jti � xij) (xi)

!!
(29)
�

!1 (f; h)

�
1 +

2

h
� 6p
N + 1

�
(65)

(setting h := 1p
N+1

)

= 13!1

�
f;

1p
N + 1

�
; 8 (x1; x2) 2 �; 8 N 2 N;

proving the claim.
We make

Remark 20 The Max-product truncated Favard-Szász-Mirakjan operators

T
(M)
N (f) (x) =

WN
k=0 sN;k (x) f

�
k
N

�WN
k=0 sN;k (x)

; x 2 [0; 1] ; N 2 N, f 2 C+ ([0; 1]) ; (66)

sN;k (x) =
(Nx)k

k! , see also [4], p. 11.
By [4], p. 178-179, we get that

T
(M)
N (j� � xj) (x) � 3p

N
; 8 x 2 [0; 1] ; 8 N 2 N: (67)

And from [2] we have

T
(M)
N (j� � xjm) (x) � 3p

N
; 8 x 2 [0; 1] ; 8 N;m 2 N: (68)

We make

De�nition 21 Let f 2 C+

�
[0; 1]

k
�
, k 2 N � f1g; and �!N = (N1; :::; Nk) 2

Nk. We de�ne the multivariate Max-product truncated Favard-Szász-Mirakjan
operators as follows:

T
(M)
�!
N

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

sN1;i1 (x1) sN2;i2 (x2) :::sNk;ik (xk) f
�
i1
N1
; :::; ikNk

�
_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

sN1;i1 (x1) sN2;i2 (x2) :::sNk;ik (xk)
; (69)

8 x = (x1; :::; xk) 2 [0; 1]k. Call Nmin := minfN1; :::; Nkg:
The operators T (M)

�!
N

(f) (x) are positive sublinear mapping C+
�
[0; 1]

k
�
into

itself, and T (M)
�!
N

(1) = 1:

We also have
T
(M)
�!
N

(f) (x) :=

14
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_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

sN1;i1 (x1) sN2;i2 (x2) :::sNk;ik (xk) f
�
i1
N1
; :::; ikNk

�
Qk
�=1

�
_N�
i�=0

sN�;i� (x�)
� ; (70)

8 x 2 [0; 1]k, by the maximum multiplicative principle, see (27).

We make

Remark 22 The coordinate Max-product truncated Favard-Szász-Mirakjan op-
erators are de�ned as follows (� = 1; :::; k):

T
(M)
N�

(g) (x�) :=
_N�
i�=0

sN�;i� (x�) g
�
i�
N�

�
_N�
i�=0

sN�;i� (x�)
; (71)

8 N� 2 N, and 8 x� 2 [0; 1], 8 g 2 C+ ([0; 1]) :
Here we have

sN�;i� (x�) =
(N�x�)

i�

i�!
; � = 1; :::; k; x� 2 [0; 1] : (72)

In case of f 2 C+

�
[0; 1]

k
�
such that f (x) := g (x�), 8 x 2 [0; 1]

k
; where

x = (x1; :::; x�; :::; xk) and g 2 C+ ([0; 1]), we get that

T
(M)
�!
N

(f) (x) = T
(M)
N�

(g) (x�) ; (73)

by the maximum multiplicative principle (27) and simpli�cation of (70).

We present

Theorem 23 Let x 2 [0; 1]k, k 2 N�f1g, be �xed, and let f 2 Cn
�
[0; 1]

k
;R+

�
,

n 2 N� f1g. We assume that f� (x) = 0, for all � : j�j = 1; :::; n: Then���T (M)
�!
N

(f) (x)� f (x)
��� � 3 max

�:j�j=n

 
!1

 
f�;

�
1p
Nmin

� 1
n+1

!!!
�

"
kn+1

(n+ 1)!

�
1p
Nmin

� n
n+1

+
kn

2n!

�
1p
Nmin

�
+

kn�1

8 (n� 1)!

�
1p
Nmin

�n+2
n+1

#
; (74)

8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

T
(M)
�!
N

(f) (x) = f (x) :

Proof. By (26) we get:���T (M)
�!
N

(f) (x)� f (x)
��� (73)� �

max
�:j�j=n

!1 (f�; h)

�
�

15
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"
kn

(n+ 1)!h

 
kX
i=1

T
(M)
Ni

�
jti � xijn+1

�
(xi)

!
+
kn�1

2n!

 
kX
i=1

T
(M)
Ni

(jti � xijn) (xi)
!

(75)

+
hkn�2

8 (n� 1)!

 
kX
i=1

T
(M)
Ni

�
jti � xijn�1

�
(xi)

!#
(68)
�

3p
Nmin

�
max
�:j�j=n

!1 (f�; h)

��
kn+1

(n+ 1)!h
+
kn

2n!
+

hkn�1

8 (n� 1)!

�
=: (�) :

Above notice that
Pk

i=1 T
(M)
Ni

(jti � xijn) (xi)
(68)
�
Pk

i=1
3p
Ni
� 3kp

Nmin
, etc.

Next we choose h :=
�

1p
Nmin

� 1
n+1

, then hn =
�

1p
Nmin

� n
n+1

and hn+1 =
1p
Nmin

:

We have

(�) = 3

 
max
�:j�j=n

 
!1

 
f�;

�
1p
Nmin

� 1
n+1

!!!
�

"
kn+1

(n+ 1)!

�
1p
Nmin

� n
n+1

+
kn

2n!

�
1p
Nmin

�
+

kn�1

8 (n� 1)!

�
1p
Nmin

�n+2
n+1

#
; (76)

proving the claim.
We also give

Proposition 24 Let x 2 [0; 1]k, k 2 N�f1g, be �xed and let f 2 C1
�
[0; 1]

k
;R+

�
.

We assume that @f(x)@xi
= 0, for i = 1; :::; k. Then���T (M)

�!
N

(f) (x)� f (x)
��� � � max

i=1;:::;k
!1

�
@f

@xi
;

1
4
p
Nmin

��
�

�
3k2

2

�
1

4
p
Nmin

�
+
3k

2

�
1p
Nmin

�
+
1

8

�
1

4
p
Nmin

��
; (77)

8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
Also it holds lim�!

N!(1;:::;1)

T
(M)
�!
N

(f) (x) = f (x) :

Proof. By (31) we get:���T (M)
�!
N

(f) (x)� f (x)
��� (73)� �

max
i=1;:::;k

!1

�
@f

@xi
; h

��
�

"
k

2h

 
kX
i=1

T
(M)
Ni

�
(ti � xi)2

�
(xi)

!
+
1

2

 
kX
i=1

T
(M)
Ni

(jti � xij) (xi)
!
+
h

8

#
(78)
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(next we choose h :=
�

1p
Nmin

� 1
2

, then h2 = 1p
Nmin

)

(68)
�
�
max

i=1;:::;k
!1

�
@f

@xi
;

1
4
p
Nmin

��
��

3k2

2

�
1

4
p
Nmin

�
+
3k

2

�
1p
Nmin

�
+
1

8

�
1

4
p
Nmin

��
; (79)

proving the claim.
It follows

Theorem 25 Let f 2 C+
�
[0; 1]

k
�
, k 2 N� f1g. Then

���T (M)
�!
N

(f) (x)� f (x)
��� � (3k + 1)!1�f; 1p

Nmin

�
; (80)

8 x 2 [0; 1]k, 8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
That is T (M)

�!
N

(f)� f

1
� (3k + 1)!1

�
f;

1p
Nmin

�
: (81)

It holds that lim�!
N!(1;:::;1)

T
(M)
�!
N

(f) = f , uniformly.

Proof. We get that (use of (44))

���T (M)
�!
N

(f) (x)� f (x)
��� (73)� !1 (f; h)

 
1 +

1

h

 
kX
i=1

T
(M)
Ni

(jti � xij) (x)
!!

(67)
� !1 (f; h)

�
1 +

1

h

�
3kp
Nmin

��
(82)

(setting h := 1p
Nmin

)

= !1

�
f;

1p
Nmin

�
(3k + 1) ; 8 x 2 [0; 1]k ; 8 �!N 2 Nk;

proving the claim.
We make

Remark 26 We mention the truncated Max-product Baskakov operator (see
[4], p. 11)

U
(M)
N (f) (x) =

WN
k=0 bN;k (x) f

�
k
N

�WN
k=0 bN;k (x)

; x 2 [0; 1] ; f 2 C+ ([0; 1]) ; 8 N 2 N,

(83)

17

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

1027 Anastassiou 1011-1046



where

bN;k (x) =

�
N + k � 1

k

�
xk

(1 + x)
N+k

: (84)

From [4], pp. 217-218, we get (x 2 [0; 1])�
U
(M)
N (j� � xj)

�
(x) � 12p

N + 1
, N � 2, N 2 N: (85)

And as in [2], we obtain (m 2 N)�
U
(M)
N (j� � xjm)

�
(x) � 12p

N + 1
, N � 2, N 2 N; 8 x 2 [0; 1] : (86)

De�nition 27 Let f 2 C+

�
[0; 1]

k
�
, k 2 N � f1g; and �!N = (N1; :::; Nk) 2

Nk. We de�ne the multivariate Max-product truncated Baskakov operators as
follows:

U
(M)
�!
N

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

bN1;i1 (x1) bN2;i2 (x2) :::bNk;ik (xk) f
�
i1
N1
; :::; ikNk

�
_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

bN1;i1 (x1) bN2;i2 (x2) :::bNk;ik (xk)
; (87)

8 x = (x1; :::; xk) 2 [0; 1]k. Call Nmin := minfN1; :::; Nkg:
The operators U (M)

�!
N

(f) (x) are positive sublinear mapping C+
�
[0; 1]

k
�
into

itself, and U (M)
�!
N

(1) = 1:

We also have
U
(M)
�!
N

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

bN1;i1 (x1) bN2;i2 (x2) :::bNk;ik (xk) f
�
i1
N1
; :::; ikNk

�
Qk
�=1

�
_N�
i�=0

bN�;i� (x�)
� ; (88)

8 x 2 [0; 1]k, by the maximum multiplicative principle, see (27).

We make

Remark 28 The coordinate Max-product truncated Baskakov operators are de-
�ned as follows (� = 1; :::; k):

U
(M)
N�

(g) (x�) :=
_N�
i�=0

bN�;i� (x�) g
�
i�
N�

�
_N�
i�=0

bN�;i� (x�)
; (89)

8 N� 2 N, and 8 x� 2 [0; 1], 8 g 2 C+ ([0; 1]) :
Here we have

bN�;i� (x�) =

�
N� + i� � 1

i�

�
xi��

(1 + x�)
N+i�

; � = 1; :::; k; x� 2 [0; 1] :

18

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

1028 Anastassiou 1011-1046



In case of f 2 C+

�
[0; 1]

k
�
such that f (x) := g (x�), 8 x 2 [0; 1]

k
; where

x = (x1; :::; x�; :::; xk) and g 2 C+ ([0; 1]), we get that

U
(M)
�!
N

(f) (x) = U
(M)
N�

(g) (x�) ; (90)

by the maximum multiplicative principle (27) and simpli�cation of (89).

We present

Theorem 29 Let x 2 [0; 1]k, k 2 N�f1g, be �xed, and let f 2 Cn
�
[0; 1]

k
;R+

�
,

n 2 N� f1g. We assume that f� (x) = 0, for all � : j�j = 1; :::; n: Then���U (M)
�!
N

(f) (x)� f (x)
��� � 12 max

�:j�j=n

 
!1

 
f�;

�
1p

Nmin + 1

� 1
n+1

!!!
�

"
kn+1

(n+ 1)!

�
1p

Nmin + 1

� n
n+1

+
kn

2n!

�
1p

Nmin + 1

�
+

kn�1

8 (n� 1)!

�
1p

Nmin + 1

�n+2
n+1

#
;

(91)
8 �!N 2 (N� f1g)k, where Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

U
(M)
�!
N

(f) (x) = f (x) :

Proof. By (26) we get:���U (M)
�!
N

(f) (x)� f (x)
��� (90)� �

max
�:j�j=n

!1 (f�; h)

�
�

"
kn

(n+ 1)!h

 
kX
i=1

U
(M)
Ni

�
jti � xijn+1

�
(xi)

!
+
kn�1

2n!

 
kX
i=1

U
(M)
Ni

(jti � xijn) (xi)
!

(92)

+
hkn�2

8 (n� 1)!

 
kX
i=1

U
(M)
Ni

�
jti � xijn�1

�
(xi)

!#
(86)
�

12p
Nmin + 1

�
max
�:j�j=n

!1 (f�; h)

��
kn+1

(n+ 1)!h
+
kn

2n!
+

hkn�1

8 (n� 1)!

�
=: (�) :

Above notice that
Pk

i=1 U
(M)
Ni

(jti � xijn) (xi)
(86)
�
Pk

i=1
12p
Ni+1

� 12kp
Nmin+1

, etc.

Next we choose h :=
�

1p
Nmin+1

� 1
n+1

, then hn =
�

1p
Nmin+1

� n
n+1

and hn+1 =
1p

Nmin+1
:

We have

(�) = 12

 
max
�:j�j=n

 
!1

 
f�;

�
1p

Nmin + 1

� 1
n+1

!!!
�
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"
kn+1

(n+ 1)!

�
1p

Nmin + 1

� n
n+1

+
kn

2n!

�
1p

Nmin + 1

�
+

kn�1

8 (n� 1)!

�
1p

Nmin + 1

�n+2
n+1

#
;

(93)
proving the claim.
We also give

Proposition 30 Let x 2 [0; 1]k, k 2 N�f1g, be �xed and let f 2 C1
�
[0; 1]

k
;R+

�
.

We assume that @f(x)@xi
= 0, for i = 1; :::; k. Then���U (M)

�!
N

(f) (x)� f (x)
��� � � max

i=1;:::;k
!1

�
@f

@xi
;

1
4
p
Nmin + 1

��
� (94)

"
6k2

4
p
Nmin + 1

+
6kp

Nmin + 1
+

1

8
�
4
p
Nmin + 1

� # ;
8 �!N 2 (N� f1g)k, where Nmin := minfN1; :::; Nkg:
Also it holds lim�!

N!(1;:::;1)

U
(M)
�!
N

(f) (x) = f (x) :

Proof. By (31) we get:���U (M)
�!
N

(f) (x)� f (x)
��� (90)� �

max
i=1;:::;k

!1

�
@f

@xi
; h

��
�

"
k

2h

 
kX
i=1

U
(M)
Ni

�
(ti � xi)2

�
(xi)

!
+
1

2

 
kX
i=1

U
(M)
Ni

(jti � xij) (xi)
!
+
h

8

#
(95)

(next we choose h :=
�

1p
Nmin+1

� 1
2

, then h2 = 1p
Nmin+1

)

(85)
�
�
max

i=1;:::;k
!1

�
@f

@xi
;

1
4
p
Nmin + 1

��
�"

6k2

4
p
Nmin + 1

+
6kp

Nmin + 1
+

1

8
�
4
p
Nmin + 1

� # ; (96)

proving the claim.
It follows

Theorem 31 Let f 2 C+
�
[0; 1]

k
�
, k 2 N� f1g. Then

���U (M)
�!
N

(f) (x)� f (x)
��� � (12k + 1)!1�f; 1p

Nmin + 1

�
; (97)

8 x 2 [0; 1]k, 8 �!N 2 (N� f1g)k, where Nmin := minfN1; :::; Nkg:
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That is U (M)
�!
N

(f)� f

1
� (12k + 1)!1

�
f;

1p
Nmin + 1

�
: (98)

It holds that lim�!
N!(1;:::;1)

U
(M)
�!
N

(f) = f , uniformly.

Proof. We get that (use of (44))���U (M)
�!
N

(f) (x)� f (x)
��� (90)� !1 (f; h)

 
1 +

1

h

 
kX
i=1

U
(M)
Ni

(jti � xij) (xi)
!!

(85)
� !1 (f; h)

�
1 +

1

h

�
12kp

Nmin + 1

��
(99)

(setting h := 1p
Nmin+1

)

= !1

�
f;

1p
Nmin + 1

�
(12k + 1) ; 8 x 2 [0; 1]k ; 8 �!N 2 (N� f1g)k ;

proving the claim.
We make

Remark 32 Here we mention the Max-product truncated sampling operators
(see [4], p. 13) de�ned by

W
(M)
N (f) (x) :=

WN
k=0

sin(Nx�k�)
Nx�k� f

�
k�
N

�WN
k=0

sin(Nx�k�)
Nx�k�

; x 2 [0; �] ; (100)

f : [0; �]! R+, continuous,
and

K
(M)
N (f) (x) :=

WN
k=0

sin2(Nx�k�)
(Nx�k�)2 f

�
k�
N

�
WN
k=0

sin2(Nx�k�)
(Nx�k�)2

; x 2 [0; �] ; (101)

f : [0; �]! R+, continuous.
By convention we talk sin(0)

0 = 1; which implies for every x = k�
N , k 2

f0; 1; :::; Ng that we have sin(Nx�k�)
Nx�k� = 1:

We de�ne the Max-product truncated combined sampling operators

M
(M)
N (f) (x) :=

WN
k=0 �N;k (x) f

�
k�
N

�WN
k=0 �N;k (x)

; x 2 [0; �] ; (102)

f 2 C+ ([0; �]) ; where

M
(M)
N (f) (x) :=

8<:W
(M)
N (f) (x) , if �N;k (x) :=

sin(Nx�k�)
Nx�k� ;

K
(M)
N (f) (x) , if �N;k (x) :=

�
sin(Nx�k�)
Nx�k�

�2
:

(103)
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By [4], p. 346 and p. 352 we get�
M

(M)
N (j� � xj)

�
(x) � �

2N
, (104)

and by [3] (m 2 N) we have�
M

(M)
N (j� � xjm)

�
(x) � �m

2N
, 8 x 2 [0; �] , 8 N 2 N: (105)

We give

De�nition 33 Let f 2 C+
�
[0; �]

k
�
, k 2 N� f1g; and �!N = (N1; :::; Nk) 2 Nk.

We de�ne the multivariate Max-product truncated combined sampling operators
as follows:

M
(M)
�!
N

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

�N1;i1 (x1) �N2;i2 (x2) :::�Nk;ik
(xk) f

�
i1�
N1
; i2�N2

; :::; ik�Nk

�
_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

�N1;i1 (x1) �N2;i2 (x2) :::�Nk;ik
(xk)

;

(106)
8 x = (x1; :::; xk) 2 [0; �]k. Call Nmin := minfN1; :::; Nkg:
The operators M (M)

�!
N

(f) (x) are positive sublinear mapping C+
�
[0; �]

k
�
into

itself, and M (M)
�!
N

(1) = 1:

We also have
M

(M)
�!
N

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

�N1;i1 (x1) �N2;i2 (x2) :::�Nk;ik
(xk) f

�
i1�
N1
; i2�N2

; :::; ik�Nk

�
Qk
�=1

�
_N�
i�=0

�N�;i�
(x�)

� ;

(107)
8 x 2 [0; �]k, by the maximum multiplicative principle, see (27).

