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HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING

CONFORMABLE FRACTIONAL INTEGRALS∗

YOUSAF KHURSHID1,2, MUHAMMAD ADIL KHAN2, AND YU-MING CHU3,∗∗

Abstract. In the article, we establish an identity and several new Hermite-

Hadamard type inequalities for conformable fractional integrals. As applica-
tions, we provide some inequalities for certain bivariate means and present

the error estimations for the trapezoidal formula. The given results are the

generalization of previously results.

1. Introduction

A real-valued function f : I → R is said to be convex if the inequality

(1.1) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ I and λ ∈ [0, 1]. If inequality (1.1) holds in the reverse direction,
then we say that f is a concave function on the interval I.

The word “convexity” is one of the most important, natural and fundamental
notations in mathematics. Convex functions were presented by Johan Jensen over
100 years ago. Over the past few years, many generalizations and extensions have
been made for convexity. These extensions and generalizations in the theory of
inequalities have made valuable contributions in many areas of mathematics. Some
new generalized concepts in this point of view are quasi-convex [1], strongly convex
[2], approximately convex [3], logarithmically convex [4], midconvex functions [5],
pseudo-convex [6], ϕ-convex [7], λ-convex [8], h-convex [9], delta-convex [10], Schur
convex [11-17] and and others [18-24].

Let I ⊆ R be an interval and h : I ⊆ R → R be a convex function. Then the
well-known Hermite-Hadamard inequality [25-33] for convex functions states that
the double inequality

(1.2) h

(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1

h(x)dx ≤ h(a1) + h(a2)

2

holds for all a1, a2 ∈ I with a1 6= a2. If the function h is concave on I, then both
the inequalities in (1.2) hold in the reverse direction. It gives an estimate from both
sides of the mean value of a convex function and also ensure the integrability of
convex function. It is also a matter of great interest and one has to note that some

2010 Mathematics Subject Classification. Primary: 26D15, 26A33; Secondary: 26A51, 26A42.
Key words and phrases. Hermite-Hadamard inequality, convex function, conformable fraction-

al integral, mean, midpoint formula.
∗The research was supported by the Natural Science Foundation of China (Grant Nos.

61673169, 11301127, 11701176, 11626101, 11601485) and the Science and Technology Research
Program of Zhejiang Educational Committee (Grant no. Y201635325).

∗∗Corresponding author: Yu-Ming Chu, Email: chuyuming2005@126.com.
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of the classical inequalities for means can be obtained from Hadamard’s inequal-
ity under the utility of peculiar convex functions h. These inequalities for convex
functions play a crucial role in analysis and as well as in other areas of pure and ap-
plied mathematics. In the last 60 years, many efforts have gone on generalizations
extensions and variants of Hermite-Hadamard’s inequality (see [34-36]).

Recently, the authors in [37] defined the conformable fractional derivative as
follows: for a function h : [0,∞) → R the (conformable) fractional derivative of
order 0 < α ≤ 1 of h at s > 0 was defined by

Dα(h)(s) = lim
ε→0

h(s+ εs1−α)− f(s)

ε
,

if the conformable fractional derivative of h of order α exists, then we say that h is
α-differentiable. The fractional derivative at 0 is defined as hα(0) = lims→0+ h

α(s).
Now we recall some results for the conformable fractional derivative.

Theorem 1.1. Let α ∈ (0, 1] and h1, h2 be α-differentiable at a point s > 0. Then

dα
dαs

(sn) = nsn−α

for all n ∈ R;

dα
dαs

(c) = 0

for all constant c ∈ R;

dα
dαs

(a1h1(s) + a2h2(s)) = a1
dα
dαs

(h1(s)) + a2
dα
dαs

(h2(s))

for all constants a1, a2 ∈ R;

dα
dαs

(h1(s)h2(s)) = h1(s)
dα
dαs

(h2(s)) + h2(s)
dα
dαs

(h1(s));

dα
dαs

(
h1(s)

h2(s)

)
=
h2(s) dαdαs (h1(s))− h1(s) dαdαs (h2(s))

(h2(s))2
;

dα
dαs

(h1(h2)(s)) = h′1(h2(s))
dα
dαs

(h2(s))

if h1 differentiable at h2(s).
If in addition h1 is differentiable, then one has

dα
dαs

(h1(s)) = s1−α
d

ds
(h1(s)).

Definition 1.2. (Conformable fractional integral) Let α ∈ (0, 1] and 0 ≤
a1 < a2. Then the function h1 : [a1, a2]→ R is said to be α-fractional integrable on
[a1, a2] if the integral ∫ a2

a1

h1(x)dαx :=

∫ a2

a1

h1(x)xα−1dx

exists and is finite. All α-fractional integrable functions on [a1, a2] is indicated by
L1
α([a1, a2]).
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Remark 1. Let α ∈ (0, 1]. Then

Ia1α (h1)(s) = Ia11 (sα−1h1) =

∫ s

a1

h1(x)

x1−α
dx,

where the integral is the usual Riemann improper integral.