We make

Remark 34 The coordinate Max-product truncated combined sampling opera-
tors are de�ned as follows (� = 1; :::; k):

M
(M)
N�

(g) (x�) :=
_N�
i�=0

�N�;i�
(x�) g

�
i��
N�

�
_N�
i�=0

�N�;i�
(x�)

; (108)

8 N� 2 N, and 8 x� 2 [0; �], 8 g 2 C+ ([0; �]) :
Here we have (� = 1; :::; k; x� 2 [0; �])

�N�;i�
(x�) =

8<:
sin(N�x��i��)
N�x��i�� ; if M (M)

N�
=W

(M)
N�

;�
sin(N�x��i��)
N�x��i��

�2
; if M (M)

N�
= K

(M)
N�

:

9=; : (109)
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In case of f 2 C+

�
[0; �]

k
�
such that f (x) := g (x�), 8 x 2 [0; �]

k
; where

x = (x1; :::; x�; :::; xk) and g 2 C+ ([0; �]), we get that

M
(M)
�!
N

(f) (x) =M
(M)
N�

(g) (x�) ; (110)

by the maximum multiplicative principle (27) and simpli�cation of (107).

We present

Theorem 35 Let x 2 [0; �]k, k 2 N�f1g, be �xed, and let f 2 Cn
�
[0; �]

k
;R+

�
,

n 2 N� f1g. We assume that f� (x) = 0, for all � : j�j = 1; :::; n: Then���M (M)
�!
N

(f) (x)� f (x)
��� � (k�)

n�1

2

 
max
�:j�j=n

!1

 
f�;

1

(Nmin)
1

n+1

!!
� (111)

"
(k�)

2

(n+ 1)!

1

(Nmin)
n

n+1
+

k�

2n!Nmin
+

1

8 (n� 1)! (Nmin)
n+2
n+1

#
;

8 �!N = (N1; :::; Nk) 2 Nk, where Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

M
(M)
�!
N

(f) (x) = f (x) :

Proof. By (26) we get:���M (M)
�!
N

(f) (x)� f (x)
��� (110)� �

max
�:j�j=n

!1 (f�; h)

�
�"

kn

(n+ 1)!h

 
kX
i=1

M
(M)
Ni

�
jti � xijn+1

�
(xi)

!
+
kn�1

2n!

 
kX
i=1

M
(M)
Ni

(jti � xijn) (xi)
!

(112)

+
hkn�2

8 (n� 1)!

 
kX
i=1

M
(M)
Ni

�
jti � xijn�1

�
(xi)

!#
(105)
�

1

2Nmin

�
max
�:j�j=n

!1 (f�; h)

��
kn+1�n+1

(n+ 1)!h
+
kn�n

2n!
+
hkn�1�n�1

8 (n� 1)!

�
=: (�) :

Above notice that
Pk

i=1M
(M)
Ni

(jti � xijn) (xi)
(105)
�
Pk

i=1
�n

2Ni
� k�n

2Nmin
, etc.

Next we choose h :=
�

1
Nmin

� 1
n+1

, then hn =
�

1
Nmin

� n
n+1

and hn+1 = 1
Nmin

:

We have

(�) =
(k�)

n�1

2

 
max
�:j�j=n

!1

 
f�;

1

(Nmin)
1

n+1

!!
� (113)

"
(k�)

2

(n+ 1)!

1

(Nmin)
n

n+1
+

k�

2n!Nmin
+

1

8 (n� 1)! (Nmin)
n+2
n+1

#
;

proving the claim.
We also give
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Proposition 36 Let x 2 [0; �]k, k 2 N�f1g, be �xed and let f 2 C1 ([0; �] ;R+).
We assume that @f(x)@xi

= 0, for i = 1; :::; k. Then���M (M)
�!
N

(f) (x)� f (x)
��� � � max

i=1;:::;k
!1

�
@f

@xi
;

1p
Nmin

��
�

"
(k�)

2

4
p
Nmin

+
k�

4Nmin
+

1

8
�p
Nmin

� # ; (114)

8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
Also it holds lim�!

N!(1;:::;1)

M
(M)
�!
N

(f) (x) = f (x) :

Proof. By (31) we get:���M (M)
�!
N

(f) (x)� f (x)
��� (110)� �

max
i=1;:::;k

!1

�
@f

@xi
; h

��
�

"
k

2h

 
kX
i=1

M
(M)
Ni

�
(ti � xi)2

�
(xi)

!
+
1

2

 
kX
i=1

M
(M)
Ni

(jti � xij) (xi)
!
+
h

8

#
(115)

(next we choose h :=
�

1
Nmin

� 1
2

, then h2 = 1
Nmin

)

(105)
�
�
max

i=1;:::;k
!1

�
@f

@xi
;

1p
Nmin

��
�

"
(k�)

2

4
p
Nmin

+
k�

4Nmin
+

1

8
�p
Nmin

� # ; (116)

proving the claim.
It follows

Theorem 37 Let f 2 C+
�
[0; �]

k
�
, k 2 N� f1g. Then

���M (M)
�!
N

(f) (x)� f (x)
��� � �k�

2
+ 1

�
!1

�
f;

1

Nmin

�
; (117)

8 x 2 [0; �]k, 8 �!N 2 Nk, where Nmin := minfN1; :::; Nkg:
That is M (M)

�!
N

(f)� f

1
�
�
k�

2
+ 1

�
!1

�
f;

1

Nmin

�
: (118)

It holds lim�!
N!(1;:::;1)

M
(M)
�!
N

(f) = f , uniformly.
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Proof. We get that (use of (44))

���M (M)
�!
N

(f) (x)� f (x)
��� (110)� !1 (f; h)

 
1 +

1

h

 
kX
i=1

M
(M)
Ni

(jti � xij) (xi)
!!

(104)
� !1 (f; h)

�
1 +

1

h

�
k�

2Nmin

��
(119)

(setting h := 1
Nmin

)

= !1

�
f;

1

Nmin

��
k�

2
+ 1

�
; 8 x 2 [0; �]k ; 8 �!N 2 Nk;

proving the claim.
We make

Remark 38 Let f 2 C+ ([�1; 1]). Let the Chebyshev knots of second kind

xN;k = cos
��

N�k
N�1

�
�
�
2 [�1; 1], k = 1; :::; N; N 2 N�f1g, which are the roots

of !N (x) = sin (N � 1) t sin t, x = cos t 2 [�1; 1]. Notice that xN;1 = �1 and
xN;N = 1:

De�ne

lN;k (x) :=
(�1)k�1 !N (x)

(1 + �k;1 + �k;N ) (N � 1) (x� xN;k)
; (120)

N � 2, k = 1; :::; N , and !N (x) =
QN
k=1 (x� xN;k) and �i;j denotes the Kro-

necher�s symbol, that is �i;j = 1, if i = j, and �i;j = 0, if i 6= j.
The Max-product Lagrange interpolation operators on Chebyshev knots of

second kind, plus the endpoints �1, are de�ned by ([4], p. 12)

L
(M)
N (f) (x) =

WN
k=1 lN;k (x) f (xN;k)WN

k=1 lN;k (x)
; x 2 [�1; 1] : (121)

By [4], pp. 297-298 and [3], we get that

L
(M)
N (j� � xjm) (x) � 2m+1�2

3 (N � 1) ; (122)

8 x 2 (�1; 1) and 8 m 2 N; 8 N 2 N, N � 4:
We see that L(M)

N (f) (x) � 0 is well de�ned and continuous for any x 2
[�1; 1]. Following [4], p. 289, because

PN
k=1 lN;k (x) = 1, 8 x 2 [�1; 1], for

any x there exists k 2 f1; :::; Ng : lN;k (x) > 0, hence
WN
k=1 lN;k (x) > 0. We

have that lN;k (xN;k) = 1, and lN;k (xN;j) = 0, if k 6= j. Furthermore it holds
L
(M)
N (f) (xN;j) = f (xN;j), all j 2 f1; :::; Ng ; and L(M)

N (1) = 1.

By [4], pp. 289-290, L(M)
N are positive sublinear operators.

We give

25

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

1035 Anastassiou 1011-1046



De�nition 39 Let f 2 C+
�
[�1; 1]k

�
, k 2 N � f1g; and �!N = (N1; :::; Nk) 2

(N� f1g)k. We de�ne the multivariate Max-product Lagrange interpolation op-
erators on Chebyshev knots of second kind, plus the endpoints �1, as follows:

L
(M)
�!
N

(f) (x) :=

_N1
i1=1

_N2
i2=1

::: _Nk
ik=1

lN1;i1 (x1) lN2;i2 (x2) :::lNk;ik (xk) f (xN1;i1 ; xN2;i2 ; :::; xNk;ik)

_N1
i1=1

_N2
i2=1

::: _Nk
ik=1

lN1;i1 (x1) lN2;i2 (x2) :::lNk;ik (xk)
;

(123)
8 x = (x1; :::; xk) 2 [�1; 1]k. Call Nmin := minfN1; :::; Nkg:
The operators L(M)

�!
N

(f) (x) are positive sublinear mapping C+
�
[�1; 1]k

�
into

itself, and L(M)
�!
N

(1) = 1:

We also have
L
(M)
�!
N

(f) (x) :=

_N1
i1=1

_N2
i2=1

::: _Nk
ik=1

lN1;i1 (x1) lN2;i2 (x2) :::lNk;ik (xk) f (xN1;i1 ; xN2;i2 ; :::; xNk;ik)Qk
�=1

�
_N�
i�=1

lN�;i� (x�)
� ;

(124)
8 x = (x1; :::; x�; :::; xk) 2 [�1; 1]k, by the maximum multiplicative principle, see
(27). Notice that L(M)

�!
N

(f) (xN1;i1 ; :::; xNk;ik) = f (xN1;i1 ; :::; xNk;ik). The last is
also true if xN1;i1 ; :::; xNk;ik 2 f�1; 1g:

We make

Remark 40 The coordinate Max-product Lagrange interpolation operators on
Chebyshev knots of second kind, plus the endpoints �1; are de�ned as follows
(� = 1; :::; k):

L
(M)
N�

(g) (x�) :=
_N�
i�=1

lN�;i� (x�) g (xN�;i�)

_N�
i�=1

lN�;i� (x�)
; (125)

8 N� 2 N, N� � 2; and 8 x� 2 [�1; 1], 8 g 2 C+ ([�1; 1]) :
Here we have (� = 1; :::; k; x� 2 [�1; 1])

lN�;i� (x�) =
(�1)i��1 !N�

(x�)

(1 + �i�;1 + �i�;N�
) (N� � 1) (x� � xN�;i�)

; (126)

N� � 2, i� = 1; :::; N� and !N�
(x�) =

QN�

i�=1
(x� � xN�;i�) ; where xN�;i� =

cos
��

N��i�
N��1

�
�
�
2 [�1; 1], i� = 1; :::; N� (N� � 2) are roots of !N�

(x�) =

sin (N� � 1) t� sin t�, x� = cos t�. Notice that xN�;1 = �1, xN�;N�
= 1:

In case of f 2 C+
�
[�1; 1]k

�
such that f (x) := g (x�), 8 x 2 [�1; 1]k ; where

x = (x1; :::; x�; :::; xk) and g 2 C+ ([�1; 1]), we get that

L
(M)
�!
N

(f) (x) = L
(M)
N�

(g) (x�) ; (127)
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by the maximum multiplicative principle (27) and simpli�cation of (124).

We present

Theorem 41 Let x 2 (�1; 1)k, k 2 N�f1g, be �xed, and let f 2 Cn
�
[�1; 1]k ;R+

�
,

n 2 N� f1g. We assume that f� (x) = 0, for all � : j�j = 1; :::; n: Then���L(M)
�!
N

(f) (x)� f (x)
��� � (2k)

n�1
�2

3

�
max
�:j�j=n

!1

�
f�;

1
n+1
p
Nmin � 1

��
� (128)

"
8k2

(n+ 1)! (Nmin � 1)
n

n+1
+

2k

n! (Nmin � 1)
+

1

4 (n� 1)! (Nmin � 1)
n+2
n+1

#
;

8 �!N = (N1; :::; Nk) 2 Nk; Ni � 4, i = 1; :::; k; and Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

L
(M)
�!
N

(f) (x) = f (x) :

Proof. By (26) we get:���L(M)
�!
N

(f) (x)� f (x)
��� (127)� �

max
�:j�j=n

!1 (f�; h)

�
�

"
kn

(n+ 1)!h

 
kX
i=1

L
(M)
Ni

�
jti � xijn+1

�
(xi)

!
+
kn�1

2n!

 
kX
i=1

L
(M)
Ni

(jti � xijn) (xi)
!

(129)

+
hkn�2

8 (n� 1)!

 
kX
i=1

L
(M)
Ni

�
jti � xijn�1

�
(xi)

!#
(122)
�

�2

3 (Nmin � 1)

�
max
�:j�j=n

!1 (f�; h)

��
kn+12n+2

(n+ 1)!h
+
kn2n+1

2n!
+
hkn�12n

8 (n� 1)!

�
=: (�) :

Above we notice that
Pk

i=1 L
(M)
Ni

(jti � xijn) (xi)
(122)
�
Pk

i=1
2n+1�2

3(Ni�1) �
2n+1�2k
3(Nmin�1) ,

etc.

Next we choose h :=
�

1
Nmin�1

� 1
n+1

, then hn =
�

1
Nmin�1

� n
n+1

and hn+1 =
1

Nmin�1 :

We have

(�) =
�2

3

�
max
�:j�j=n

!1

�
f�;

1
n+1
p
Nmin � 1

��
� (130)"

kn+12n+2

(n+ 1)!

1

(Nmin � 1)
n

n+1
+

kn2n

n! (Nmin � 1)
+
kn�12n�1

4 (n� 1)!
1

(Nmin � 1)
n+2
n+1

#
;

proving the claim.
We also give
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Proposition 42 Let x 2 (�1; 1)k, k 2 N�f1g, be �xed, and let f 2 C1
�
[�1; 1]k ;R+

�
.

We assume that @f(x)@xi
= 0, for i = 1; :::; k. Then���L(M)

�!
N

(f) (x)� f (x)
��� � � max

i=1;:::;k
!1

�
@f

@xi
;

1p
Nmin � 1

��
� (131)

"
(4=3)(k�)2p
Nmin � 1

+
(2=3)k�2

(Nmin � 1)
+

1

8
�p
Nmin � 1

�# ;
8 �!N = (N1; :::; Nk) 2 Nk; Ni � 4, i = 1; :::; k; and Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

L
(M)
�!
N

(f) (x) = f (x) :

Proof. By (31) we get:���L(M)
�!
N

(f) (x)� f (x)
��� (127)� �

max
i=1;:::;k

!1

�
@f

@xi
; h

��
�

"
k

2h

 
kX
i=1

L
(M)
Ni

�
(ti � xi)2

�
(xi)

!
+
1

2

 
kX
i=1

L
(M)
Ni

(jti � xij) (xi)
!
+
h

8

#
(132)

(next we choose h :=
�

1
Nmin�1

� 1
2

, then h2 = 1
Nmin�1 )

(122)
�
�
max

i=1;:::;k
!1

�
@f

@xi
;

1p
Nmin � 1

��
�"

(4=3)(k�)2p
Nmin � 1

+
(2=3)k�2

(Nmin � 1)
+

1

8
�p
Nmin � 1

�# ; (133)

proving the claim.
It follows

Theorem 43 Let any x 2 [�1; 1]k, k 2 N � f1g; and let f 2 C+
�
[�1; 1]k

�
.

Then ���L(M)
�!
N

(f) (x)� f (x)
��� � �1 + 4�2k

3

�
!1

�
f;

1

(Nmin � 1)

�
; (134)

and L(M)
�!
N

(f)� f

1
�
�
1 +

4�2k

3

�
!1

�
f;

1

(Nmin � 1)

�
; (135)

8 �!N = (N1; :::; Nk) 2 Nk; Ni � 4, i = 1; :::; k; and Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

L
(M)
�!
N

(f) (x) = f (x), 8 x := (x1; :::; xk) 2 [�1; 1]k ;

uniformly.
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Proof. We get that (use of (44))���L(M)
�!
N

(f) (x)� f (x)
��� (127)� !1 (f; h)

 
1 +

1

h

 
kX
i=1

L
(M)
Ni

(jti � xij) (x)
!!

(122)
� !1 (f; h)

 
1 +

1

h

 
kX
i=1

22�2

3 (Ni � 1)

!!
� !1 (f; h)

�
1 +

1

h

�
4�2k

3 (Nmin � 1)

��
(137)

(setting h := 1
Nmin�1 )

= !1

�
f;

1

(Nmin � 1)

��
1 +

4�2k

3

�
; 8 x 2 (�1; 1)k ;

proving the claim.
We make

Remark 44 The Chebyshev knots of �rst kind xN;k := cos
�
(2(N�k)+1)
2(N+1) �

�
2

(�1; 1), k 2 f0; 1; :::; Ng; �1 < xN;0 < xN;1 < ::: < xN;N < 1, are the roots
of the �rst kind Chebyshev polynomial TN+1 (x) := cos ((N + 1) arccosx), x 2
[�1; 1] :
De�ne (x 2 [�1; 1])

hN;k (x) := (1� x � xN;k)
�

TN+1 (x)

(N + 1) (x� xN;k)

�2
; (138)

the fundamental interpolation polynomials.
The Max-product interpolation Hermite-Fejér operators on Chebyshev knots

of the �rst kind (seep. 12 of [4]) are de�ned by

H
(M)
2N+1 (f) (x) =

WN
k=0 hN;k (x) f (xN;k)WN

k=0 hN;k (x)
; 8 N 2 N, (139)

for f 2 C+ ([�1; 1]), 8 x 2 [�1; 1] :
By [4], p. 287, we have

H
(M)
2N+1 (j� � xj) (x) �

2�

N + 1
; 8 x 2 [�1; 1] , 8 N 2 N: (140)

And by [3], we get that

H
(M)
2N+1 (j� � xj

m
) (x) � 2m�

N + 1
; 8 x 2 [�1; 1] , 8 m;N 2 N: (141)

Notice H(M)
2N+1 (1) = 1, and H(M)

2N+1 maps C+ ([�1; 1]) into itself, and it is
a positive sublinear operator. Furthermore it holds

WN
k=0 hN;k (x) > 0, 8 x 2

[�1; 1]. We also have hN;k (xN;k) = 1, and hN;k (xN;j) = 0, if k 6= j, and
H
(M)
2N+1 (f) (xN;j) = f (xN;j), for all j 2 f0; 1; :::; Ng, see [4], p. 282.
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We need

De�nition 45 Let f 2 C+
�
[�1; 1]k

�
, k 2 N�f1g; and �!N = (N1; :::; Nk) 2 Nk.