Anderson [38] established the conformable integral version of Hermite-Hadamard
inequality as follows:

Theorem 1.3. If α ∈ (0, 1] and h : [a1, a2] → R is an α-fractional differentiable
function such that Dαh is increasing, then one has

α

aα2 − aα1

∫ a2

a1

h(x)dαx ≤
h(a1) + h(a2)

2
.

Moreover, if the function h is decreasing on [a1, a2], then we have

h

(
a1 + a2

2

)
≤ α

aα2 − aα1

∫ a2

a1

h(x)dαx.

In particular, if α = 1, then this reduces to the classical Hermite-Hadamard in-
equality.

Due to the great importance of Hermite-Hadamard inequality, in recent years
many mathematician have shown their interest for generalizations, extensions and
variants for this inequality. In the article, we deal with the conformable integral
version of Hermite-Hadamard inequality investigated by Anderson [38]. We shall
establish an identity for the left side of the inequality and discuss their particular
case. By applying Jensen’s inequality, power mean inequality and the convexity of
the functions xα−1 and −xα (x > 0, α ∈ (0, 1]) in the identity, we obtain inequal-
ities for conformable integral version of Hermite-Hadamard inequality. By using
particular classes of convex functions we find new inequalities for special bivariate
means. We also apply the results for error estimations of the mid point formula,
for some related results (see [39-42]).

2. Main Results

We begin this section with the following Lemma 2.1, which is needed for the
establishment of our main results.

Lemma 2.1. Let α ∈ (0, 1], a1, a2 ∈ R+ with a1 < a2 and h : [a1, a2] → R be an
α-fractional differentiable function. Then the identity

(2.1) h

(
a1 + a2

2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

=
(a2 − a1)

2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1 +

sa2
2

)2α−1

− aα1
(

2− s
2

a1 +
sa2
2

)α−1)
×Dα(h)

(
2− s

2
a1 +

sa2
2

)
s1−αdαs+

∫ 1

0

((
1− s

2
a1 +

1 + s

2
a2

)2α−1

−aα2
(

1− s
2

a1 +
1 + s

2
a2

)α−1)
×Dα(h)

(
1− s

2
a1 +

1 + s

2
a2

)
s1−αdαs

]
.

holds if Dα(h) ∈ L1
α([a1, a2]).
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Proof. Integrating by parts, we have∫ 1

0

((
2− s

2
a1+

sa2
2

)2α−1

−aα1
(

2− s
2

a1+
sa2
2

)α−1)
×Dα(h)

(
2− s

2
a1+

sa2
2

)
ds

+

∫ 1

0

((
1− s

2
a1 +

1 + s

2
a2

)2α−1

− aα2
(

1− s
2

a1 +
1 + s

2
a2

)α−1)

×Dα(h)

(
1− s

2
a1 +

1 + s

2
a2

)
ds

=

∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
h′
(

2− s
2

a1 +
sa2
2

)
ds

+

∫ 1

0

((
1− s

2
a1 +

1 + s

2
a2

)α
− aα2

)
h′
(

1− s
2

a1 +
1 + s

2
a2

)
ds

=

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
h
(
2−s
2 a1 + sa2

2

)
a2−a1

2

∣∣∣∣1
0

−
∫ 1

0

α

(
2− s

2
a1 +

sa2
2

)α−1(
a2 − a1

2

)
h
(
2−s
2 a1 + sa2

2

)
a2−a1

2

ds

+

((
1− s

2
a1 +

1 + s

2
a2

)α
− aα2

)
h
(
1−s
2 a1 + 1+s

2 a2
)

a2−a1
2

∣∣∣∣1
0

−
∫ 1

0

α

(
1− s

2
a1 +

1 + s

2
a2

)α−1(
a2 − a1

2

)
h
(
1−s
2 a1 + 1+s

2 a2
)

a2−a1
2

ds

=
2

a2 − a1

[((
a1 + a2

2

)α
− aα1

)
h

(
a1 + a2

2

)
− α

∫ a1+a2
2

a

h(s)dαs

]

+
2

a2 − a1

[(
aα2 −

(
a1 + a2

2

)α)
h

(
a1 + a2

2

)
− α

∫ a2

a1+a2
2

h(s)dαs

]

=
2(aα2 − aα1 )

a2 − a1
h

(
a1 + a2

2

)
− 2α

a2 − a1

∫ a2

a1

h(x)dαx,

where we have used the change of variable x = (1−s)a1 +sa2 and then multiplying
both sides by a2−a1

2(aα2−aα1 ) to get the desired result in (2.1). �

Remark 2. By putting α = 1 in (2.1), we get the identity

h

(
a1 + a2

2

)
− 1

a2 − a1

∫ a2

a1

h(x)dx

=
a2 − a1

4

[ 1∫
0

sh′
(
sa2
2

+
2− s

2
a1

)
ds−

1∫
0

(1− s)h′
(

1− s
2

a1 +
1 + s

2
a2

)
ds

]
.
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Theorem 2.2. Let α ∈ (0, 1], a1, a2 ∈ R+ with a1 < a2 and h : [a1, a2]→ R be an
α-differentiable function on (a1, a2). Then the inequality

(2.2)

∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
≤ a2 − a1

2(aα2 − aα1 )

[
|h′(a1)|

96
[13aα2 − 19aα1 ] +

|h′(a2)|
96

[19aα2 − 21aα1 ]

−aα1 aα−12

[
2|h′(a1)|+ |h′(a2)|

12

]
+ (a1a

α−1
2 + aα−11 a2)

[
11|h′(a1)|+ 5|h′(a2)|

96

]]
holds if Dα(h) ∈ L1

α([a1, a2]) and |h′| is convex on [a1, a2].

Proof. Let ϕ1 = xα−1 and ϕ2 = −xα (x > 0, α ∈ (0, 1]). Then we clearly see that
the functions ϕ1 and ϕ2 are convex. Now using Lemma 2.1 and the convexity of
ϕ1, ϕ2 and |h′|, we have∣∣∣∣h(a1 + a2

2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
≤ a2 − a1

2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]

=
a2 − a1

2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1 +

sa2
2

)α+1−1

− aα1
)∣∣∣∣h′(2− s

2
a1 +

sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]

≤ a2 − a1
2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1+

s

2
a2

)α−1(
2− s

2
a1+

s

2
a2

)
−aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

))∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]

≤ a2 − a1
2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1+

sa2
2

)
−aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

))∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]

≤ b− a
2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1 +

sa2
2

)
− aα1

)[
2− s

2
|h′(a1)|

+
s

2
|h′(a2)|

]
ds+

∫ 1

0

(
aα2−

(
1− s

2
aα1 +

1 + s

2
aα2

))[
1− s

2
|h′(a1)|+ 1 + s

2
|h′(a2)|

]
ds

]
.

Evaluating all the above integrals, we have the following

a2 − a1
2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1 +

sa2
2

)
− aα1

)[
2− s

2
|h′(a1)|
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+
s

2
|h′(a2)|

]
ds+

∫ 1

0

(
aα2−

(
1− s

2
aα1 +

1 + s

2
aα2

))[
1− s

2
|h′(a1)|+ 1 + s

2
|h′(a2))|

]
ds

=
a2 − a1

2(aα2 − aα1 )

[
15

32
aα1 |h′(a1)|+ 11

96
aα−11 a2|h′(a1)| − 7

12
aα1 |h′(a1)|+ 11

96
a1a

α−1
2 |h′(a1)|

+
5

96
aα2 |h′(a1)| − 1

6
aα1 a

α−1
2 |h′(a1)|+ 11

96
aα1 |h′(a2)|+ 5

96
aα−11 a2|h′(a2)| − 1

6
aα1 |h′(a2)|

+
5

96
a1a

α−1
2 |h′(a2)|+ 1

32
aα2 |h′(a2)|− 1

12
aα1 a

α−1
2 |h′(a2)|+ 1

4
aα2 |h′(a1)|− 1

12
aα1 |h′(a1)|

−1

6
aα2 |h′(a1)|+ 3

4
aα2 |h′(a2)| − 1

6
aα1 |h′(a2)| − 7

12
aα2 |h′(a2)|

]

=
a2 − a1

2(aα2 − aα1 )

[
|h′(a1)|

96
[13aα2 − 19aα1 ] +

|h′(a2)|
96

[19aα2 − 21aα1 ]

−aα1 aα−12

[
2|h′(a1)|+ |h′(a2)|

12

]
+ (a1a

α−1
2 + aα−11 a2)

[
11|h′(a1)|+ 5|h′(a2)|

96

] ]
.

�

Remark 3. By putting α = 1 in (2.2), we obtain the inequality which is proved by
Kirmaci in [43]∣∣∣∣h(a1 + a2

2

)
− 1

a2 − a1

∫ a2

a1

h(x)dx

∣∣∣∣ ≤ (a2 − a1)(|h′(a1)|+ |h′(a2)|)
8

.