We de�ne the multivariate Max-product interpolation Hermite-Fejér operators
on Chebyshev knots of the �rst kind, as follows:

H
(M)

2
�!
N+1

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

hN1;i1 (x1)hN2;i2 (x2) :::hNk;ik (xk) f (xN1;i1 ; xN2;i2 ; :::; xNk;ik)

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

hN1;i1 (x1)hN2;i2 (x2) :::hNk;ik (xk)
;

(142)
8 x = (x1; :::; xk) 2 [�1; 1]k. Call Nmin := minfN1; :::; Nkg:
The operators H(M)

2
�!
N+1

(f) (x) are positive sublinear mapping C+
�
[�1; 1]k

�
into itself, and H(M)

2
�!
N+1

(1) = 1:

We also have
H
(M)

2
�!
N+1

(f) (x) :=

_N1
i1=0

_N2
i2=0

::: _Nk
ik=0

hN1;i1 (x1)hN2;i2 (x2) :::hNk;ik (xk) f (xN1;i1 ; xN2;i2 ; :::; xNk;ik)Qk
�=1

�
_N�
i�=0

hN�;i� (x�)
� ;

(143)
8 x = (x1; :::; x�; :::; xk) 2 [�1; 1]k, by the maximum multiplicative principle, see
(27). Notice that H(M)

2
�!
N+1

(f) (xN1;i1 ; :::; xNk;ik) = f (xN1;i1 ; :::; xNk;ik).

We make

Remark 46 The coordinate Max-product interpolation Hermite-Fejér operators
on Chebyshev knots of the �rst kind, are de�ned as follows (� = 1; :::; k):

H
(M)
2N�+1

(g) (x�) :=
_N�
i�=0

hN�;i� (x�) g (xN�;i�)

_N�
i�=0

hN�;i� (x�)
; (144)

8 N� 2 N, and 8 x� 2 [�1; 1], 8 g 2 C+ ([�1; 1]) :
Here we have (� = 1; :::; k; x� 2 [�1; 1])

hN�;i� (x�) = (1� x� � xN�;i�)

�
TN�+1 (x�)

(N� + 1) (x� � xN�;i�)

�2
; (145)

where the Chebyshev knots xN�;i� = cos
�
(2(N��i�)+1)
2(N�+1)

�
�
2 (�1; 1), i� 2 f0; 1; :::; N�g,

�1 < xN�;0 < xN�;1 < ::: < xN�;N�
< 1 are the roots of the �rst kind Chebyshev

polynomial TN�+1 (x�) = cos ((N� + 1) arccosx�), x� 2 [�1; 1] :
In case of f 2 C+

�
[�1; 1]k

�
such that f (x) := g (x�), 8 x 2 [�1; 1]k and

g 2 C+ ([�1; 1]), we get that

H
(M)

2
�!
N+1

(f) (x) = H
(M)
2N�+1

(g) (x�) ; (146)

by the maximum multiplicative principle (27) and simpli�cation of (143).
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We present

Theorem 47 Let x 2 [�1; 1]k, k 2 N�f1g, be �xed, and let f 2 Cn
�
[�1; 1]k ;R+

�
,

n 2 N� f1g. We assume that f� (x) = 0, for all � : j�j = 1; :::; n: Then���H(M)

2
�!
N+1

(f) (x)� f (x)
��� � 2n�2kn�1�� max

�:j�j=n
!1

�
f�;

1
n+1
p
Nmin + 1

��
�

(147)"
8k2

(n+ 1)! (Nmin + 1)
n

n+1
+

2k

n! (Nmin + 1)
+

1

4 (n� 1)! (Nmin + 1)
n+2
n+1

#
;

8 �!N = (N1; :::; Nk) 2 Nk, and Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

H
(M)

2
�!
N+1

(f) (x) = f (x) :

Proof. By (26) we get:���H(M)

2
�!
N+1

(f) (x)� f (x)
��� (146)� �

max
�:j�j=n

!1 (f�; h)

�
�

"
kn

(n+ 1)!h

 
kX
i=1

H
(M)
2Ni+1

�
jti � xijn+1

�
(xi)

!
+
kn�1

2n!

�
H
(M)
2Ni+1

(jti � xijn) (xi)
�

(148)

+
hkn�2

8 (n� 1)!

 
kX
i=1

H
(M)
2Ni+1

�
jti � xijn�1

�
(xi)

!#
(141)
�

�
�

Nmin + 1

��
max
�:j�j=n

!1 (f�; h)

��
kn+12n+1

(n+ 1)!h
+
kn2n

2n!
+
hkn�12n�1

8 (n� 1)!

�
=: (�) :

Next we choose h :=
�

1
Nmin+1

� 1
n+1

, then hn =
�

1
Nmin+1

� n
n+1

and hn+1 =
1

Nmin+1
:

We have

(�) = �

�
max
�:j�j=n

!1

�
f�;

1
n+1
p
Nmin + 1

��
� (149)"

(2k)
n+1

(n+ 1)! (Nmin + 1)
n

n+1
+

2n�1kn

n! (Nmin + 1)
+

2n�2kn�1

4 (n� 1)! (Nmin + 1)
n+2
n+1

#
;

proving the claim.
We also give

Proposition 48 Let x 2 [�1; 1]k, k 2 N�f1g, be �xed, and let f 2 C1
�
[�1; 1]k ;R+

�
.

We assume that @f(x)@xi
= 0, for i = 1; :::; k. Then���H(M)

2
�!
N+1

(f) (x)� f (x)
��� � � max

i=1;:::;k
!1

�
@f

@xi
;

1p
Nmin + 1

��
� (150)
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"
2k2�p
Nmin + 1

+
k�

(Nmin + 1)
+

1

8
�p
Nmin + 1

� # ;
8 �!N = (N1; :::; Nk) 2 Nk; Nmin := minfN1; :::; Nkg:
We have that lim�!

N!(1;:::;1)

H
(M)

2
�!
N+1

(f) (x) = f (x) :

Proof. By (31) we get���H(M)

2
�!
N+1

(f) (x)� f (x)
��� (146)� �

max
i=1;:::;k

!1

�
@f

@xi
; h

��
�

"
k

2h

 
kX
i=1

H
(M)
2Ni+1

�
(ti � xi)2

�
(xi)

!
+
1

2

 
kX
i=1

H
(M)
2Ni+1

(jti � xij) (xi)
!
+
h

8

#
(151)

(next we choose h := 1p
Nmin+1

, then h2 = 1
Nmin+1

)

(141)
�
�
max

i=1;:::;k
!1

�
@f

@xi
;

1p
Nmin + 1

��
�"

2k2�p
Nmin + 1

+
k�

(Nmin + 1)
+

1

8
�p
Nmin + 1

� # ; (152)

proving the claim.
It follows

Theorem 49 Let f 2 C+
�
[�1; 1]k

�
, k 2 N� f1g. Then

���H(M)

2
�!
N+1

(f) (x)� f (x)
��� � (2k� + 1)!1�f; 1

Nmin + 1

�
; (153)

8 x 2 [�1; 1]k, and 8 �!N = (N1; :::; Nk) 2 Nk, where Nmin := minfN1; :::; Nkg:
That is H(M)

2
�!
N+1

(f)� f

1
� (2k� + 1)!1

�
f;

1

Nmin + 1

�
; (154)

We get that
lim�!

N!(1;:::;1)

H
(M)

2
�!
N+1

(f) = f; (155)

uniformly.
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Proof. We get that (use of (44))

���H(M)

2
�!
N+1

(f) (x)� f (x)
��� (146)� !1 (f; h)

 
1 +

1

h

 
kX
i=1

H
(M)
2Ni+1

(jti � xij) (xi)
!!

(140)
� !1 (f; h)

�
1 +

k

h

�
2�

(Nmin + 1)

��
(156)

(setting h := 1
Nmin+1

)

= !1

�
f;

1

Nmin + 1

�
(1 + 2k�) ; 8 x 2 [�1; 1]k ;

proving the claim.
We make

Remark 50 Let �(M)
�!
N

denote any of the Max-product multivariate operators

studied in this article: B(M)
�!
N

; T
(M)
N ; U

(M)
�!
N

; T
(M)
�!
N

; M
(M)
�!
N

; L
(M)
�!
N

and H(M)

2
�!
N+1

. We

observe that an important contraction property holds:�(M)
�!
N

(f)

1
� kfk1 , (157)

and �(M)
�!
N

�
�
(M)
�!
N

(f)
�

1
�
�(M)

�!
N

(f)

1
� kfk1 , (158)

i.e. ��(M)
�!
N

�2
(f)


1
� kfk1 , (159)

and in general holds��(M)
�!
N

�n
(f)

1
�
��(M)

�!
N

�n�1
(f)


1
� ::: � kfk1 , 8 n 2 N. (160)

We need the following Holder�s type inequality:

Theorem 51 Let Q, with the l1-norm k�k, be a compact and convex subset of
Rk, k 2 N�f1g and L : C+ (Q)! C+ (Q), be a positive sublinear operator and
f; g 2 C+ (Q), furthermore let p; q > 1 : 1p+

1
q = 1. Assume that L ((f (�))

p
) (s�) ;

L ((g (�))q) (s�) > 0 for some s� 2 Q. Then

L (f (�) g (�)) (s�) � (L ((f (�))p) (s�))
1
p (L ((g (�))q) (s�))

1
q : (161)

Proof. Let a; b � 0, p; q > 1 : 1p +
1
q = 1. The Young�s inequality says

ab � ap

p
+
bq

q
: (162)
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Then
f (s)

(L ((f (�))p) (s�))
1
p

� g (s)

(L ((g (�))q) (s�))
1
q

�

(f (s))
p

p (L ((f (�))p) (s�))
+

(g (s))
q

q (L ((g (�))q) (s�))
; 8 s 2 Q: (163)

Hence it holds
L (f (�) g (�)) (s�)

(L ((f (�))p) (s�))
1
p (L ((g (�))q) (s�))

1
q

� (164)

(L ((f (�))p)) (s�)
p (L ((f (�))p) (s�))

+
(L ((g (�))q)) (s�)
q (L ((g (�))q) (s�))

=
1

p
+
1

q
= 1; for s� 2 Q;

proving the claim.

By (161), under the assumption LN
�
k� � xkn+1

�
(x) > 0, and LN (1) = 1,

we obtain

LN (k� � xkn) (x) �
�
LN

�
k� � xkn+1

�
(x)
� n
n+1

; (165)

in case of n = 1 we derive

LN (k� � xk) (x) �
r�

LN

�
k� � xk2

�
(x)
�
: (166)

We give

Theorem 52 Let Q with k�k the l1-norm, be a compact and convex subset of
Rk, k 2 N�f1g, and f 2 C+ (Q). Let fLNgN2N be positive sublinear operators
from C+ (Q) into itself, such that LN (1) = 1, 8 N 2 N. We assume further
that LN (kt� xk) (x) > 0, 8 N 2 N. Then

jLN (f) (x)� f (x)j � 2!1 (f; LN (kt� xk) (x)) ; (167)

8 N 2 N, x = (x1; :::; xk) 2 Q; t = (t1; :::; tk) 2 Q, where

!1 (f; h) := sup
x;y2Q:
kx�yk�h

jf (x)� f (y)j : (168)

If LN (kt� xk) (x)! 0, then LN (f) (x)! f (x), as N ! +1:

Proof. By Theorem 13.
We need

Theorem 53 Let (Q; k�k) ; where k�k is the l1-norm, be a compact and convex
subset of Rk, k 2 N � f1g, and let x 2 Q (x = (x1; :::; xk)) be �xed. Let
f 2 Cn (Q), n 2 N, h > 0. We assume that f� (x) = 0, for all � : j�j = 1; :::; n:
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Let fLNgN2N be positive sublinear operators from C+ (Q) into C+ (Q), such
that LN (1) = 1, 8 N 2 N. Then

jLN (f) (x)� f (x)j �
�
max
�:j�j=n

!1 (f�; h)

�
�

24LN
�
k� � xkn+1

�
(x)

(n+ 1)!h
+
LN (k� � xkn) (x)

2n!
+

h

8 (n� 1)!LN
�
k� � xkn�1

�
(x)

35 ;
(169)

8 N 2 N.

Proof. By (19) and (25).
It follows

Theorem 54 All as in Theorem 53. Additionally assume that LN
�
k� � xkn+1

�
(x)

> 0, 8 N 2 N. Then

jLN (f) (x)� f (x)j �
1

2n!

�
3 +

n

4 (n+ 1)

�
�

�
max
�:j�j=n

!1

�
f�;

1

(n+ 1)

�
LN

�
k� � xkn+1

�
(x)
� 1
n+1

���
LN

�
k� � xkn+1

�
(x)
� n
n+1

;

(170)
8 N 2 N, x = (x1; :::; xk) 2 Q, !1 as in (168) for f�:
If LN

�
k� � xkn+1

�
(x)! 0, then LN (f) (x)! f (x), as N ! +1:

Proof. By Theorem 51 notice also that

LN

�
k� � xkn�1

�
(x) �

�
LN

�
k� � xkn+1

�
(x)
�n�1
n+1

: (171)

We choose

h :=
1

(n+ 1)

�
LN

�
k� � xkn+1

�
(x)
� 1
n+1

> 0: (172)

That is
(h (n+ 1))

n+1
= LN

�
k� � xkn+1

�
(x) : (173)

We apply (169) to have (see also (165) and (171)).

jLN (f) (x)� f (x)j �
�
max
�:j�j=n

!1 (f�; h)

�
�

264LN
�
k� � xkn+1

�
(x)

(n+ 1)!h
+

�
LN

�
k� � xkn+1

�
(x)
� n
n+1

2n!
+ (174)
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h

8 (n� 1)!LN
��
k� � xkn+1

�
(x)
�n�1
n+1

�
=�

max
�:j�j=n

!1

�
f�;

1

(n+ 1)

�
LN

�
k� � xkn+1

�
(x)
� 1
n+1

��
�"

hn (n+ 1)
n+1

(n+ 1)!
+
hn (n+ 1)

n

2n!
+
hn (n+ 1)

n�1

8 (n� 1)!

#
=�

max
�:j�j=n

!1

�
f�;

1

(n+ 1)

�
LN

�
k� � xkn+1

�
(x)
� 1
n+1

��
�"

(n+ 1)
n+1

(n+ 1)!
+
(n+ 1)

n

2n!
+
(n+ 1)

n�1

8 (n� 1)!

#
1

(n+ 1)
n

�
LN

�
k� � xkn+1

�
(x)
� n
n+1

=�
3

2n!
+

n

8 (n+ 1)!

��
max
�:j�j=n

!1

�
f�;

1

(n+ 1)

�
LN

�
k� � xkn+1

�
(x)
� 1
n+1

��
��

LN

�
k� � xkn+1

�
(x)
� n
n+1

; (175)

proving the claim.
Final application for n = 1 follows:

Corollary 55 Let (Q; k�k) ; where k�k is the l1-norm, be a compact and convex
subset of Rk, k 2 N � f1g, and let x 2 Q (x = (x1; :::; xk)) be �xed. Let
f 2 C1 (Q). We assume that @f

@xi
(x) = 0, i = 1; :::; k: Let fLNgN2N be positive

sublinear operators from C+ (Q) into C+ (Q), such that LN (1) = 1, 8 N 2 N.
Assume that LN

�
k� � xk2

�
(x) > 0, 8 N 2 N. Then

jLN (f) (x)� f (x)j �
25

16

�
max

i=1;:::;k
!1

�
@f

@xi
;
1

2

�
LN

�
k� � xk2

�
(x)
� 1
2

��
�

�
LN

�
k� � xk2

�
(x)
� 1
2

; (176)

8 N 2 N.
If LN

�
k� � xk2

�
(x)! 0, then LN (f) (x)! f (x), as N ! +1:

References

[1] G. Anastassiou, Moments in probability and approximation theory, Pitman
Research Notes in Mathematics Series, Longman Group UK, New York, NY,
1993.

[2] G. Anastassiou, Approximation by Sublinear Operators, submitted, 2017.

[3] G. Anastassiou, Approximation by Max-Product Operators, submitted, 2017.

[4] B. Bede, L. Coroianu, S. Gal, Approximation by Max-Product type Operators,
Springer, Heidelberg, New York, 2016.

36

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.6, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

1046 Anastassiou 1011-1046



NEW DYNAMIC INEQUALITIES ON TIME SCALES BY
USING THE SNEAK-OUT PRINCIPLE

S. H. SAKER1, M. M. OSMAN1 AND I. ABOHELA2

Abstract. In this paper, we extend and improve some dynamic inequalities
by using the sneak-out principle with different exponents on time scales. The
main results can be used to formulate the corresponding discrete inequalities
of Bennett and G-Erdmann type.

2010 Mathematics Subject Classification:34A40, 34N05, 26D10, 26D15,
39A13.
Key words and phrases. Hardy’s inequality, sneak-out principle, dy-

namic inequlities, time scales.

1. Introduction

In 1967 Littlewood [9] formulated some problems concerning elementary in-
equalities for infinite series in connection with some work on general theory of
orthogonal series. One of the simplest (non-trivial) examples is the following
inequality

(1.1)
∞∑
n=1

a3
n

(
n∑
k=1

a2
kAk

)
≤ K

∞∑
n=1

a4
nA

2
n,

where an is a non-negative sequence and An =
∑n

k=1 ak. One of such problems
that has been proposed by Littlewood is to seek to know whether a constant K
exists such that the inequality (1.1) holds. In other words, is it possible to get
the term Ak out from the inner sum in (1.1) and if this happened what is the
smallest value of K which preserves on the direction of the inequality? Bennett
[4] proved this for the special case when the sequence an is decreasing, and he
showed that the inequality (1.1) holds with K = 2. His proof based on the fact
that an ≤ nAn (noting that an is decreasing) and the application of Cauchy’s
inequality and the classical discrete Hardy’s inequality. The generalization of the
Littlewood inequality (1.1) which has not been considered before is given by

(1.2)
∞∑
n=1

ap(p−1)+1
n Ap−2

k

(
n∑
k=1

apkAk

)
≤ K

∞∑
n=1

[apnAn]p , p > 1,

where K is a positive constant. Motivated by the work of Littlewood [9] Bennett
and G-Erdmann [5] considered the inequality

(1.3)
∞∑
n=1

an

( ∞∑
k=n

Aαkgk

)p
≤ K(α, p)

∞∑
n=1

anA
αp
n

( ∞∑
k=n

gk

)p
,

1
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2 S. H. SAKER1, M. M. OSMAN1 AND I. ABOHELA2

and determined the value of K for different values of p and α. In particular,
Bennett and G-Erdmann [5, Theorem 8] proved that if α ≥ 1 and p ≥ 1, then

(1.4)
∞∑
n=1

an

( ∞∑
k=n

Aαkgk

)p
≤ (1 + αp)p

∞∑
n=1

anA
αp
n

( ∞∑
k=n

gk

)p
,

where gn is a non-negative sequence and An =
∑n

k=1 ak, for any n ∈ N. In [5,
Theorem 9] the authors proved that if p ≥ 1 and 0 ≤ α ≤ 1, then

(1.5)
∞∑
n=1

an

( ∞∑
k=n

Aαkgk

)p
≤ (1 + p)p

∞∑
n=1

anA
αp
n

( ∞∑
k=n

gk

)p
.