Theorem 2.3. Let q > 1, α ∈ (0, 1], a1, a2 ∈ R+ with a1 < a2 and h : [a1, a2]→ R
be an α-differentiable function on (a1, a2). Then the inequality

(2.3)

∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
≤ (a2 − a1)

2(aα2 − aα1 )

[
(A1(α))

1− 1
q {A2(α)|h′(a1)|q +A3(α)|h′(a2)|q}

1
q

+ (B1(α))
1− 1

q {B2(α)|h′(a1)|q +B3(α)|h′(a2)|q}
1
q

]
holds if Dα(h) ∈ L1

α([a1, a2]) and |h′|q is convex on [a1, a2], where

A1(α) =

[
(a1 + a2)α+1 − (2a1)α+1

2α(α+ 1)(a2 − a1)

]
− aα1 ,

B1(α) = aα2 −
[

(2a2)α+1 − (a1 + a2)α+1

2α(α+ 1)(a2 − a1)

]
,

A2(α) =
(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(a2 − a1)(α+ 2)

]
− 2aα+1

1

(a2 − a1)(α+ 1)

[
(a2 − a1)(α+ 2) + a1

(α+ 2)(a2 − a1)

]
− 3aα1

4
,

B2(α) =
(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(a2 − a1)(α+ 2)

]
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− aα+2
2

(a2 − a1)2(α+ 1)(α+ 2)
+
aα2
4
,

A3(α) =
(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2)− (a1 + a2)

(a2 − a1)(α+ 2)

]
− 2aα+2

1

(a2 − a1)2(α+ 1)(α+ 2)
− aα1

4
,

B3(α) =
3aα2
4

+
(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(a2 − a1)(α+ 2)

]
− 2aα+1

2

(a2 − a1)(α+ 1)

[
(α+ 2)(a2 − a1) + a2

(α+ 2)(a2 − a1)

]
.

Proof. It follows from Lemma 2.1 that∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
=

∣∣∣∣∣ (a2 − a1)

2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1+

sa2
2

)2α−1

−aα1
(

2− s
2

a1+
sa2
2

)α−1)
Dα(h)

(
2− s

2
a1+

sa2
2

)
ds

+

∫ 1

0

((
1− s

2
a1+

1 + s

2
a2

)2α−1

−aα2
(

1− s
2

a1+
1 + s

2
a2

)α−1)]
Dα(h)

(
1− s

2
a1+

1 + s

2
a2

)
ds

∣∣∣∣∣
≤ (a2 − a1)

2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]
.

From the power-mean inequality and the convexity |h′|q we get∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
≤
(∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
ds

)1− 1
q

×
(∫ 1

0

((
2− s

2
a+

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣qds) 1
q

,

1∫
0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
≤

 1∫
0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)
ds

1− 1
q

×

 1∫
0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α) ∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

)∣∣∣∣q ds


1
q

,

∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣qds
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≤
∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)[
2− s

2
|h′(a1)|q +

s

2
|h′(a2)|q

]
ds

= |h′(a1)|q
∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
2− s

2
ds

+|h′(a2)|q
∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
s

2
ds

= |h′(a1)|q
(

(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(a2 − a1)(α+ 2)

]

− 2aα+1
1

(a2 − a1)(α+ 1)

[
(a2 − a1)(α+ 2) + a1

(α+ 2)(a2 − a1)

]
− 3aα1

4

)

+|h′(a2)|q
(

(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2)− (a1 + a2)

(a2 − a1)(α+ 2)

]

− 2aα+2
1

(a2 − a1)2(α+ 1)(α+ 2)
− aα1

4

)
,

1∫
0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α) ∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

)∣∣∣∣q ds
≤

1∫
0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)[
1− s

2
|h′(a1)|q +

1 + s

2
|h′(a2)|q

]
ds

= |h′(a1)|q
1∫

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)
1− s

2
ds

+|h′(a2)|q
1∫

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)
1 + s

2
ds

= |h′(a1)|q
(

(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(a2 − a1)(α+ 2)

]

− aα+2
2

(a2 − a1)2(α+ 1)(α+ 2)
+
aα2
4

)

+|h′(a2)|q
(

3aα2
4

+
(a1 + a2)α+1

2α+1(α+ 1)(a2 − a1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(a2 − a1)(α+ 2)

]

− 2aα+1
2

(a2 − a1)(α+ 1)

[
(α+ 2)(a2 − a1) + a2

(α+ 2)(a2 − a1)

])
,

where we have used the facts that∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
ds =

[
(a1 + a2)α+1 − (2a1)α+1

2α(α+ 1)(a2 − a1)

]
− aα1 ,
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1∫
0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)
ds = aα2 −

[
(2a2)α+1 − (a1 + a2)α+1

2α(α+ 1)(a2 − a1)

]
.

Hence, we get the desired inequality (2.3). �

Remark 4. Let α = 1. Then inequality (2.3) leads to∣∣∣∣h(a1 + a2
2

)
− 1

a2 − a1

∫ a2

a1

h(x)dx

∣∣∣∣
≤ 1

2

(
a2 − a1

4

)1− 1
q

[
{A2(1)|h′(a1)|q +A3(1)|h′(a2)|q}

1
q

+ {B2(1)|h′(a1)|q +B3(1)|h′(a2)|q}
1
q

]
,

where

A2(1) =
(a1 + a2)2(4a2 − 2a1)− 8a21(3a2 − 2a1)− 18a1(a2 − a1)2

24(a2 − a1)2
,

B2(1) =
(a1 + a2)2(4a2 − 2a1)− 4a32 − 6a2(a2 − a1)2

24(a2 − a1)2
,

A3(1) =
(a1 + a2)2(2a2 − 4a1)− 8a31 − 6a1(a2 − a1)2

24(a2 − a1)2
,

B3(1) =
(a1 + a2)2(4a2 − 2a1)− 8a22(4a2 − 3a1) + 18a2(a2 − a1)2

24(a2 − a1)2
.

Theorem 2.4. Let q > 1, α ∈ (0, 1], a1, a2 ∈ R+ with a1 < a2 and h : [a1, a2]→ R
be an α-differentiable function on (a1, a2). Then the inequality

(2.4)

∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
≤ (a2 − a1)

2(aα2 − aα1 )

[
A1(α)h′

(
C1(α)

A1(α)

)
+B1(α)h′

(
C2(α)

B1(α)

)]
holds if Dα(h) ∈ L1

α([a1, a2]) and |h′|q is concave on [a1, a2], where

A1(α) =

[
(a1 + a2)α+1 − (2a1)α+1

2α(α+ 1)(a2 − a1)

]
− aα1 ,

B1(α) = aα2 −
[

(2a2)α+1 − (a1 + a2)α+1

2α(α+ 1)(a2 − a1)

]
,

C1(α) = (a1 + a2)α+2

[
(α+ 2)− 1

2α+1(α+ 1)(a2 − a1)

]
− 2aα+2

1

(α+ 2)(a2 − a1)2

[
(a2 − a1)(α+ 2) + (a1 + a2)

(α+ 1)

]
+
aα1
4

(3a1 + a2),

C2(α) =
(a1 + a2)α+2

2α+1(a2 − a1)(α+ 1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(α+ 2)(a2 − a1)

]
−aα+1

2

[
(a1 + a2) + 2(α+ 2)(a2 − a1)

(α+ 2)(a2 − a1)2(α+ 1)

]
+
aα2
4

(a1 + 3a2).
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Proof. It follows from [44] and the concavity of |h′|q that |h′| is also concave. Making
use of Lemma 2.1 and Jensen’s integral inequality we get∣∣∣∣h(a1 + a2

2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
=

∣∣∣∣∣ a2 − a1
2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
h′
(

2− s
2

a1 +
sa2
2

)
ds

+

∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)
h′
(

1− s
2

a1 +
1 + s

2
a2

)
ds

∣∣∣∣∣
≤ a2 − a1

2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]
,∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
≤
(∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

))

h′


∫ 1

0

((
2−s
2 a1 + sa2

2

)α
− aα1

)(
2−s
2 a1 + sa2

2

)
ds

∫ 1

0

((
2−s
2 a1 + sa2

2

)α
− aα1

)
ds


= A1(α)h′

(
C1(α)

A1(α)

)
,∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
≤
∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)

h′


∫ 1

0

((
aα2 −

(
1−s
2 a1 + 1+s

2 a2

)α))(
1−s
2 a1 + 1+s

2 a2
)
ds

∫ 1

0

(
aα2 −

(
1−s
2 a1 + 1+s

2 a2

)α)
ds


= B1(α)h′

(
C2(α)

B1(α)

)
,

where we used the facts that∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)
ds = A1(α) =

[
(a1 + a2)α+1 − (2a1)α+1

2α(α+ 1)(a2 − a1)

]
− aα1 ,

1∫
0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)
ds = B1(α) = aα2 −

[
(2a2)α+1 − (a1 + a2)α+1

2α(α+ 1)(a2 − a1)

]
,

∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)(
2− s

2
a1 +

sa2
2

)
ds
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= C1(α) = (a1 + a2)α+2

[
(α+ 2)− 1

2α+1(α+ 1)(a2 − a1)

]
− 2aα+2

1

(α+ 2)(a2 − a1)2

[
(a2 − a1)(α+ 2) + (a1 + a2)

(α+ 1)

]
+
aα1
4

(3a1 + a2)

and ∫ 1

0

((
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α))(
1− s

2
a1 +

1 + s

2
a2

)
ds

= C2(α) =
(a1 + a2)α+2

2α+1(a2 − a1)(α+ 1)

[
(a2 − a1)(α+ 2) + (a1 + a2)

(α+ 2)(a2 − a1)

]
−aα+1

2

[
(a1 + a2) + 2(α+ 2)(a2 − a1)

(α+ 2)(a2 − a1)2(α+ 1)

]
+
aα2
4

(a1 + 3a2).