Also in [5, Theorem 10] they proved that if p ≥ 1 and −1/p < α ≤ 0, then

(1.6)
∞∑
n=1

an

( ∞∑
k=n

Aαkgk

)p
≥
(

1 + αp

1 + p+ αp

)p ∞∑
n=1

anA
αp
n

( ∞∑
k=n

gk

)p
.

Motivated by the above work, we believe that the study of dynamic inequalities
will help in proving several results for classical integral inequalities and inequal-
ities involving discrete sequences. The three most popular examples of calculus
on time scales are differential calculus, difference calculus, and quantum calculus,
i.e, when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. We assume
that the reader has a good background in time scale calculus. For dynamic in-
equalities on time scales, we refer the reader to the books [2, 3] and the papers
[1, 7, 10, 11, 12, 13]. For instance, we recall some related results.
Saker, O’Regan and Agarwal [13] proved a new inequality of Hardy type of the

form

(1.7)
∫ ∞
a

(Aσ(t))p

(σ(t)− a)γ
∆t ≤

(
p

γ − 1

)p ∫ ∞
a

(σ(t)− a)γ(p−1)

(t− a)(γ−1)p
gp(t)∆t, p, γ > 1,

where A(t) :=
∫ t
a g(s)∆s, for t ∈ [a,∞)T and employed it in the proof of the

extension of (1.2) on time scales. In particular they proved that if p, γ > 1 and
g is a nonnegative rd-continuous and decreasing function, then
(1.8)∫ ∞

a

(a(t))p(p−1)+1

(Aσ(t))2−p

(∫ σ(t)

a
ap(s)Aσ(s)∆s

)
∆t ≤ pγp

(p− 1)

∫ ∞
a

[ap(t)Aσ(t)]p ∆t,

where A(t) =
∫ t
a a(s)∆s, for t ∈ [a,∞)T. Bohner and Saker in [7] employed the

Minkowski inequality [6, Theorem 6.16] on time scales
(1.9)(∫ b

a
|h(t)| |u(t) + υ(t)|p ∆t

)1/p

≤
[∫ b

a
|h(t)| |u(t)|p ∆t

] 1
p

+

[∫ b

a
|h(t)| |υ(t)|p ∆t

] 1
p

,

where a, b ∈ T, u, υ ∈ Crd([a, b]T, R), p > 1 and established the time scale
versions of the inequalities (1.4), (1.5) and (1.6). In more precisely, they proved
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SOME NEW DYNAMIC INEQUALITIES ON TIME SCALES 3

that if a(t), g(t) are nonnegative rd-continuous functions on [t0,∞)T, then for
α ≥ 1 and p ≥ 1

(1.10)
∫ ∞
t0

a(t)Ψp(t)∆t ≤ (1 + αp)p
∫ ∞
t0

a(t) (Aσ(t))αp
(∫ ∞

t
g(s)∆s

)p
∆t,

where

Ψ(t) =

∫ ∞
t

(Aσ(s))α g(s)∆s and A(t) =

∫ t

t0

a(s)∆s,

and if 0 ≤ α ≤ 1, p ≥ 1, then

(1.11)
∫ ∞
t0

a(t)Ψp(t)∆t ≤ (1 + p)p
∫ ∞
t0

a(t) (Aσ(t))αp
(∫ ∞

t
g(s)∆s

)p
∆t.

Also in [7] they proved that if −1/p < α ≤ 0 and p ≥ 1, then
(1.12)∫ ∞

t0

a(t)Ψp(t)∆t ≥
(

1 + αp

1 + p+ αp

)p ∫ ∞
t0

a(t) (Aσ(t))αp
(∫ ∞

t
g(s)∆s

)p
∆t.

Our aim in this paper is to apply the sneak-out principle which is given in the
inequalities (1.10) and (1.11) to prove some new inequalities with different expo-
nents for the given values of α. Also we prove a new dynamic inequality which
as special case improves the inequality (1.12).

2. Main Results

Before we prove our main results, we briefly introduce some basic definitions
and results concerning the delta calculus on time scales that will be used in the
sequel; for more details we refer the reader to the book [6]. A time scale T is an
arbitrary nonempty closed subset of the real numbers R. We assume throughout
that T has the topology that it inherits from the standard topology on the real
numbers R. The forward jump operator and the backward jump operator are
defined by σ(t) := inf{s ∈ T : s > t}. A function f : T → R is said to be
right—dense continuous (rd—continuous) provided f is continuous at right—dense
points and at left—dense points in T, left hand limits exist and are finite. The
set of all such rd—continuous functions is denoted by Crd(T). The graininess
function µ for a time scale T is defined by µ(t) := σ(t)− t, and for any function
f : T → R the notation fσ(t) denotes f(σ(t)). We define the time scale interval
[a, b]T by [a, b]T := [a, b] ∩ T. Recall the following product and quotient rules
for the derivative of the product fg and the quotient f/g (where ggσ 6= 0, here
gσ = g ◦ σ) of two differentiable function f and g

(2.1) (fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ, and
(
f

g

)∆

=
f∆g − fg∆

ggσ
.
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The chain rule formula on time scales [6] is given by (here x : T→ (0,∞) is
assumed to be differentiable)

(2.2) (xγ(t))∆ = γ

1∫
0

[hxσ + (1− h)x]γ−1 dhx∆(t), γ ∈ R.

In this paper we will use the (delta) integral which we can define as follows. If
G∆(t) = g(t), then the Cauchy (delta) integral of g is defined by

∫ t
a g(s)∆s :=

G(t)−G(a). The integration by parts formula on time scales reads

(2.3)
∫ b

a
u(t)υ∆(t)∆t = [u(t)υ(t)]ba −

∫ b

a
u∆(t)υσ(t)∆t.

Hölder’s inequality [6, Theorem 6.13] states that any two rd-continuous functions
u, υ : T→ R satisfy

(2.4)
∫ b

a
|u(t)υ(t)|∆t ≤

[∫ b

a
|u(t)|q ∆t

] 1
q
[∫ b

a
|υ(t)|p ∆t

] 1
p

,

where p > 1, 1
p + 1

q = 1 and a, b ∈ T. Throughout this paper, we will assume that
the functions in the statements of the theorems are nonnegative and rd-continuous
functions and the integrals considered are assumed to exist.
The following dynamic inequality of Copson’s type on time scales [3], will be

used later to prove the main results.

Theorem 2.1. Assume that a : T→ R is rd-continuous function and define
A(t) =

∫ t
t0
a(s)∆s, t ∈ T. Let ϕ : T→ R+ and define

(2.5) Φ̄ (t) :=

∫ ∞
t

a(s)ϕ(s)∆s, t ∈ T.

If k > 1 and 0 ≤ c < 1, then

(2.6)
∫ ∞
t0

a(t)

(Aσ (t))c
(
Φ̄ (t)

)k
∆t ≤

(
k

1− c

)k ∫ ∞
t0

a(t) (Aσ (t))k−c ϕk (t) ∆t.

Our main results are given in the following. For simplicity, we define

(2.7) Ω(t) :=

∫ ∞
t

g(s)∆s, and Ψ(t) :=

∫ ∞
t

(Aσ(s))α g(s)∆s, t ∈ T.

Theorem 2.2. Let t0 ∈ T, α ≥ 1, p ≥ 1 and q, r > 1 such that r > q and
(r − q)/(p− q) > 1. Then

(2.8)
∫ ∞
t0

a(t)Ψp(t)∆t ≤ K1(α, p, q, r)

(∫ ∞
t0

((Aσ(t))α Ω(t))2r−q ∆t

) p
2r−q

,
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where

K1(α, p, q, r) : =

[
(1 + αr)r(p−q)

(1 + αq)q(p−r)

] 1
r−q

×
(∫ ∞

t0

a
2r−q
r−q (t) ∆t

) p−q
2r−q

(∫ ∞
t0

a
2r−q
2(r−q) (t) ∆t

) 2(r−p)
2r−q

.

Proof. We first observe that∫ ∞
t0

a(t)Ψp(t)∆t =

∫ ∞
t0

(
a
p−q
r−q (t)Ψ

r(p−q)
r−q (t)

)(
a
r−p
r−q (t)Ψ

q(r−p)
r−q (t)

)
∆t.

Applying Hölder’s inequality (2.4) with indices (r−q)/ (p− q) and (r−q)/(r−p),
we obtain∫ ∞

t0

a(t)Ψp(t)∆t ≤
(∫ ∞

t0

a(t)Ψr(t)∆t

) p−q
r−q
(∫ ∞

t0

a(t)Ψq(t)∆t

) r−p
r−q

.

By using (1.10) to the two integrals on the right-hand side with p = r and also
with p = q, we get that∫ ∞
t0

a(t)Ψp(t)∆t ≤ (1 + αr)
r(p−q)
r−q

(∫ ∞
t0

a(t) (Aσ(t))αr
(∫ ∞

t
g(s)∆s

)r
∆t

) p−q
r−q

× (1 + αq)
q(r−p)
r−q

(∫ ∞
t0

a(t) (Aσ(t))αq
(∫ ∞

t
g(s)∆s

)q
∆t

) r−p
r−q

.

Applying Hölder’s inequality (2.4) with indices (2r− q)/r and (2r− q)/(r− q) to
the integral ∫ ∞

t0

a(t) (Aσ(t))αr (Ω(t))r ∆t,

also applying it again on the integral∫ ∞
t0

a(t) (Aσ(t))αq (Ω(t))q ∆t,

with indices (2r − q)/q and (2r − q)/2(r − q) and combining the result, we get
that ∫ ∞

t0

a(t) (Ψ(t))p ∆t ≤ K1(α, p, q, r)

(∫ ∞
t0

((Aσ(t))α Ω(t))2r−q ∆t

) p
2r−q

,

which is the desired inequality (2.8). The proof is complete. �
Proceeding as in the proof of Theorem 2.2 and using inequality (1.11) instead

of (1.10), we can obtain the following result.

Theorem 2.3. Let t0 ∈ T, 0 ≤ α ≤ 1, p ≥ 1 and q, r > 1 such that r > q and
(r − q)/(p− q) > 1. Then

(2.9)
∫ ∞
t0

a(t)Ψp(t)∆t ≤ K2(p, q, r)

(∫ ∞
t0

((Aσ(t))α Ω(t))2r−q ∆t

) p
2r−q

,
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where

K2(p, q, r) : =

[
(1 + r)r(p−q)

(1 + q)q(p−r)

] 1
r−q

×
(∫ ∞

t0

a
2r−q
r−q (t) ∆t

) p−q
2r−q

(∫ ∞
t0

a
2r−q
2(r−q) (t) ∆t

) 2(r−p)
2r−q

.

The next result follows from Theorem 2.2 by choosing r = p and q = p− 1.

Corollary 2.1. Let p ≥ 1 and α ≥ 1. Then

(2.10)
∫ ∞
t0

a(t)Ψp(t)∆t ≤ K1(α, p)

(∫ ∞
t0

((Aσ(t))α Ω(t))p+1 ∆t

) p
p+1

,

where

K1(α, p) = (1 + αp)p
(∫ ∞

t0

ap+1 (t) ∆t

) 1
p+1

.

Remark 2.1. In Theorem 2.2 when T = R, we have that

Ψ(t) =

∫ ∞
t

Aα(s)g(s)ds, A(t) =

∫ t

t0

a(s)ds and Ω(t) =

∫ ∞
t

g(s)ds, t ∈ R,

and then from (2.8) we obtain the following new integral inequality

(2.11)
∫ ∞
t0

a(t)Ψp(t)dt ≤ K1(α, p, q, r)

(∫ ∞
t0

Aα(2r−q)(t) (Ω(t))2r−q dt

) p
2r−q

,

where

K1(α, p, q, r) : =

[
(1 + αr)r(p−q)

(1 + αq)q(p−r)

] 1
r−q

×
(∫ ∞

t0

a
2r−q
r−q (t) dt

) p−q
2r−q

(∫ ∞
t0

a
2r−q
2(r−q) (t) dt

) 2(r−p)
2r−q

.

Remark 2.2. In Theorem 2.2 when T = N and n0 = 1, we have that

Ψ(n) =

∞∑
k=n

Aα(k)g(k), A(n) =

n∑
k=1

a(k), n ∈ N,

and then from (2.8), we get the following discrete inequality of Bennett and G-
Erdmann [5] type

(2.12)
∞∑
n=1

a(n)Ψp(n) ≤ K1(α, p, q, r)

 ∞∑
n=1

Aα(2r−q)(n)

( ∞∑
k=n

g(k)

)2r−q


p
2r−q

,
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where

K1(α, p, q, r) : =

[
(1 + αr)r(p−q)

(1 + αq)q(p−r)

] 1
r−q

×
( ∞∑
n=1

a
2r−q
r−q (n)

) p−q
2r−q

( ∞∑
n=1

a
2r−q
2(r−q) (n)

) 2(r−p)
2r−q

.

Remark 2.3. Setting r = p and q = p−1 in (2.12) yields the following inequality

(2.13)
∞∑
n=1

a(n)Ψp(n) ≤ K1(α, p)

 ∞∑
n=1

Aα(p+1)(n)

( ∞∑
k=n

g(k)

)p+1


p
p+1

,

where

K1(α, p) = (1 + αp)p
( ∞∑
n=1

ap+1 (n)

) 1
p+1

.

An improvement of the dynamic inequality (1.12) is obtained in the following
Theorem.

Theorem 2.4. Let t0 ∈ T, −1/p < α ≤ 0, p ≥ 1 and q, r > 1 such that r > q
and (r − q)/(p− q) > 1. Then∫ ∞

t0

a(t) (Aσ(t))αp (Ω(t))p ∆t(2.14)

≤ K3(α, p, q, r)

[∫ ∞
t0

a(t) (Aσ(t))α(p−r) (Ψ(t))r ∆t

] p−q
r−q

×
[∫ ∞

t0

a(t) (Aσ(t))α(p−q) (Ψ(t))q ∆t

] r−p
r−q

,

where

K3(α, p, q, r) :=

(
1 + r + αp

1 + αp

) r(p−q)
r−q

(
1 + q + αp

1 + αp

) q(r−p)
r−q

.

Proof. In this proof for brivity, we set

b(t) := (Aσ(t))α g(t).

Then the left hand side of (2.14) can be written in the form
(2.15)∫ ∞

t0

a(t) (Aσ(t))αp Ωp(t)∆t =

∫ ∞
t0

a(t) (Aσ(t))αp
(∫ ∞

t

b(s)

(Aσ(s))α
∆s

)p
∆t.

Integrating the term
∫∞
t (Aσ(s))−α b(s)∆s by parts, with u∆(s) = b(s) and

υσ(s) = (Aσ(s))−α , we have∫ ∞
t

(Aσ(s))−α b(s)∆s = u(s) (A(s))−α |∞t −
∫ ∞
t

u(s)
(
(A(s))−α

)∆
∆s,
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where u(t) = −
∫∞
t b(s)∆s = −Ψ(t), and so (note that A(t) ≤ Aσ(t) and −α > 0)∫ ∞

t
(Aσ(s))−α b(s)∆s = Ψ(t) (A(t))−α +

∫ ∞
t

Ψ(s)
(
(A(s))−α

)∆
∆s

≤ Ψ(t) (Aσ(t))−α +

∫ ∞
t

Ψ(s)
(
(A(s))−α

)∆
∆s.

Using the following inequality (see [7, Lemma 2.2])

(2.16) (fγ (t))∆ ≤ f∆ (t) (fσ(t))γ−1, if 0 ≤ γ ≤ 1, f∆ > 0,

with f = A and γ = −α, we observe that(
(A(s))−α

)∆ ≤ a(s)

(Aσ(s))α+1 , (note that 0 ≤ −α ≤ 1).

This gives us

(2.17)
∫ ∞
t

(Aσ(s))−α b(s)∆s ≤ Ψ(t) (Aσ(t))−α +

∫ ∞
t

a(s)Ψ(s)

(Aσ(s))α+1 ∆s.

Substitute (2.17) into (2.15) and using the Minkowski inequality [8, Theorem 2.1]∫ b

a
|h(t)| |u(t) + υ(t)|p ∆t(2.18)

≤

(∫ b

a
|h(t)| |u(t)|r ∆t

) 1
r

+

(∫ b

a
|h(t)| |υ(t)|r ∆t

) 1
r


r(p−q)
r−q

×

(∫ b

a
|h(t)| |u(t)|q ∆t

) 1
q

+

(∫ b

a
|h(t)| |υ(t)|q ∆t

) 1
q


q(r−p)
r−q

.

for r > q such that r, q > 1 and (r − q)/(p− q) > 1, we obtain∫ ∞
t0

a(t) (Aσ(t))αp
(∫ ∞

t

b(s)

(Aσ(s))α
∆s

)p
∆t

≤
∫ ∞
t0

a(t) (Aσ(t))αp
(

Ψ(t) (Aσ(t))−α +

∫ ∞
t

a(s)Ψ(s)

(Aσ(s))α+1 ∆s

)p
∆t

≤
[(∫ ∞

t0

a(t) (Aσ(t))α(p−r) (Ψ(t))r ∆t

) 1
r

+

(∫ ∞
t0

a(t) (Aσ(t))αp
(
Φ̌(t)

)r
∆t

) 1
r

] r(p−q)
r−q

×
[(∫ ∞

t0

a(t) (Aσ(t))α(p−q) (Ψ(t))q ∆t

) 1
q

+

(∫ ∞
t0

a(t) (Aσ(t))αp
(
Φ̌(t)

)q
∆t

) 1
q

] q(r−p)
r−q

,

where

Φ̌(t) :=

∫ ∞
t

a(s)Ψ(s)

(Aσ(s))α+1 ∆s.
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Applying Theorem 2.1 with 0 < c = −αp < 1, and ϕ(t) = Ψ(t)/ (Aσ(t))α+1 , we
have ∫ ∞

t0

a(t) (Aσ(t))αp
(
Φ̌(t)

)r
∆t(2.19)

≤
(

r

1 + αp

)r ∫ ∞
t0

a(t) (Aσ(t))r+αp
(

Ψ(t)

(Aσ(t))α+1

)r
∆t

=

(
r

1 + αp

)r ∫ ∞
t0

a(t) (Aσ(t))α(p−r) (Ψ(t))r ∆t,

and ∫ ∞
t0

a(t) (Aσ(t))αp
(
Φ̌(t)

)q
∆t(2.20)

≤
(

q

1 + αp

)q ∫ ∞
t0

a(t) (Aσ(t))α(p−q) (Ψ(t))q ∆t.

From (2.19) and (2.20), we get that∫ ∞
t0

a(t) (Aσ(t))αp
(∫ ∞

t

b(s)

(Aσ(s))α
∆s

)p
∆t

≤
[(

1 + r + αp

1 + αp

)(∫ ∞
t0

a(t) (Aσ(t))α(p−r) (Ψ(t))r ∆t

) 1
r

] r(p−q)
r−q

×
[(

1 + q + αp

1 + αp

)(∫ ∞
t0

a(t) (Aσ(t))α(p−q) (Ψ(t))r ∆t

) 1
q

] q(r−p)
r−q

=

(
1 + r + αp

1 + αp

) r(p−q)
r−q

[∫ ∞
t0

a(t) (Aσ(t))α(p−r) (Ψ(t))r ∆t

] p−q
r−q

×
(

1 + q + αp

1 + αp

) q(r−p)
r−q

[∫ ∞
t0

a(t) (Aσ(t))α(p−q) (Ψ(t))q ∆t

] r−p
r−q

,

which is the desired inequality (2.14). The proof is complete. �
Remark 2.4. As a special case of (2.14) when r = p, we get the inequality (1.12)
which has been proved by Bohner and Saker.

Remark 2.5. In Theorem 2.4 if T = N and r = p, then inequality (2.14) reduces
to the discrete inequality (1.6) due to Bennett and G-Erdmann.
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ADDITIVE-QUADRATIC FUNCTIONAL INEQUALITIES IN FUZZY NORMED

SPACES AND ITS STABILITY

CHANG IL KIM AND GILJUN HAN∗

Abstract. In this paper, we investigate the functional inequality

N(f(2x+ y) + f(2x− y) − 6f(x) − 2f(−x) − f(y) − f(−y), t)

≥ N(f(x+ y) + f(x− y) − 2f(x) − f(y) − f(−y), kt)

for some fixed real number k and prove the generalized Hyers-Ulam stability for it in fuzzy Banach

spaces.

1. Introduction

In 1940, Ulam proposed the following stability problem (cf. [28]):

“Let G1 be a group and G2 a metric group with the metric d. Given a constant δ > 0, does there

exist a constant c > 0 such that if a mapping f : G1 −→ G2 satisfies d(f(xy), f(x)f(y)) < c for all

x, y ∈ G1, then there exists an unique homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all

x ∈ G1?”

In the next year, Hyers [13] gave a partial solution of Ulam,s problem for the case of approximate

additive mappings. Subsequently, his result was generalized by Aoki ([1]) for additive mappings and

by Rassias [22] for linear mappings to consider the stability problem with unbounded Cauchy differ-

ences. During the last decades, the stability problem of functional equations have been extensively

investigated by a number of mathematicians (see [3], [4], [5], [10], and [18]).

In 2008, for the first time, Mirmostafaee and Moslehian [15], [16] used the definition of a fuzzy

norm in [2] to obtain a fuzzy version of the stability for the Cauchy functional equation

(1.1) f(x+ y) = f(x) + f(y)

and the quadratic functional equation

(1.2) f(x+ y) + f(x− y) = 2f(x) + 2f(y).

In [11], Glányi showed that if a mapping f : X −→ Y satisfies the following functional inequality

(1.3) ‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖,

then f satisfies the Jordan-Von Neumann functional equation

2f(x) + 2f(y)− f(xy−1) = f(xy).

2010 Mathematics Subject Classification. 39B62, 39B72, 54A40, 47H10.

Key words and phrases. Hyers-Ulam stability, additive-quadratic functional equation, fuzzy normed space, fixed

point theorem.
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Glányi [12] and Fechner [9] proved the Hyers-Ulam stability of (1.3). Park, Cho, and Han [21] proved

the Hyers-Ulam stability of the following functional inequality:

(1.4) ‖f(x) + f(y) + f(z)‖ ≤ ‖f(x+ y + z)‖.

Further, Park [20] proved the generalized Hyers-Ulam stability of the Cauchy additive functional

inequality (1.4) in fuzzy Banach spaces using the fixed point method if f is an odd mapping.

In this paper, we investigate the following functional inequality

N(f(2x+ y) + f(2x− y)− 6f(x)− 2f(−x)− f(y)− f(−y), t)

≥ N(f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y), kt)
(1.5)

for some fixed nonzero real number k and prove the generalized Hyers-Ulam stability for (1.5) in

fuzzy Banach spaces by fixed point methods.

2. preliminaries

In this paper, we use the definition of fuzzy normed spaces given in [2], [16], and [17].

Definition 2.1. Let X be a real vector space. A function N : X × R −→ [0, 1] is called a fuzzy

norm on X if for any x, y ∈ X and any s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t
|c| ) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1;

(N6) for any x 6= 0, N(x, ·) is continuous on R.

In this case, the pair (X,N) is called a fuzzy normed space.

Let (X,N) be a fuzzy normed space and {xn} a sequence in X. Then (i) {xn} is said to be

Cauchy in (X,N) if for any ε > 0, there exists an m ∈ N such that N(xn+p − xn, t) > 1− ε for all

n ≥ m, all positive integer p, and all t > 0 and (ii) {xn} is said to be convergent in (X,N) if there

exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit

of the sequence {xn} in X and one denotes it by N − limn→∞ xn = x.

Sequences of fuzzy numbers using the fuzzy metric or the fuzzy norm was studied by Das [6],

[7], Tripathy et al. [23], Tripathy and Borgohain [24], [25], Tripathy and Dutta [26], Tripathy and

Debnath [27] and others.

Example 2.2. For example, it is well known that for any normed space (X, ||·||) and any nonnegative

real number ε, the mapping NX : X × R −→ [0, 1], defined by

NX(x, t) =

0, if t ≤ 0

t
t+ε||x|| , if t > 0 ,

is a fuzzy norm on X([16], [17], and [18]).
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It is well known that every convergent sequence in a fuzzy normed space is Cauchy. A fuzzy

normed space is said to be complete if each Cauchy sequence in it is convergent and a complete

fuzzy normed space is called a fuzzy Banach space.

In 1996, Isac and Rassias [14] were the first to provide applications of stability theory of functional

equations for the proof of new fixed point theorems with applications.

Theorem 2.3. [8] Let (X, d) be a complete generalized metric space and let J : X −→ X be a

strictly contractive mapping with some Lipschitz constant L with 0 < L < 1. Then for each given

element x ∈ X, either d(Jnx, Jn+1x) = ∞ for all nonnegative integer n or there exists a positive

integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

Throughout this paper, we assume that X is a linear space, (Y,N) is a fuzzy Banach space, and

(Z,N ′) is a fuzzy normed space.

3. Solutions of (1.5)

In this section, we investigate the solution of (1.5) in fuzzy spaces. For any mapping f : X −→ Y ,

let

Af (x, y) = f(2x+ y) + f(2x− y)− 6f(x)− 2f(−x)− f(y)− f(−y),

Bf (x, y) = f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y),

Cf (x, y) = f(x+ y)− f(x)− f(y), Df (x, y) = f(x− y)− f(x) + f(y),

and

fo(x) =
f(x)− f(−x)

2
, fe(x) =

f(x) + f(−x)

2
.

Then fo is an odd mapping and fe is an even mapping. By (N5), we can easily prove the following

lemma.

Lemma 3.1. Let αi : [0,∞) −→ [0,∞)(i = 1, 2, · · ·, n) be mappings and r a real number with r > 1

and y, z, z1, z2, ·, ·, ·, zn ∈ Y . Then we have the following :

(1) If N(y, t) ≥ min{N(z, rkt), N(z1, α1(t)), N(z2, α2(t)), · · ·, N(zn, αn(t))} for all t > 0 and all

k ∈ N, then

N(y, t) ≥ min{N(z1, α1(t)), N(z2, α2(t)), · · ·, N(zn, αn(t))}

for all t > 0.

(2) If N(y, t) ≥ min{N(y, rt), N(z1, α1(t)), N(z2, α2(t)), · · ·, N(zn, αn(t))} for all t > 0 and αi(i =

1, 2, · · ·, n) is non-decreasing, then

N(y, t) ≥ min{N(z1, α1(t)), N(z2, α2(t)), · · ·, N(zn, αn(t))}

for all t > 0.

(3) If N(y, t) ≥ N(y, rt) for all t > 0, then y = 0.
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We establish the following theorem using Lemma 3.1 :

Theorem 3.2. Let f : X −→ Y be an odd mapping. Suppose that a and b are real numbers with

a > 4 and b > 2. Then f is an additive mapping if and only if f satisfies the following inequality

(3.1) N(Af (x, y), t) ≥ min{N(Bf (x, y), at), N(Bf (y, 2x), bt)}

for all x, y ∈ X and all t > 0.

Proof. Suppose that f is a solution of (3.1). Letting x = 0 and y = 0 in (3.1), we get f(0) = 0.

Letting y = 0 in (3.1), by (N2), we get

(3.2) f(2x) = 2f(x)

for all x ∈ X. Letting y = 2y in (3.1), by (3.2), we have

(3.3) N(Bf (x, y), t) ≥ min{N(Bf (x, 2y), 2at), N(Bf (y, x), bt)}

for all x, y ∈ X and all t > 0. Putting x = 2x+ y and y = x in (3.3), we get

N(f(3x+ y) + f(x+ y)− 2f(2x+ y), t)

≥ min{N(f(4x+ y) + f(y)− 2f(2x+ y), 2at), N(f(3x+ y)− f(x+ y)− 2f(x), bt)}

≥ min
{
N(f(4x+ y) + f(y)− 2f(2x+ y), 2at), N

(
f(2x+ y)− f(x+ y)− f(x),

b

4
t
)
,

N
(
f(3x+ y) + f(x+ y)− 2f(2x+ y),

b

2
t
)}

(3.4)

for all x, y ∈ X and all t > 0. Since b > 2, by (3.4) and Lemma 3.1, we have

N(f(3x+ y) + f(x+ y)− 2f(2x+ y), t)

≥ min
{
N(f(4x+ y) + f(y)− 2f(2x+ y), 2at), N

(
f(2x+ y)− f(x+ y)− f(x),

b

4
t
)}(3.5)

for all x, y ∈ X and all t > 0. Letting x = x+ y and y = x in (3.3), by (3.5), we get

N(f(2x+ y) + f(y)− 2f(x+ y), t)

≥ min{N(f(3x+ y)− f(x− y)− 2f(x+ y), 2at), N(f(2x+ y)− f(y)− 2f(x), bt)}

≥ min
{
N
(
f(3x+ y) + f(x+ y)− 2f(2x+ y),

a

2
t
)
, N
(
f(2x+ y) + f(y)− 2f(x+ y),

a

2
t
)
,

N
(
f(x+ y)− f(x− y)− 2f(y),

a

2
t
)
, N(f(2x+ y)− f(y)− 2f(x), bt)

}
≥ min

{
N
(
f(4x+ y) + f(y)− 2f(2x+ y), a2t

)
, N
(
f(2x+ y)− f(x+ y)− f(x),

ab

8
t
)
,

N
(
f(2x+ y) + f(y)− 2f(x+ y),

a

2
t
)
, N
(
f(x+ y)− f(x− y)− 2f(y),

a

2
t
)
,

N(f(2x+ y)− f(y)− 2f(x), bt)
}

(3.6)

for all x, y ∈ X and all t > 0. Since a > 4, by (3.6) and Lemma 3.1, we have

N(f(2x+ y) + f(y)− 2f(x+ y), t) ≥ min
{
N
(
f(4x+ y) + f(y)− 2f(2x+ y), a2t

)
,

N
(
f(2x+ y)− f(x+ y)− f(x),

ab

8
t
)
, N
(
f(x+ y)− f(x− y)− 2f(y),

a

2
t
)
,

N(f(2x+ y)− f(y)− 2f(x), bt)
}(3.7)
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for all x, y ∈ X and all t > 0. Letting y = 2y in (3.7), by (3.2), we have

N(f(x+ y) + f(y)− f(x+ 2y), t)

≥ min
{
N(f(2x+ y) + f(y)− 2f(x+ y), a2t), N

(
2f(x+ y)− f(x+ 2y)− f(x),

ab

4
t
)
,

N(f(x+ 2y)− f(x− 2y)− 4f(y), at), N(Cf (x, y), bt)
}

≥ min
{
N(f(2x+ y) + f(y)− 2f(x+ y), a2t), N

(
f(y) + f(x+ y)− f(x+ 2y),

ab

8
t
)
,

N(f(x+ 2y)− f(x− 2y)− 4f(y), at), N(Cf (x, y),min
{ab

8
, b
}
t
)}

≥ min
{
N(f(2x+ y) + f(y)− 2f(x+ y), a2t), N

(
f(y) + f(x+ y)− f(x+ 2y),

a

4
t
)
,

N
(
f(x− 2y)− f(x− y) + f(y),

a

4
t
)
, N
(
Df (x, y),

a

4
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}

(3.8)

for all x, y ∈ X and all t > 0, because b > 2. Since a > 4, by (3.8), we have

N(f(x+ y) + f(y)− f(x+ 2y), t) ≥ min
{
N(f(2x+ y) + f(y)− 2f(x+ y), a2t),

N
(
f(x− 2y)− f(x− y) + f(y),

a

4
t
)
, N
(
Df (x, y),

a

4
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}(3.9)

for all x, y ∈ X and all t > 0. Interchanging x and y in (3.9), we have

N(f(2x+ y)− f(x+ y)− f(x), t) ≥ min
{
N(f(x+ 2y) + f(x)− 2f(x+ y), a2t),

N
(
f(2x− y)− f(x− y)− f(x),

a

4
t
)
, N
(
Df (x, y),

a

4
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}

≥ min
{
N
(
f(x+ 2y)− f(x+ y)− f(y),

a2

2
t
)
, N
(
f(2x− y)− f(x− y)− f(x),

a

4
t
)
,

N
(
Df (x, y),

a

4
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}

≥ min
{
N
(
f(2x+ y)− f(x+ y)− f(x),

a4

2
t
)
, N
(
f(x− 2y)− f(x− y) + f(y),

a3

8
t
)
,

N
(
f(2x− y)− f(x− y)− f(x),

a

4
t
)
, N
(
Df (x, y),

a

4
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}

(3.10)

for all x, y ∈ X and all t > 0. Hence by Lemma 3.1 and (3.10), we have

N(f(2x+ y)− f(x+ y)− f(x), t) ≥ min
{
N
(
f(2x− y)− f(x− y)− f(x),

a

4
t
)
,

N
(
f(x− 2y)− f(x− y) + f(y),

a3

8
t
)
, N
(
Df (x, y),

a

4
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}(3.11)

for all x, y ∈ X and all t > 0, because a > 4. By (3.11), we have

N(f(2x+ y)− f(x+ y)− f(x), t) ≥ min
{
N
(
f(2x+ y)− f(x+ y)− f(x),

a2

24
t
)
,

N
(
f(x+ 2y)− f(x+ y)− f(y),

a4

25
t
)
, N
(
f(x− 2y)− f(x− y) + f(y),

a3

8
t
)
,

N
(
Df (x, y),min

{a
4
, b
}
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}(3.12)
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for all x, y ∈ X and all t > 0. Thus by Lemma 3.1 and (3.12), we have

N(f(2x+ y)− f(x+ y)− f(x), t)

≥ min
{
N
(
f(x+ 2y)− f(x+ y)− f(y),

a4

25
t
)
, N
(
f(x− 2y)− f(x− y) + f(y),

a3

23
t
)
,

N
(
Df (x, y),min

{a
4
, b
}
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}(3.13)

for all x, y ∈ X and all t > 0. Interchanging x and y in (3.13), we have

N(f(x+ 2y)− f(x+ y)− f(y), t)

≥ min
{
N
(
f(2x+ y)− f(x+ y)− f(x),

a4

25
t
)
, N
(
f(2x− y)− f(x− y)− f(x),

a3

23
t
)
,

N
(
Df (x, y),min

{a
4
, b
}
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}

≥ min
{
N
(
f(x+ 2y)− f(x+ y)− f(y),

a8

210
t
)
, N
(
f(x− 2y)− f(x− y) + f(y),

a3

23
t
)
,

N
(
Df (x, y),min

{a
4
, b
}
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}

(3.14)

for all x, y ∈ X and all t > 0. By Lemma 3.1 and (3.14), we get

N(f(x+ 2y)− f(x+ y)− f(y), t) ≥ min
{
N
(
f(x− 2y)− f(x− y) + f(y),

a3

23
t
)
,

N
(
Df (x, y),min

{a
4
, b
}
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}

≥ min
{
N
(
f(x+ 2y)− f(x+ y)− f(y),

a6

26
t
)
, N
(
Df (x, y),min

{a
4
, b
}
t
)
,

N
(
Cf (x, y),min

{a
4
, b
}
t
)}

(3.15)

for all x, y ∈ X and all t > 0. By Lemma 3.1 and (3.15), we get

N(f(x+ 2y)− f(x+ y)− f(y), t) ≥ min
{
N
(
Df (x, y),min

{a
4
, b
}
t
)
,

N
(
Cf (x, y),min

{a
4
, b
}
t
)}(3.16)

for all x, y ∈ X and all t > 0. Interchanging x and y in (3.16), we have

N(f(2x+ y)− f(x+ y)− f(x), t) ≥ min
{
N
(
Df (x, y),min

{a
4
, b
}
t
)
,

N
(
Cf (x, y),min

{a
4
, b
}
t
)}(3.17)

for all x, y ∈ X and all t > 0. Letting y = y − x in (3.17), we get

N(Cf (x, y), t) ≥ min
{
N
(
f(2x− y)− f(x)− f(x− y),min

{a
4
, b
}
t
)
,

N
(
Df (x, y),min

{a
4
, b
}
t
)}

≥ min
{
N
(
Df (x, y),min

{a
4
, b
}
t
)
, N
(
Cf (x, y),min

{a
4
, b
}
t
)}(3.18)

for all x, y ∈ X and all t > 0. Since min{a4 , b} > 1, by Lemma 3.1 and (3.18), we have

N(Cf (x, y), t) ≥ N
(
Df (x, y),min

{a
4
, b
}
t
)
≥ N

(
Cf (x, y),

[
min

{a
4
, b
}]2

t
)

for all x, y ∈ X and all t > 0 and hence by Lemma 3.1, f is an additive mapping.
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The converse is trivial. �

Theorem 3.3. Let f : X −→ Y be an even mapping. Suppose that k is a real number with k > 1.

Then f is a solution of the following functional equation

(3.19) N(Af (x, y), t) ≥ N(Bf (x, y), kt)

for all x, y ∈ X if and only if f is a quadratic mapping.