�

Remark 5. Let α = 1. Then inequality (2.4) becomes∣∣∣∣h(a1 + a2
2

)
− 1

a2 − a1

∫ a2

a1

h(x)dx

∣∣∣∣
≤ (a2 − a1)

8

[
h′
(

(a1 + a2)3(a2 − a1)− 2a31(4a2 − 2a1) + 3a1(3a1 + a2)(a2 − a1)2

3(a2 − a1)

)

+h′
(

(a1 + a2)3(a2 − a1)(2a2 − a1)− 2a22(7a2 − 5a1) + 3a2(a1 + 3a2)(a2 − a1)2

3(a2 − a1)

)]
.

Theorem 2.5. Let q > 1, α ∈ (0, 1], a1, a2 ∈ R+ with a1 < a2 and h : [a1, a2]→ R
be an α-differentiable function. Then the inequality

(2.5)

∣∣∣∣h(a1 + a2
2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
≤ (a2 − a1)

2(aα2 − aα1 )

[
D1(α)h′

(
F1(α)

D1(α)

)
+ E1(α)h′

(
F2(α)

E1(α)

)]
holds if Dα(h) ∈ L1

α([a1, a2]) and |h′|q is concave on [a1, a2], where

D1(α) =
−5aα1 + 2aα−11 a2 + 2aα−12 a1 + aα2

12
,

E1(α) =
aα2 − aα1

4
,

F1(α) =
−27aα+1

1 − 2aα1 a2 + 11a21a
α−1
2 + 5a1a

α
2 + 5aα−11 a22 + 3aα+1

2

96
,

F2(α) =
a1a

α
2 − aα+1

1 + 2aα+1
2 − 2aα1 a2

12
.

Proof. It follows from [44] and the concavity of |h′|q that |h′| is also concave. Making
use of Lemma 2.1 and Jensen’s integral inequality one has∣∣∣∣h(a1 + a2

2

)
− α

aα2 − aα1

∫ a2

a1

h(x)dαx

∣∣∣∣
≤ a2 − a1

2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
a1 +

sa2
2

)α
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
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+

∫ 1

0

(
aα2 −

(
1− s

2
a1 +

1 + s

2
a2

)α)∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]

≤ a2 − a1
2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
aα1 +

saα2
2

)
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

))∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]

≤ a2 − a1
2(aα2 − aα1 )

[∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1+

sa2
2

)
−aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
+

∫ 1

0

(
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

))∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
]
,∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1 +

sa2
2

)
− aα1

)∣∣∣∣h′(2− s
2

a1 +
sa2
2

) ∣∣∣∣ds
≤
(∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1 +

sa2
2

)
− aα1

))

h′


∫ 1

0

((
2−s
2 aα−11 + s

2a
α−1
2

)(
2−s
2 a1 + sa2

2

)
− aα1

)(
2−s
2 a1 + sa2

2

)
ds

∫ 1

0

((
2−s
2 aα−11 + s

2a
α−1
2

)(
2−s
2 a1 + sa2

2

)
− aα1

)
ds


= D1(α)h′

(
F1(α)

D1(α)

)
,∫ 1

0

(
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

))∣∣∣∣h′(1− s
2

a1 +
1 + s

2
a2

) ∣∣∣∣ds
≤
∫ 1

0

(
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

))

h′


∫ 1

0

((
aα2 −

(
1−s
2 aα1 + 1+s

2 aα2

)))(
1−s
2 aα1 + 1+s

2 aα2
)
ds

∫ 1

0

(
aα2 −

(
1−s
2 aα1 + 1+s

2 aα2

))
ds


= E1(α)f ′

(
F2(α)

E1(α)

)
,

where we have used the facts that∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1 +

sa2
2

)
− aα1

)
ds

= D1(α) =
−5aα1 + 2aα−11 a2 + 2aα−12 a1 + aα2

12
,

1∫
0

(
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

))
ds = E1(α) =

aα2 − aα1
4

,

∫ 1

0

((
2− s

2
aα−11 +

s

2
aα−12

)(
2− s

2
a1 +

sa2
2

)
− aα1

)(
2− s

2
a1 +

sa2
2

)
ds = F1(α)
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=
−27aα+1

1 − 2aα1 a2 + 11a21a
α−1
2 + 5a1a

α
2 + 5aα−11 a22 + 3aα+1

2

96
and ∫ 1

0

((
aα2 −

(
1− s

2
aα1 +

1 + s

2
aα2

)))(
1− s

2
a1 +

1 + s

2
a2

)
ds

= F2(α) =
a1a

α
2 − aα+1

1 + 2aα+1
2 − 2aα1 a2

12
.