Proof. Suppose that f is a solution of (3.19). Letting x = 0 and y = 0 in (1.5), we have

N(f(0), t) ≥ N
(
f(0), 4kt

)
for all t > 0 and sicne 4k > 1, by Lemma 3.1, we get f(0) = 0. Letting y = 0 in (3.19), by (N2), we

get

(3.20) f(2x) = 4f(x)

for all x ∈ X. Now, letting x = 2x in (3.19), by (3.20), we have

N(f(4x+ y) + f(4x− y)− 32f(x)− 2f(y), t) ≥ N(Af (x, y), kt)

≥ N(Bf (x, y), k2t)
(3.21)

for all x, y ∈ X. Letting y = 2y in (3.21), by (3.19), we have

(3.22) N(Af (x, y), t) ≥ N(Bf (2y, x), 4k2t) = N(Af (y, x), 4k2t) ≥ N(Bf (x, y), 4k3t)

for all x, y ∈ X. Letting x = 2x in (3.22), by (3.19), we have

N(f(4x+ y) + f(4x− y)− 32f(x)− 2f(y), t) ≥ N(Bf (x, y), 4k4t)

for all x, y ∈ X. Hence by induction, we get

N(f(4x+ y) + f(4x− y)− 32f(x)− 2f(y), t) ≥ N(Bf (x, y), 4nkn+3t)

for all x, y ∈ X and n ∈ N. Since k > 1, by Lemma 3.1 and (N5), we have

f(4x+ y) + f(4x− y)− 32f(x)− 2f(y) = 0

for all x, y ∈ X. Hence f is a quadratic mapping. �

4. The generalized Hyers-Ulam stability for (1.5)

Now, we will prove the generalized Hyers-Ulam stability for (1.5) in fuzzy normed spaces.

Theorem 4.1. Assume that φ : X3 −→ [0,∞) is a function such that

(4.1) N ′(φ(2x, 2y), t) ≥ N ′(4Lφ(x, y), t)

for all x, y ∈ X, t > 0 and some real number L with 0 < L < 1
2 . Let f : X −→ Y be a mapping such

that f(0) = 0 and

(4.2) N(Af (x, y), t) ≥ min{N(Bf (x, y), kt), N ′(φ(x, y), t)}
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for all x, y ∈ X, t > 0 and some real number k with k > 32. Then there exists an unique additive-

quadratic mapping F : X −→ Y such that

(4.3) N
(
f(x)− F (x),

1

2(1− 2L)
t
)
≥ min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}

for all x ∈ X and all t > 0.

Proof. By (4.2), we get

N(Afo(x, y), t) ≥ min
{
N
(
Bfo(x, y),

k

2
t
)
, N
(
Bfe(x, y),

k

2
t
)
,

N ′(φ(x, y), t), N ′(φ(−x,−y), t)
}(4.4)

for all x, y ∈ X, t > 0 and

N(Afe(x, y), t) ≥ min
{
N
(
Bfo(x, y),

k

2
t
)
, N
(
Bfe(x, y),

k

2
t
)
,

N ′(φ(x, y), t), N ′(φ(−x,−y), t)
}(4.5)

for all x, y ∈ X and all t > 0. Letting y = 0 in (4.4) and (4.5), by (N2), we have

(4.6) N(2fo(2x)− 4fo(x), t) ≥ min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}

and

(4.7) N(2fe(2x)− 8fe(x), t) ≥ min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}

for all y ∈ X and all t > 0. Consider the set S = {g | g : X −→ Y } and the generalized metric d on

S defined by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ φo(x, t),∀x ∈ X,∀t > 0},

where φo(x, t) = min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}. Then (S, d) is a complete metric space([19]).

Define a mapping Jo : S −→ S by Jog(x) = 1
2g(2x) for all x ∈ X and all g ∈ S. Let g, h ∈ S and

d(g, h) ≤ c for some c ∈ [0,∞). Then by (4.1), we have

N(Jog(x)− Joh(x), 2cLt) = N
(
g(2x)− h(2x), 4cLt

)
≥ φo(2x, 4Lt) ≥ φo(x, t)

for all x ∈ X and all t > 0. Hence d(Jog, Joh) ≤ 2Ld(g, h) for any g, h ∈ S and by (4.6), we have

d(Jofo, fo) ≤ 1
4 < ∞. By Theorem 2.3, there exists a mapping P : X −→ Y which is a fixed point

of Jo such that

(4.8) N
(
fo(x)− P (x),

1

4(1− 2L)
t
)
≥ φo(x, t)

for all x ∈ X and all t > 0. Moreover, d(Jn
o fo, A)→ 0 as n→∞. That is,

P (x) = N − lim
n→∞

fo(2nx)

2n

for all x ∈ X. Now, define a mapping Je : S −→ S by Jeg(x) = 1
4g(2x) for all x ∈ X and all g ∈ S.

Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (4.1), we have

N(Jeg(x)− Jeh(x), cLt) = N
(
g(2x)− h(2x), 4cLt

)
≥ φo(2x, 4Lt) ≥ φo(x, t)
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for all x ∈ X and t > 0. Hence d(Jeg, Jeh) ≤ Ld(g, h) for any g, h ∈ S and by (4.7), we have

d(Jefe, fe) ≤ 1
8 < ∞. By Theorem 2.3, there exists a mapping Q : X −→ Y which is a fixed point

of Je such that

(4.9) N
(
fe(x)−Q(x),

1

8(1− L)
t
)
≥ φo(x, t)

for all x ∈ X and all t > 0. Moreover, d(Jn
e fe, A)→ 0 as n→∞. That is,

(4.10) Q(x) = N − lim
n→∞

fe(2
nx)

22n

for all x ∈ X. Replacing x, and y by 2nx and 2ny in (4.5), respectively, by (4.1), we have

N
( 1

22n
Afe(2nx, 2ny), t

)
≥ min

{
N
( 1

2n
Bfo(2nx, 2ny), 2n−1kt

)
,

N
( 1

22n
Bfe(2nx, 2ny),

k

2
t
)
, N ′

(
φ(x, y),

1

Ln
t
)
, N ′

(
φ(−x,−y),

1

Ln
t
)}(4.11)

for all x, y ∈ X, t > 0, and all n ∈ N. By (N4) and (4.11), we have

N(AQ(x, y), t)

≥ min
{
N
(
AQ(x, y)− 1

22n
Afe(2nx, 2ny),

t

2

)
, N
( 1

22n
Afe(2nx, 2ny),

t

2

)}
≥ min

{
N
(
AQ(x, y)− 1

22n
Afe(2nx, 2ny),

t

2

)
, N
( 1

2n
Bfo(2nx, 2ny), 2n−2kt

)
,

N
( 1

22n
Bfe(2nx, 2ny),

k

4
t
)
, N ′

(
φ(x, y),

1

2Ln
t
)
, N ′

(
φ(−x,−y),

1

2Ln
t
)}

≥ min
{
N
(
AQ(x, y)− 1

22n
Afe(2nx, 2ny),

t

2

)
, N
( 1

2n
Bfo(2nx, 2ny), 2n−2kt

)
,

N
( 1

22n
Bfe(2nx, 2ny)−BQ(x, y),

k

8
t
)
, N
(
BQ(x, y),

k

8
t
)
,

N ′
(
φ(x, y),

1

2Ln
t
)
, N ′

(
φ(−x,−y),

1

2Ln
t
)}

(4.12)

for all x, y ∈ X, t > 0, and all n ∈ N. By (N4), we have

N
( 1

2n
Bfo(2nx, 2ny), 2nt

)
≥ min

{
N
( 1

2n
Bfo(2nx, 2ny)−BP (x, y), 2n−1t

)
, N
(
BP (x, y), 2n−1t

)}(4.13)

for all x, y ∈ X, t > 0, and all n ∈ N. Letting n→∞ in (4.13), by (N5), we have

(4.14) lim
n→∞

N
( 1

22n
Bfo(2nx, 2ny), t

)
= 1

for all x, y ∈ X, t > 0, and all n ∈ N. Letting n→∞ in (4.12), by (4.10) and (4.14), we have

(4.15) N(AQ(x, y), t) ≥ N
(
BQ(x, y),

k

8
t
)
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10 CHANGIL KIM AND GILJUN HAN

for all x, y ∈ X and all t > 0. Since fe is even, by (4.10), Q is even and hence by (4.15) and

Theorem 3.3, Q is a quadratic mapping. By (4.5) and (4.7), we have

N(Bfe(x, 2y), t) ≥ min
{
N
(
Afe(y, x),

t

2

)
, N
(

8fe(y)− 2fe(2y),
t

2

)}
≥ min

{
N
(
Bfo(y, x),

k

4
t
)
, N
(
Bfe(y, x),

k

4
t
)
, N ′

(
φ(y, x),

t

2

)
,

N ′
(
φ(−y,−x),

t

2

)
, N ′

(
φ(y, 0),

t

2

)
, N ′

(
φ(−y, 0),

t

2

)}(4.16)

for all x, y ∈ X and t > 0. By (4.7) and (4.16), we have

N(Bfe(x, y), t) = N(4Bfe(x, y), 4t)

≥ min{N(Bfe(2x, 2y), 2t), N(4Bfe(x, y)−Bfe(2x, 2y), 2t)}

≥ min
{
N
(
Bfo(y, 2x),

k

2
t
)
, N
(
Bfe(y, 2x),

k

2
t
)
,Φ1(x, y, t)

}
≥ min

{
N
(
Bfo(y, 2x),

k

2
t
)
, N
(
Bfo(x, y),

k2

8
t
)
, N
(
Bfe(x, y),

k2

8
t
)
,Φ2(x, y, t)

}
(4.17)

for all x, y ∈ X and all t > 0, where

Φ1(x, y, t) = min
{
N ′(φ(y, 2x), t), N ′(φ(−y,−2x), t), N ′(φ(x+ y, 0), t),

N ′(φ(−x− y, 0), t), N ′(φ(x− y, 0), t), N ′(φ(−x+ y, 0), t),

N ′
(
φ(x, 0),

t

2

)
, N ′

(
φ(−x, 0),

t

2

)
, N ′

(
φ(y, 0),

t

2

)
, N ′

(
φ(−y, 0),

t

2

)}
and

Φ2(x, y, t) = min
{

Φ1(x, y, t), N ′
(
φ(x, y),

k

4
t
)
, N ′

(
φ(−x,−y),

k

4
t
)}
,

because k > 32. By Lemma 3.1 and (4.17), we have

N(Bfe(x, y), t) ≥ min
{
N
(
Bfo(y, 2x),

k

2
t
)
, N
(
Bfo(x, y),

k2

8
t
)
,Φ2(x, y, t)

}
(4.18)

for all x, y ∈ X and all t > 0 and hence by (4.4) and (4.18), we have

N(Afo(x, y), t) ≥ min
{
N
(
Bfo(x, y),

k

2
t
)
, N
(
Bfo(y, 2x),

k2

4
t
)
,

Φ1

(
x, y,

k

2
t
)
, N ′(φ(x, y), t), N ′(φ(−x,−y), t)

}(4.19)

for all x, y ∈ X, t > 0 and replacing x and y by 2nx and 2ny in (4.19), respectively, by (4.1), we

have

N
(
Afo(2nx, 2ny), 2nt

)
≥ min

{
N(Bfo(2nx, 2ny), 2n−1kt), N(Bfo(2ny, 2n+1x), 2n−2k2t),

Φ1

(
x, y,

k

2(2L)n
t
)
, N ′

(
φ(x, y),

1

(2L)n
t
)
, N ′

(
φ(−x,−y),

1

(2L)n
t
)}

for all x, y ∈ X, all t > 0 and all n ∈ N. Similar to Q, we have

(4.20) N(AP (x, y), t) ≥ min
{
N
(
BP (x, y),

k

8
t
)
, N
(
BP (y, 2x),

k2

16
t
)}
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ADDITIVE-QUADRATIC FUNCTIONAL INEQUALITIES IN FUZZY... 11

for all x, y ∈ X and all t > 0. Cleraly, P is an odd mapping and since k > 32, by Theorem 3.2, P

is an additive mapping. Let F = P +Q. Then F : X −→ Y is an additive-quadratic mapping. By

(4.8) and (4.9), we have (4.3).

Now, we show the uniqueness of F . Let H be another additive-quadratic mapping with (4.3).

Since F and H are addiitve-quadratic mappings, we have

F (x) =
1 + 2n

22n+1
F (2nx) +

1− 2n

22n+1
F (−2nx), H(x) =

1 + 2n

22n+1
H(2nx) +

1− 2n

22n+1
H(−2nx),

for all x ∈ X and all positive integer n. Hence by (4.3), (N3) and (N4), we have

N(F (x)−H(x), t)

≥ min
{
N
(
F (2nx)−H(2nx),

22n

1 + 2n
t
)
, N
(
F (−2nx)−H(−2nx),

22n

2n − 1
t
)}

≥ min
{
N
(
F (2nx)− f(2nx),

22n−1

1 + 2n
t
)
, N
(
f(2nx)−H(2nx),

22n−1

1 + 2n
t
)
,

N
(
F (−2nx)− f(−2nx),

22n−1

2n − 1
t
)
, N
(
f(−2nx)−H(−2nx),

22n−1

2n − 1
t
)}

≥ min
{
φo

(
2nx,

22n(1− 2L)

1 + 2n
t
)
, φo

(
2nx,

22n(1− 2L)

2n − 1
t
)}

≥ min
{
φo

(
x,

1− 2L

(L)n + (2L)n
t
)
, φo

(
x,

1− 2L

(2L)n
(

1− 1
2n

) t)}
for all x ∈ X, t > 0, and all n ∈ N. Since 0 < L < 1

2 , letting n → ∞ in the above inequality, we

have F (x) = H(x) for all x ∈ X. �

By Theorem 4.1, we can show that the following corollaries:

Corollary 4.2. Let ε and p be real numbers with ε ≥ 0 and 0 < p < 1
2 . Let f : X −→ Y be a

mapping such that

(4.21) N(Af (x, y), t) ≥ min
{
N(Bf (x, y), kt),

t

t+ ε(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)

}
for all x, y ∈ X, all t > 0 and some real number k with k > 32. Then there exists an unique

additive-quadratic mapping F : X −→ Y such that

N(f(x)− F (x), t) ≥ (2− 22p)t

(2− 22p)t+ ε‖x‖2p

for all x ∈ X and all t > 0.

Corollary 4.3. Assume that φ : X3 −→ [0,∞) is a function with (4.1). Let f : X −→ Y be a

mapping such that f(0) = 0 and

(4.22) N(rAf (x, y) +Bf (x, y), t) ≥ min{N(Bf (x, y), t), N ′(φ(x, y), t)}

for all x, y ∈ X, all t > 0 and some real numbers r with |r| > 64. Then there exists an unique

additive-quadratic mapping F : X −→ Y such that

N
(
f(x)− F (x),

1

2(1− 2L)
t
)
≥ min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}

for all x ∈ X and all t > 0.
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12 CHANGIL KIM AND GILJUN HAN

Proof. By (N5) and (4.22), we have

N(Af (x, y), t) ≥ min
{
N
(
rAf (x, y) +Bf (x, y),

|r|
2
t
)
, N
(
Bf (x, y),

|r|
2
t
)}

≥ min
{
N
(
Bf (x, y),

|r|
2
t
)
, N ′

(
φ(x, y),

|r|
2
t
)}

≥ min
{
N
(
Bf (x, y),

|r|
2
t
)
, N ′

(
φ(x, y), t

)}
for all x, y ∈ X and all t > 0. Hence we have the results. �

Corollary 4.4. Let ε and p be real numbers with ε ≥ 0 and 0 < p < 1
2 . Let f : X −→ Y be a

mapping such that

(4.23) N(rAf (x, y) +Bf (x, y), t) ≥ min
{
N(Bf (x, y), t),

t

t+ ε(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)

}
for all x, y ∈ X, all t > 0 and some real number r with |r| > 64. Then there exists an unique

additive-quadratic mapping F : X −→ Y such that

N(f(x)− F (x), t) ≥ (2− 22p)t

(2− 22p)t+ ε‖x‖2p

for all x ∈ X and all t > 0.

Related with Theorem 4.1, we can also have the following theorem. The proof is similar to that

of Theorem 4.1.

Theorem 4.5. Assume that φ : X3 −→ [0,∞) is a function such that

(4.24) N ′
(
φ
(x

2
,
y

2

)
, t
)
≥ N ′

(L
2
φ(x, y), t

)
for all x, y ∈ X, t > 0 and some real number L with 0 < L < 1

2 . Let f : X −→ Y be a mapping such

that f(0) = 0 and (4.2). Then there exists an unique additive-quadratic mapping F : X −→ Y such

that

N
(
f(x)− F (x),

L

2(1− L)
t
)
≥ min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}

for all x ∈ X and t > 0.

Proof. Let φo(x, t) = min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}. Letting x = x
2 in (4.6) and (4.7), by

(4.24), we have

(4.25) N
(

2fo(x)− 4fo

(x
2

)
,
L

2
t
)
≥ φo(x, t)

and

(4.26) N
(

2fe(x)− 8fe

(x
2

)
,
L

2
t
)
≥ φo(x, t)

for all y ∈ X and t > 0. Consider the set S = {g | g : X −→ Y } and the generalized metric d on S

defined by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ φo(x, t),∀x ∈ X,∀t > 0}.
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Then (S, d) is a complete metric space([19]). Define a mapping Jo : S −→ S by Jog(x) = 2g
(

x
2

)
for

all x ∈ X and all g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (4.1), we have

N
(
Jog(x)− Joh(x), cLt

)
= N

(
g
(x

2

)
− h
(x

2

)
, c
L

2
t
)
≥ φo

(x
2
,
L

2
t
)
≥ φo(x, t)

for all x ∈ X and t > 0. Hence d(Jog, Joh) ≤ Ld(g, h) for any g, h ∈ S. By (4.25), we have

d(Jofo, fo) ≤ L
4 < ∞ and by Theorem 2.3, there exists a mapping P : X −→ Y which is a fixed

point of Jo such that

N
(
fo(x)− P (x),

L

4(1− L)
t
)
≥ φo(x, t)

for all x ∈ X, all t > 0 and d(Jn
o fo, A)→ 0 as n→∞.

Now, define a mapping Je : S −→ S by Jeg(x) = 4g
(

x
2

)
for all x ∈ X and all g ∈ S. Let g, h ∈ S

and d(g, h) ≤ c for some c ∈ [0,∞). Then by (4.1), we have

N(Jeg(x)− Jeh(x), 2cLt) = N
(
g
(x

2

)
− h
(x

2

)
, c
L

2
t
)
≥ φo

(x
2
,
L

2
t
)
≥ φo(x, t)

for all x ∈ X and t > 0. Hence d(Jeg, Jeh) ≤ 2Ld(g, h) and by (4.26), we have d(Jefe, fe) ≤ L
4 <∞.