�

Remark 6. Let α = 1. Then inequality (2.5) leads to

(2.6) h

(
a1 + a2

2

)
− 1

a2 − a1

a2∫
a1

h(x)dx

≤ a2 − a1
8

[∣∣∣h′(a2 + 2a1
3

) ∣∣∣+
∣∣∣h′(a1 + 2a2

3

) ∣∣∣].
Note that inequality (2.6) is an improvement of the inequality obtained by Pearce

and Pečarić in [44] due to |h′| is concave on [a1, a2] and

a2 − a1
8

[∣∣∣h′(a2 + 2a1
3

) ∣∣∣+
∣∣∣h′(a1 + 2a2

3

) ∣∣∣]

=
a2 − a1

4

[
1

2

∣∣∣h′(a2 + 2a1
3

) ∣∣∣+
1

2

∣∣∣h′(a1 + 2a2
3

) ∣∣∣] ≤ a2 − a1
4

∣∣∣h′(a1 + a2
2

) ∣∣∣.
3. Applications to Special Bivariate Means

Let a, b > 0 with a 6= b. Then the arithmetic mean A(a, b) [45-50], logarithmic
mean L(a, b) [51-55] and (α, r)-th generalized logarithmic mean L(α,r)(a, b) [56-59]
are defined by

A(a, b) =
a+ b

2
, L(a, b) =

b− a
log b− log a

, L(α,r)(a, b) =

[
α(br+α − ar+α)

(r + α)(bα − aα)

]1/r
,

respectively. Recently, the bivariate means have been the subject of intensive re-
search [60-74] and many remarkable inequalities for the bivariate means and related
special functions can be found in the literature [75-97].

Making use of Theorems 2.2 and 2.3 together with the convexity of the functions
xr and 1/x (x > 0) we get some new inequalities for the arithmetic, logarithmic
and generalized means immediately.

Theorem 3.1. Let a1, a2 ∈ R+ with a1 < a2. Then the inequality

(3.1)
∣∣∣Ar(a1, a2)− Lr(α,r)(a1, a2)

∣∣∣
≤ r(a2 − a1)

2(aα2 − aα1 )

[
|a1|r−1

96
[13aα2 − 19aα1 ] +

|a2|r−1

96
[19aα2 − 21aα1 ]

−aα1 aα−12

{
2|a1|r−1 + |a2|r−1

12

}
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+(a1a
α−1
2 + aα−11 a2)

{
11|a1|r−1 + 5|a2|r−1

192

}]
holds for all r > 1 and α ∈ (0, 1].

Remark 7. Let α = 1. Then inequality (3.1) leads to

|Ar(a1, a2)− Lrr(a1, a2)| ≤ r(a2 − a1)

4
A(|a1|r−1, |a2|r−1),

which was proved by Kirmaci in [43].

Theorem 3.2. Let a1, a2 ∈ R+ with a1 < a2 and r > 1. Then the inequality∣∣∣Ar(a1, a2)− Lr(α,r)(a1, a2))
∣∣∣

≤ r(a2 − a1)

2(aα2 − aα1 )

[
(A1(α))

1− 1
q

{
A2(α)|a1|(r−1)q +A3(α)|a2|(r−1)q

} 1
q

+ (B1(α))
1− 1

q

{
B2(α)|a1|(r−1)q +B3(α)|a2|(r−1)q

} 1
q

]
holds for all q > 1 and α ∈ (0, 1].

Theorem 3.3. Let a1, a2 ∈ R+ with a1 < a2. The the inequality

(3.2)
∣∣∣Ar(a1, a2)− Lr(α,r)(a1, a2)

∣∣∣
≤ (a2 − a1)

2(aα2 − aα1 )

[
|a1|−2

96
[13aα2 − 19aα1 ] +

|a2|−2

96
[19bα − 21aα1 ]

−aα1 aα−12

{
2|a1|−2 + |a2|−2

12

}
+ (a1a

α−1
2 + aα−11 a2)

{
11|a1|−2 + 5|a2|−2

192

}]
holds for all α ∈ (0, 1].

Remark 8. Let α = 1. Then inequality (3.2) reduces to

|Ar(a1, a2)− Lrr(a1, a2)| ≤ (a2 − a1)

4
A(|a1|−2, |a2|−2),

which was proved by Kirmaci in [43].