By Theorem 2.3, there exists a mapping Q : X −→ Y which is a fixed point of Je such that

N
(
fe(x)−Q(x),

L

4(1− 2L)
t
)
≥ φo(x, t)

for all x ∈ X, all t > 0 and d(Jn
e fe, A)→ 0 as n→∞.

The rest of the proof is similar to Theorem 4.1. �

By Theorem 4.5, we can show that the following corollaries:

Corollary 4.6. Let ε and p be real numbers with ε ≥ 0 and p > 1. Let f : X −→ Y be a mapping

with f(0) = 0 and (4.21). Then there exists an unique additive-quadratic mapping F : X −→ Y

such that

N(f(x)− F (x), t) ≥ (22p − 2)t

(22p − 2)t+ ε‖x‖2p

for all x ∈ X and all t > 0.

Corollary 4.7. Assume that φ : X3 −→ [0,∞) is a function with (4.24). Let f : X −→ Y

be a mapping with f(0) = 0 and (4.22). Then there exists an unique additive-quadratic mapping

F : X −→ Y such that

N(f(x)− F (x),
L

2(1− L)
t) ≥ min{N ′(φ(x, 0), t), N ′(φ(−x, 0), t)}

for all x ∈ X and all t > 0.

Corollary 4.8. Let ε and p be real numbers with ε ≥ 0 and p > 1. Let f : X −→ Y be a mapping

with f(0) = 0 and (4.23). Then there exists an unique additive-quadratic mapping F : X −→ Y

such that

N(f(x)− F (x), t) ≥ (22p − 2)t

(22p − 2)t+ ε‖x‖2p

for all x ∈ X and all t > 0.
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[10] P. Gǎvruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math.

Anal. Appl. 184(1994), 431-436.

[11] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Mathematicae, 62(2001),

303-309.
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NEW CHARACTERIZATIONS OF WEIGHTS IN HARDY’S TYPE
INEQUALITIES VIA OPIAL’S DYNAMIC INEQUALITIES

S. H. SAKER, M. M. OSMAN AND I. ABOHELA

Abstract. In this paper, we prove some new characterizations of weights in some
Hardy-type inequalities on time scales. The results as special cases contain the results
due to Beesack and Heinig, Leindler and Bloom and Kerman. Some new integral
and discrete inequalities related to Copson’s, Flett’s, Bliss’s and Bennett’s will be
formulated. The main results will be proved by using new generalizations of Opial’s
type inequalities, Hölder’s inequality, Minkowski’s inequality and the chain rule on
time scales.

Keywords: Hardy’s inequality, Opial’s inequality, time scales.

AMS Classif: 26A15, 26D10, 26D15, 39A13, 34A40.

1. Introduction

During the last decades the inequality

(1.1)

(∫ b

a

r (t)

(∫ t

a

f(τ)dτ

)q
dt

)1/q

≤ C
(∫ b

a

s (t) fp(t)dt

)1/p

, 1 < p ≤ q <∞,

with two different positive weighted functions defined in [a, b] ⊂ R+ has been studied by
several authors, we refer the reader to the papers [11, 23, 37, 38] and the books [20, 24].
The main idea is to give a relation between the functions r and s and to find the optimal
value of the constant C such that the inequality (1.1) holds. A systematic investigation
of this type of inequality of Hardy’s type with two different weights started in the late
fifties and early sixties by Beesack [7]. In particular Beesack proved that

(1.2)
∫ b

a

r (t)

(∫ t

0

f(τ)dτ

)p
dt ≤

∫ b

a

s (t) fp(t)dt,

where r and s satisfy the Euler-Lagrange differential equation

d

dt

(
s (t)

(
y
′
(t)
)p−1

)
+ r (t) yp−1 (t) = 0.

Also Beesack and Heinig [8] proved that if 0 < p < 1 and
∫∞

0
r (t)

(∫ t
0
f(τ)dτ

)p
dt <∞,

then

(1.3)
∫ ∞

0

r (t)

(∫ t

0

f(τ)dτ

)p
dt ≥ pp

∫ ∞
0

r1−p (t)

(∫ ∞
t

r (τ) dτ

)p
fp(t)dt,

and if
∫∞

0
r (t)

(∫∞
t
f(τ)dτ

)p
dt <∞, then

(1.4)
∫ ∞

0

r (t)

(∫ ∞
t

f(τ)dτ

)p
dt ≥ pp

∫ ∞
a

r1−p (t)

(∫ t

0

r (τ) dτ

)p
fp(t)dt.

Bloom and Kerman [10] proved that if 1 < p < ∞, f ≥ 0 and
∫∞

0
(s (t) f(t))

p
dt < ∞,

then

(1.5)
∫ ∞

0

(
r (t)

∫ t

0

f(τ)dτ

)p
dt ≤ C

∫ ∞
0

(s (t) f(t))
p
dt,

1
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holds if and only if∫ ∞
t

(
s−1 (τ)

∫ ∞
τ

rp (x) dx

)p′
dτ ≤ C

∫ ∞
t

rp (τ) dτ.

By using a new approach depends on the application of Opial’s type inequalities Agarwal
et al. [4] proved that if r, s are nonnegative measurable functions on (a, b) and p > 0,
k > 1, then

(1.6)
∫ b

a

r (t)

(∫ t

a

f(τ)dτ

)p+1

dt ≤ (p+ 1)K1 (p, 1, k)

[∫ b

a

s (t) fk(t)dt

] p+1
k

,

where

K1 (p, 1, k) =

(
1

p+ 1

) 1
k

(∫ b

a

(R (t, b))
k
k−1 (s (t))

−1
k−1

(∫ t

a

s
−1
k−1 (τ) dτ

)p
dt

) k−1
k

,

and R (t, b) =
∫ b
t
r (τ) dτ.

In the last decades the study of discrete results on lp analogues for Lp−bounds has
been proved by some authors. One of the reasons for this upsurge of interest in discrete
cases is due to the fact that the discrete operators may even behave differently from their
continuous counterparts. So it was natural to look on the discrete results on lp analogues
for the above Lp−results. We mention here that in some special cases it is possible to
translate or adapt almost straightforward the objects and results from the continuous
setting to the discrete setting or vice versa, however, in some other cases that is far from
be trivial. But lp−bounds for discrete analogues of more complicated operators are not
implied by results in the continuous setting, and moreover the discrete analogues are
resistant to conventional methods. The main challenge here is that there are no general
methods to study these questions and the methods should to be developed starting from
the basic definitions in the discrete space. For example, Leindler [22] established the
discrete versions of (1.3) and (1.4), and proved that if 0 < p ≤ 1, an ≥ 0 and λn > 0,
then

(1.7)
∞∑
n=1

λn

(
n∑
k=1

ak

)p
≥ pp

∞∑
n=1

λ1−p
n

( ∞∑
k=n

λk

)p
apn,

and

(1.8)
∞∑
n=1

λn

( ∞∑
k=n

ak

)p
≥ pp

∞∑
n=1

λ1−p
n

(
n∑
k=1

λk

)p
apn.

In recent years the study of dynamic equations and inequalities on time scales has received
a lot of attention in the literature and has become a major field in pure and applied
mathematics. The general idea is to prove a result for a dynamic inequality where the
domain of the unknown function is a so-called time scale T, which may be an arbitrary
closed subset of the real numbers R, to avoid proving results twice, once for differential
inequality and once again for difference inequality. This idea goes back to its founder
Stefan Hilger [19] who started the study of dynamic equations on time scales. Since the
integral and discrete inequalities are important in the analysis of qualitative properties
of solutions of differential and difference equations, we also believe that the dynamic
Hardy type inequalities with weights on time scales will play the same effective role in
the analysis of qualitative properties of dynamic equations with boundary conditions
like oscillation, nonoscillation and distribution of zeros of solutions. For related dynamic
inequalities on time scales, we refer the reader to the papers [26, 27, 32, 33] and the
books [2,3]. Our technique in this paper will overcame the lack of calculus in the discrete
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space where there is no power rules and also there is no chain rule which are the main
tools used in the proofs of the continuous case.

The aim of this paper is to prove some new dynamic inequalities by employing some
Opial’s type inequalities on an arbitrary time scale T which contain the integral and
discrete inequalities (1.3)—(1.6) as special cases. For applications of the main results we
get some well-known dynamic inequalities as special cases. The paper is divided into two
sections. In Section 2, we introduce some preliminaries on time scales and establish some
basic lemmas that will be needed in the proofs. In Section 3, we prove the main results
and formulate some discrete results to show the application of the new results.

2. Preliminaries and Some Basic Lemmas

In this section, we present some basic definitions and results concerning the delta
calculus on time scales; for more details we refer the reader to the book [14]. A time
scale T is an arbitrary nonempty closed subset of the real numbers R. The forward jump
operator and the backward jump operator are defined by σ(t) := inf{s ∈ T : s > t}, and
ρ(t) := sup{s ∈ T : s < t}, where sup ∅ = inf T. A point t ∈ T, is said to be left—dense
if ρ(t) = t and t > inf T, is right-dense if σ(t) = t, is left—scattered if ρ(t) < t and
right—scattered if σ(t) > t.
A function f : T → R is said to be right—dense continuous (rd—continuous) provided

f is continuous at right—dense points and at left—dense points in T, left hand limits
exist and are finite. The set of all such rd—continuous functions is denoted by Crd(T).
Also, the set of functions that are differentiable and whose derivative is rd—continuous is
denoted by C1

rd(T) = C1
rd(T,R). The graininess function µ for a time scale T is defined

by µ(t) := σ(t) − t, and for any function f : T → R the notation fσ(t) denotes f(σ(t)).
Without loss of generality, we assume that supT =∞, and define the time scale interval
[a, b]T by [a, b]T := [a, b] ∩ T. Recall of the following product and quotient rules for the
derivative of the product fg and the quotient f/g (where ggσ 6= 0, here gσ = g ◦ σ) of
two differentiable functions f and g

(2.1) (fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ, and
(
f

g

)∆

=
f∆g − fg∆

ggσ
.

The first chain rule that we will use in this paper is

(2.2) (fγ(t))
∆

= γ

1∫
0

[hfσ + (1− h)f ]
γ−1

dhf∆(t), γ ∈ R,

which is a simple consequence of Keller’s chain rule [14, Theorem 1.90]. The second chain
rule that we will use in this paper is given in the following. Let f : R→ R be continuously
differentiable and suppose g : T → R is delta differentiable, then f ◦ g : T → R is delta
differentiable and

(2.3) f∆ (g (t)) = f
′
(g(d)) g∆ (t) , for d ∈ [t, σ (t)].

In this paper we will refer to the (delta) integral which we can define as follows. If F∆(t) =

f(t), then the Cauchy (delta) integral of f is defined by
∫ t
t0
f(s)∆s := F (t) − F (t0). It

can be shown (see [14]) that if f ∈ Crd(T), then the Cauchy integral F (t) :=
∫ t
t0
f(s)∆s

exists, t0 ∈ T, and satisfies F∆(t) = f(t), t ∈ T. An infinite integral is defined as∫∞
a
f(t)∆t = limb→∞

∫ b
a
f(t)∆t. Integration on discrete time scales is defined by∫ b

a

f(t)∆t =
∑
t∈[a,b)

µ(t)f(t).
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The integration by parts formula on time scales reads

(2.4)
∫ b

a

u(t)υ∆(t)∆t = [u(t)υ(t)]
b
a −

∫ b

a

u∆(t)υσ(t)∆t.

Hölder’s inequality [5, Theorem 6.2] states that for f, g ∈ Crd([a, b]T, R), we have

(2.5)
∫ b

a

|f(t)g(t)|∆t ≤
[∫ b

a

|f(t)|p ∆t

]1/p [∫ b

a

|g(t)|q ∆t

]1/q

,

where p > 1, 1/p + 1/q = 1 and a, b ∈ T. This inequality is reversed if 0 < p < 1 and∫ b
a
|g(t)|q ∆t > 0, and it is also reversed if p < 0 and

∫ b
a
|f(t)|p ∆t > 0.

Throughout this paper, we will assume that r (t) , s (t) and f (t) are nonnegative rd-
continuous functions and the integrals considered are assumed to exist. In order to prove
our main results in Section 3, we need the following lemmas.

Lemma 2.1. Assume F : T→ R is differentiable and positive. If F∆ is always positive,
then

(2.6)
(
Fλ
)∆ ≥ F∆ (Fσ (t))

λ−1
, if λ ≥ 1,

and

(2.7)
(
Fλ
)∆ ≤ F∆ (Fσ (t))

λ−1
, if 0 ≤ λ ≤ 1,

Proof. If F is increasing and λ ≥ 1, then Fλ−1 is increasing and thus
(
Fλ−1

)∆
> 0 so

that (
Fλ
)∆

=
(
FFλ−1

)∆
= F∆ (Fσ (t))

λ−1
+ F

(
Fλ−1

)∆ ≥ 0.

This shows (2.6), and (2.7) follows similarly. The proof is complete. �
Lemma 2.2. Let T be a time scale with a, b ∈ T. If p > 0, then

(2.8)
∫ b

a

r (t)

(∫ σ(t)

a

f (τ) ∆τ

)p+1

∆t ≤ (p+ 1)

∫ b

a

R (t, b) (Fσ (t))
p
F∆ (t) ∆t,

where

(2.9) R (t, b) =

∫ b

t

r (τ) ∆τ , and F (t) =

∫ t

a

f (τ) ∆τ .

Proof. From (2.9) and applying integration by parts (2.4) with u∆ (t) = R∆ (t, b) and
υσ (t) = (Fσ (t))

p+1
, we obtain∫ b

a

r (t)

(∫ σ(t)

a

f (τ) ∆τ

)p+1

∆t =

∫ b

a

(
−R∆ (t, b)

)
(Fσ (t))

p+1
∆t

= −R (t, b) F p+1 (t)
∣∣b
a

+

∫ b

a

R (t, b)
(
F p+1 (t)

)∆
∆t.

Using the fact that R (b, b) = 0 and F (a) = 0, we have

(2.10)
∫ b

a

r (t)

(∫ σ(t)

a

f (τ) ∆τ

)p+1

∆t =

∫ b

a

R (t, b)
(
F p+1 (t)

)∆
∆t.

By the chain rule (2.2) and the fact that F∆ (t) = f (t) ≥ 0 yields(
F p+1 (t)

)∆
= (p+ 1)

∫ 1

0

[hFσ (t) + (1− h)F (t)]
p
F∆ (t)

≤ (p+ 1)

∫ 1

0

[hFσ (t) + (1− h)Fσ (t)]
p
F∆ (t)

= (p+ 1) (Fσ (t))
p
F∆ (t) .
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Substituting into (2.10), we get (2.8). The proof is complete. �

Lemma 2.3. Let T be a time scale with a, b ∈ T. If p > 0, then

(2.11)
∫ b

a

r (t)

(∫ b

t

f (τ) ∆τ

)p+1

∆t ≤ (p+ 1)

∫ b

a

R (a, σ (t)) F̄ p (t) f (t) ∆t,

where

(2.12) R (a, t) =

∫ t

a

r (τ) ∆τ , and F̄ (t) =

∫ b

t

f (τ) ∆τ .

Proof. From (2.12) and applying integration by parts (2.4) with υ∆ (t) = R∆ (a, t) and
u (t) = F̄ p+1 (t) , we obtain∫ b

a

r (t)

(∫ b

t

f (τ) ∆τ

)p+1

∆t =

∫ b

a

R∆ (a, t) F̄ p+1 (t) ∆t

= R (a, t) F̄ p+1 (t)
∣∣b
a
−
∫ b

a

R (a, σ (t))
(
F̄ p+1 (t)

)∆
∆t.

Using the fact that R (a, a) = 0 and F̄ (b) = 0, we have

(2.13)
∫ b

a

r (t)

(∫ b

t

f (τ) ∆τ

)p+1

∆t = −
∫ b

a

R (a, σ (t))
(
F̄ p+1 (t)

)∆
∆t.

By the chain rule (2.3) and the fact that F̄∆ (t) = −f (t) ≤ 0 and t ≤ d, we see that(
F̄ p+1 (t)

)∆
= (p+ 1) F̄ p (d)F∆ (t) ≥ (p+ 1) F̄ p (t) F̄∆ (t) .

Substituting into (2.13), we get (2.11). The proof is complete. �

3. Main Results

In this section, we prove the main results.

Theorem 3.1. Let T be a time scale with a ∈ [0,∞)T, 0 < p < 1. If∫ ∞
a

r (t)

(∫ σ(t)

a

f(τ)∆τ

)p
∆t <∞,

then

(3.1)
∫ ∞
a

r (t)

(∫ σ(t)

a

f(τ)∆τ

)p
∆t ≥ pp

∫ ∞
a

r1−p (t)

(∫ ∞
t

r (τ) ∆τ

)p
fp(t)∆t.

Proof. Define F (t) =
∫ t
a
f(τ)∆τ . Integrating the left hand side of (3.1) by parts (2.4)

with u∆ (t) = r (t) and υσ (t) = (Fσ (t))
p
, we obtain∫ ∞

a

r (t) (Fσ (t))
p

∆t = u (t)F p (t)|∞a −
∫ ∞
a

u (t) (F p (t))
∆

∆t

=

∫ ∞
a

(−u (t)) (F p (t))
∆

∆t,(3.2)

where u (t) = −
∫∞
t
r (τ) ∆τ . From (2.3), we have (note that F∆(t) = f(t) ≥ 0 and

d ≤ σ (t))

(3.3) (F p (t))
∆

= pF p−1(d)F∆(t) ≥ p (Fσ(t))
p−1

f(t).
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Substitute (3.3) into (3.2) and applying Hölder’s inequality (2.5) to get∫ ∞
a

r (t) (Fσ (t))
p

∆t ≥ p

∫ ∞
a

f (t) (Fσ(t))
p−1

(∫ ∞
t

r (τ) ∆τ

)
∆t

= p

∫ ∞
a

f (t) r−1/p
′

(t)

(∫ ∞
t

r (τ) ∆τ

)
r1/p

′

(t) (Fσ(t))
p−1

∆t

≥ p

{∫ ∞
a

r1−p (t)

(∫ ∞
t

r (τ) ∆τ

)p
fp(t)∆t

}1/p

×
{∫ ∞

a

r (t) (Fσ (t))
p

∆t

}1/p
′

,

and consequently, we obtain{∫ ∞
a

r (t) (Fσ (t))
p

∆t

}1/p

≥ p
{∫ ∞

a

r1−p (t)

(∫ ∞
t

r (τ) ∆τ

)p
fp(t)∆t

}1/p

,

which is (3.1). The proof is complete. �

Remark 3.1. If T = R, then inequality (3.1) reduces to the Beesack and Heinig integral
inequality (1.3).

Remark 3.2. If T = N, then inequality (3.1) reduces to the Leindler discrete inequality
(1.7).

Here, we state the Minkowski inequality [29, Lemma 2.6] on time scales which is needed
in the proof of our next main result.

Lemma 3.1. Let T be a time scale with a, b ∈ T and let f, g be nonnegative rd-continuous
functions on [a, b]T . If γ ≥ 1, then

(3.4)

(∫ b

a

f (x)

(∫ σ(x)

a

g (t) ∆t

)γ
∆x

)1/γ

≤
∫ b

a

g (t)

(∫ b

t

f (x) ∆x

)1/γ

∆t.

Theorem 3.2. Let T be a time scale with a ∈ [0,∞)T, 0 < p < 1. If∫ ∞
a

r (t)

(∫ ∞
t

f(τ)∆τ

)p
∆t <∞,

then

(3.5)
∫ ∞
a

r (t)

(∫ ∞
t

f(τ)∆τ

)p
∆t ≥ pp

∫ ∞
a

r1−p (t)

(∫ σ(t)

a

r (τ) ∆τ

)p
fp(t)∆t.

Proof. Define F̄ (t) :=
∫∞
t
f(τ)∆τ . Since

(3.6) F̄ p (t) = −
∫ ∞
t

(
F̄ p (τ)

)∆
∆τ ,

so, from (2.3), we have ( note that F̄∆(τ) = −f(τ) ≤ 0, and d ≥ τ)

(3.7)
(
F̄ p (τ)

)∆
= pF̄ p−1(d)F̄∆(τ) ≤ −pF̄ p−1(τ)f(τ).

Substitute (3.7) into (3.6) gives

F̄ p (t) ≥ p
∫ ∞
t

F̄ p−1(τ)f(τ)∆τ .
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Applying Minkowski’s inequality and Hölder’s inequality to get∫ ∞
a

F̄ p (t) r(t)∆t ≥ p

∫ ∞
a

r (t)

(∫ ∞
t

F̄ p−1(τ)f(τ)∆τ

)
∆t

≥ p

∫ ∞
a

f(τ)r−1/p
′

(τ)

(∫ σ(τ)

a

r (t) ∆t

)
F̄ p−1(τ)r1/p

′

(τ) ∆τ

= p

{∫ ∞
a

r1−p (τ)

(∫ σ(τ)

a

r (t) ∆t

)p
fp(τ)∆τ

}1/p

×
{∫ ∞

a

F̄ p(τ)r (τ) ∆τ

}1/p
′

,

and consequently, we obtain(∫ ∞
a

F̄ p (t) r(t)∆t

)1/p

≤ p
(∫ ∞

a

r1−p (τ)

(∫ σ(τ)

a

r (t) ∆t

)p
fp(τ)∆τ

)1/p

,

which is the desired inequality (3.5). The proof is complete. �

Remark 3.3. If T = R, then inequality (3.5) reduces to the Beesack and Heinig integral
inequality (1.4).

Remark 3.4. If T = N, then inequality (3.5) reduces to the Leindler discrete inequality
(1.8). (See also [28, Remark 3.5])

Theorem 3.3. Let T be a time scale with a ∈ [0,∞)T, 1 < p <∞. If∫ ∞
a

(s (t) f(t))
p

∆t <∞,

and

(3.8)
∫ ∞
t

(
s−1 (τ)

∫ ∞
τ

rp (x) ∆x

)p′
∆τ ≤ C

∫ ∞
t

rp (τ) ∆τ <∞,

then

(3.9)
∫ ∞
a

(
r (t)

∫ σ(t)

a

f(τ)∆τ

)p
∆t ≤ C

∫ ∞
a

(s (t) f(t))
p

∆t,

Proof. Assume first that (3.8) holds and define F (t) =
∫ t
a
f(τ)∆τ . Integrating the left

hand side of (3.9) by parts (2.4) with u∆ (t) = rp (t) and υσ (t) = (F σ (t))
p
, we obtain∫ ∞

a

rp (t) (Fσ (t))
p

∆t = u (t)F p (t)|∞a −
∫ ∞
a

u (t) (F p (t))
∆

∆t

=

∫ ∞
a

(−u (t)) (F p (t))
∆

∆t,

where u (t) = −
∫∞
t
rp (τ) ∆τ . From (2.3), we have

(F p (t))
∆ ≤ p (Fσ(t))

p−1
f(t),

and so∫ ∞
a

rp (t) (Fσ (t))
p

∆t ≤ p

∫ ∞
a

f(t) (Fσ(t))
p−1

(∫ ∞
t

rp (τ) ∆τ

)
∆t

= p

∫ ∞
a

s (t) f(t) (Fσ(t))
p−1

(
s−1 (t)

∫ ∞
t

rp (τ) ∆τ

)
∆t.
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If we assume that
∫∞
a

(s (t) f(t))
p

∆t = 1, then Hölder’s inequality (2.5) gives∫ ∞
a

rp (t) (Fσ (t))
p

∆t ≤ p

{∫ ∞
a

(s (t) f(t))
p

∆t

}1/p

×


∫ ∞
a

(Fσ(t))
p

(
s−1 (t)

∫ ∞
t

rp (τ) ∆τ

)p′
∆t


1/p
′

= p


∫ ∞
a

(Fσ(t))
p

(
s−1 (t)

∫ ∞
t

rp (τ) ∆τ

)p′
∆t


1/p
′

.

Using integration by parts with u∆ (t) =
(
s−1 (t)

∫∞
t
rp (τ) ∆τ

)p′
and υσ (t) = (Fσ (t))

p

to get ∫ ∞
a

rp (t) (Fσ (t))
p

∆t

≤ p


∫ ∞
a

∫ ∞
t

(
s−1 (τ)

∫ ∞
τ

rp (x) ∆x

)p′
∆τ

 (F p(t))
∆

∆t


1/p
′

.

Using (3.8) and integration by parts again with u (t) =
∫∞
t
rp (τ) ∆τ and υ∆ (t) =

(F p (t))
∆, we obtain∫ ∞

a

rp (t) (Fσ (t))
p

∆t ≤ C
{∫ ∞

a

rp (t) (Fσ (t))
p

∆t

}1/p
′

<∞,

and so
∫∞
a
rp (t) (Fσ (t))

p
∆t ≤ C. The proof is complete. �

To prove the next results, need the following two theorems which are adapted from [35]
and [1].

Theorem 3.4. If p(t), q(t) ∈ Crd ([a, b]T,R) are positive functions such that
∫ t
a
(p(τ))−1/(k−1)∆τ <

∞, and y ∈ C1
rd ([a, b]T,R) with y(a) = 0, then for k > 1, λ > 0 and 0 < γ < k, we have

(3.10)
∫ b

a

q(t) |y(t)|λ
∣∣y∆(t)

∣∣γ ∆t ≤ K1(λ, γ, k)

[∫ b

a

p(t)
∣∣y∆(t)

∣∣k ∆t

](λ+γ)/k

,

where

K1(λ, γ, k) :=

(
γ

λ+ γ

)γ/k ∫ b

a

(
qk(t)

pγ(t)

) 1
k−γ

(∫ t

a

p
−1
k−1 (τ)∆τ

)λ(k−1)
(k−γ)

∆t


k−γ
k

.

If y ∈ C1
rd ([a, b]T,R) with y(b) = 0, then for k > 1, λ > 0 and 0 < γ < k, we have that

(3.11)
∫ b

a

q(t) |y(t)|λ
∣∣y∆(t)

∣∣γ ∆t ≤ K2(λ, γ, k)

[∫ b

a

p(t)
∣∣y∆(t)

∣∣k ∆t

](λ+γ)/k

,

where

K2(λ, γ, k) :=

(
γ

λ+ γ

)γ/k ∫ b

a

(
qk(t)

pγ(t)

) 1
k−γ

(∫ b

t

p
−1
k−1 (τ)∆τ

)λ(k−1)
(k−γ)

∆t


k−γ
k

.
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Theorem 3.5. If p (t) , q (t) ∈ Crd ([a, b]T,R) are positive functions and y ∈ C1
rd ([a, b]T,R)

such that y (a) = 0, then for λ ≥ 1, γ ≥ 0 and k > γ + 1, we have that

(3.12)
∫ b

a

q(t)
∣∣(yλ)∆(t)(y∆(t))γ

∣∣∆t ≤ G1(λ, γ, k)

{∫ b

a

p(t)
∣∣y∆(t)

∣∣k ∆t

}λ+γ
k

,

where

G1(λ, γ, k) := c

{∫ b

a

(q(t))
k

k−γ−1 (p(t))
−kγ

(k−1)(k−γ−1)
(
R
kλ−λ−γ
k−γ−1

)∆

(t)∆t

} k−γ−1
k

,

with

c = λ

(
k − γ − 1

kλ− λ− γ

) k−γ−1
k

(
γ + 1

λ+ γ

) γ+1
k

, and R(t) =

∫ t

a

∆τ

(p(τ))
1
k−1

.

From (2.6), inequality (3.12) becomes as follow: If p (t) , q (t) ∈ Crd ([a, b]T,R) are
positive functions and y ∈ C1

rd ([a, b]T,R) with y∆ > 0 satisfies y (a) = 0, then for λ ≥ 1,
γ ≥ 0 and k > γ + 1

(3.13)
∫ b

a

q(t) |yσ (t)|λ−1 ∣∣y∆(t)
∣∣γ+1

∆t ≤ G1(λ, γ, k)

{∫ b

a

p(t)
∣∣y∆(t)

∣∣k ∆t

}λ+γ
k

,

where G1(λ, γ, k) is defined as in (3.12).

Theorem 3.6. Let T be a time scale with a, b ∈ T. If p > 0 and k > 1, then
(3.14)∫ b

a

r (t)

(∫ σ(t)

a

f (τ) ∆τ

)p+1

∆t ≤ (p+ 1)G1 (p+ 1, k)

[∫ b

a

s(t) (f(t))
k

∆t

] p+1
k

,

where

G1(p+ 1, k) :=

∫ b

a

(R (t, b))
k
k−1

((∫ t

a

s
−1
k−1 (τ) ∆τ

)p+1
)∆

∆t


k−1
k

,

and R (t, b) is defined as in (2.9).

Proof. Applying Opial’s inequality (3.13) with y (t) = F (t) , q (t) = R (t, b) , p (t) = s (t) ,
λ = p+ 1 and γ = 0, we obtain

(3.15)
∫ b

a

R (t, b) (Fσ (t))
p
F∆ (t) ∆t ≤ G1(p+ 1, k)

[∫ b

a

s(t) (f(t))
k

∆t

] p+1
k

.

The result follows from (2.8) and (3.15). The proof is complete. �

Theorem 3.7. Let T be a time scale with a, b ∈ T. If p > 0 and k > 1, then

(3.16)
∫ b

a

r (t)

(∫ b

t

f (τ) ∆τ

)p+1

∆t ≤ (p+ 1)K2 (p, 1, k)

[∫ b

a

s(t) (f(t))
k

∆t

] p+1
k

,

where

K2 (p, 1, k) :=

(
1

p+ 1

) 1
k

[∫ b

a

(R (a, σ (t)))
k
k−1 s

−1
k−1 (t)

(∫ b

t

s
−1
k−1 (τ) ∆τ

)p
∆t

] k−1
k

,

and R (a, t) is defined as in (2.12).
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Proof. Applying Opial’s inequality (3.11) with y (t) = F (t) , q (t) = R (a, σ (t)) , p (t) =
s (t) , λ = p and γ = 1, we obtain

(3.17)
∫ b

a

R (a, σ (t)) F̄ p (t) f (t) ∆t ≤ K2 (p, 1, k)

[∫ b

a

s(t) (f(t))
k

∆t

] p+1
k

.

The result follows from (2.11) and (3.17). The proof is complete. �

The next result follows from Theorems 3.6 and 3.7 by choosing k = p+ 1.

Corollary 3.1. Let T be a time scale with a, b ∈ T. If k > 1, then

(3.18)
∫ b

a

r (t)

(∫ σ(t)

a

f (τ) ∆τ

)k
∆t ≤ kG1 (k)

∫ b

a

s(t) (f(t))
k

∆t,

where

G1(k) :=

∫ b

a

(R (t, b))
k
k−1

((∫ t

a

s
−1
k−1 (τ) ∆τ

)k)∆

∆t


k−1
k

,

and

(3.19)
∫ b

a

r (t)

(∫ b

t

f (τ) ∆τ

)k
∆t ≤ kK2 (k)

∫ b

a

s(t) (f(t))
k

∆t,

where

K2 (k) :=

(
1

k

) 1
k

∫ b

a

(R (a, σ (t)))
k
k−1 s

−1
k−1 (t)

(∫ b

t

s
−1
k−1 (τ) ∆τ

)k−1

∆t


k−1
k

.

Remark 3.5. Note that Theorems 3.6 and 3.7 are consequences of the weighted Hardy-
type inequality due to Saker et al. [29,36] with p+ 1 = q and k = p.

As special cases of Theorems 3.6 and 3.7 when T = N, we have the following new
discrete results

Corollary 3.2. Let {xn} , {λn} and {wn} be nonnegative sequences. If p > 0 and k > 1,
then

N∑
n=1

rn

(
n∑
i=1

xi

)p+1

≤ (p+ 1)G1(p+ 1, k)

(
N∑
n=1

snx
k
n

) p+1
k

,

where

G1(p+ 1, k) :=

 N∑
n=1

(R (n,N))
k
k−1 ∆

(
n∑
i=1

(si)
−1
k−1

)p+1

k−1
k

,

with R (n,N) =
∑N
i=n ri.

Corollary 3.3. Let {xn} , {λn} and {wn} be nonnegative sequences. If p > 0 and k > 1,
then

N∑
n=1

rn

(
N∑
i=n

xi

)p+1

≤ (p+ 1)K2 (p, 1, k)

(
N∑
n=1

snx
k
n

) p+1
k

,

where

K2 (p, 1, k) :=

(
1

p+ 1

) 1
k

[
N∑
n=1

(R (1, n+ 1))
k
k−1 (sn)

−1
k−1

(
N∑
i=n

(si)
−1
k−1

)p] k−1k
,

with R (1, n+ 1) =
∑n
i=1 ri.
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By making suitable substitutions for the two weighted functions r (t) and s (t) , we
get some extensions related to the dynamic inequalities due to Řehák [25] and Saker
et al. [30, 31] respectively. Also when T = N and T = R, we get consequences due to
Bennett [6], Bliss [9] and Flett [15]. For illustrations, we will present these special cases
in the following examples.

Example 3.1. If r (t) = (σ (t)− a)
−k and s (t) = 1, then inequality (3.18) reduces to

the following extension of the Hardy-type inequality due to Řehák [25, Theorem 2.1]∫ ∞
a

(
1

σ(t)− a

∫ σ(t)

a

f(τ)∆τ

)k
∆t ≤ kR1

∫ ∞
a

fk(t)∆t,

where

R1 :=

[∫ ∞
a

(R (t,∞))
k
k−1

(
(t− a)

k
)∆

∆t

] k−1
k

.

Example 3.2. If we choose r (t) = 1/tγ and s (t) = 1/tγ−k, γ > 1 in Corollary 3.1, we
get the inequality∫ ∞

a

1

tγ

(∫ σ(t)

a

f(τ)∆τ

)k
∆t ≤ kR2

∫ ∞
a

1

tγ−k
fk(t)∆t,

which is related to the inequality due to Saker and O’Regan [30, Theorem 2.2], where

R2 :=

∫ ∞
a

(R (t,∞))
k
k−1

(∫ t

a

(
1

τγ−k

) −1
k−1

∆τ

)k∆

∆t


k−1
k

.

Example 3.3. If we choose r (t) = 1/σγ (t) and s (t) = 1/σγ−k (t) in Corollary 3.1, we
have the inequality∫ ∞

a

1

σγ (t)

(∫ ∞
t

f(τ)∆τ

)k
∆t ≤ kR3

∫ ∞
a

1

σγ−k (t)
fk(t)∆t,

which is related to the inequality due to Saker and O’Regan [30, Theorem 2.1], where

R3 :=

(
1

k

) 1
k

[∫ ∞
a

(R (a, σ (t)))
k
k−1 (σ (t))

γ−k
k−1

(∫ ∞
t

(σ (τ))
γ−k
k−1 ∆τ

)k−1

∆t

] k−1
k

.

Example 3.4. If we take f (t) = λ (t) g (t) ,

r (t) =
λ (t)

(Λσ (t))
γ , s (t) = λ1−k (t) (Λσ (t))

k−γ
, k ≥ γ > 1,

in Corollary 3.1, we have the inequality∫ b

a

λ (t)

(Λσ (t))
γ

(∫ σ(t)

a

λ (τ) g (τ) ∆τ

)k
∆t ≤ kR4

∫ b

a

λ (t) (Λσ (t))
k−γ

gk (t) ∆t,

which is related to the inequality due to Saker et al. [31, Theorem 2.1], where Λ (t) =∫ t
a
λ (τ) ∆τ and

R4 :=

∫ b

a

(R (t, b))
k
k−1

((∫ t

a

s
−1
k−1 (τ) ∆τ

)k)∆

∆t


k−1
k

.
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Example 3.5. If we choose r (t) = t−1−(p+1)λ/tp+1 and s (t) = t−1−kλ, λ > −1 in
Theorem 3.6, we obtain the inequality∫ b

a

t−1−(p+1)λ

(∫ σ(t)

a
f (τ) ∆τ

t

)p+1

∆t ≤ (p+ 1)R5

[∫ b

a

t−1−kλfk(t)∆t

] p+1
k

,

which is related to the inequalities due to Flett [15] and Bliss [9], Hardy and Littlewood
[18] (with λ = −1/k), where

R5 :=

∫ b

a

(R (t, b))
k
k−1

((∫ t

a

s
−1
k−1 (τ) ∆τ

)p+1
)∆

∆t


k−1
k

.

Example 3.6. If we take

rn =
λn

Λ
1− (p+1)

k (1−c)
n

, sn = λ1−k
n Λk−cn , c > 1 and xn = λnyn,

in Corollary 3.2, we get the inequality

N∑
n=1

λnΛ
(p+1)(1−c)

k −1
n

(
n∑
i=1

λiyi

)p+1

≤ (p+ 1)R6

(
N∑
n=1

λnΛk−cn ykn

) p+1
k

,

which is related to Bennett’s inequality [6, Corollary 7], where Λn =
∑n
i=1 λi and

R6 :=

 N∑
n=1

(R (n,N))
k
k−1 ∆

(
n∑
i=1

(si)
−1
k−1

)p+1

k−1
k

,

with R (n,N) =
∑N
i=n λiΛ

(p+1)(1−c)
k −1

i .

Remark 3.6. As an application, we can apply Opial’s inequalities together with a Hardy-
type inequality (3.16) on time scales to establish some lower bounds of the distance be-
tween zeros of a solution and/or its derivatives for the fourth-order dynamic equation
(see [13, Theorem 5.1])

(3.20)
(
r(t)y∆3

(t)
)∆

−
(
p(t)y∆(t)

)∆
+ q(t)yσ(t) = 0, t ∈ [a, b]T.
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