Theorem 3.4. Let a1, a2 ∈ R+ with a1 < a2. Then the inequality∣∣∣Ar(a1, a2)− Lr(α,r)(a1, a2))
∣∣∣

≤ (a2 − a1)

2(bα − aα1 )

[
(A1(α))

1− 1
q
{
A2(α)|a1|−2q +A3(α)|a2|−2q

} 1
q

+ (B1(α))
1− 1

q
{
B2(α)|a1|−2q +B3(α)|a2|−2q

} 1
q

]
holds for all q > 1 and α ∈ (0, 1].
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4. Applications to Mid-Point Formula

Let P be the partition of the points a1 = y0 < y1 < ... < yn−1 < yn = a2 of the
interval [a1, a2] and consider the quadrature formula∫ b

a

h(x)dαx = Tα(h, P ) + Eα(h, P ),

where

Tα(h, P ) =
n−1∑
i=0

h

(
yi + yi+1

2

) (
yαi+1 − yαi

)
α

,

is the midpoint version and Eα(h, P ) denotes the associated approximation error.
In this section, we shall present some new estimates for the midpoint formula.

Theorem 4.1. Let α ∈ (0, 1], a1, a2 ∈ R+ with a1 < a2 and h : [a1, a2]→ R be an
α-differentiable function. Then the inequality

|Eα(h, P )| ≤
n−1∑
i=0

(yi+1 − yi)
2α

[
|h′(yi)|

96

[
13yαi+1 − 19yαi

]
+
|h′(yi+1)|

96

[
19yαi+1 − 21yαi

]
−yαi yα−1i+1

[
2|h′(yi)|+ |h′(yi+1)|

12

]
+ (yiy

α−1
i+1 +yα−1i yi+1)

[
11|h′(yi)|+ 5|h′(yi+1)|

12

] ]
holds if Dα(h) ∈ L1

α([a1, a2]) and |h′| is convex on [a1, a2].

Proof. Applying Theorem 2.2 on the subinterval [yi, yi+1] (i = 0, 1, ..., n− 1) of the
partition P , we have∣∣∣∣h(yi + yi+1

2

)
(yαi+1 − yαi )

α
−
∫ yi+1

yi

h(x)dαx

∣∣∣∣
≤ (yi+1 − yi)

2α

[
|h′(yi)|

96

[
13yαi+1 − 19yαi

]
+
|h′(yi+1)|

96

[
19yαi+1 − 21yαi

]
−yαi yα−1i+1

[
2|h′(yi)|+ |h′(yi+1)|

12

]
+(yiy

α−1
i+1 +yα−1i yi+1)

[
11|h′(yi)|+ 5|h′(yi+1)|

12

] ]
,∣∣∣∣∫ a2

a1

h(x)dαx− Tα(h, P )

∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=0

{∫ yi+1

yi

h(x)dαx− h
(
yi + yi+1

2

) (
yαi+1 − yαi

)
α

}∣∣∣∣∣
≤
n−1∑
i=0

∣∣∣∣∣
{∫ yi+1

yi

h(x)dαx− h
(
yi + yi+1

2

) (
yαi+1 − yαi

)
α

}∣∣∣∣∣
≤
n−1∑
i=0

(yi+1 − yi)
2α

[
|h′(yi)|

96

[
13yαi+1 − 19yαi

]
+
|h′(yi+1)|

96

[
19yαi+1 − 21yαi

]
−yαi yα−1i+1

[
2|h′(yi)|+ |h′(yi+1)|

12

]
+(yiy

α−1
i+1 +yα−1i yi+1)

[
11|h′(yi)|+ 5|h′(yi+1)|

12

] ]
.

�
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Theorem 4.2. Let q > 1, α ∈ (0, 1], a1, a2 ∈ R+ with a1 < a2 and h : [a1, a2]→ R
be an α-differentiable function. Then the inequality

|Eα(h, P )| ≤
n−1∑
i=0

(yi+1 − yi)
2α

[
(A1(α))

1− 1
q {A2(α)|h′(yi)|q +A3(α)|h′(yi+1)|q}

1
q

+ (B1(α))
1− 1

q {B2(α)|h′(yi)|q +B3(α)|h′(yi+1)|q}
1
q

]
holds if Dα(h) ∈ L1

α([a1, a2]) and |h′|q is convex on [a1, a2].

Proof. The proof is analogous to that of Theorem 4.1 only by using Theorem 2.3.
�
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[34] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Başak, Hermite-Hadamard’s inequalities for fractional

integrals and related fractional inequalities, Math. Comput. Modelling, 2013, 57(9-10), 2403–

2407.
[35] Eze R. Nwaeze, Time scale version of the Hermite-Hadamard inequality for functions convex

on the coordinates, Adv. Dyn. Syst. Appl., 2017, 12(2), 159–171.

[36] M. Adil Khan, Y.-M. Chu, T. U. Khan and J. Khan, Some new inequalities of Hermite-
Hadamard type for s-convex functions with applications, Open Math., 2017, 15, 1414–1430.

[37] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definitionof fractional derivative,
J. Comput. Appl. Math., 2014, 264, 65–70.

[38] D. R. Anderson, Taylor’s formula and integral inequalities for conformable fractional deriva-
tives, Contributions in Mathematics and Engineering, 25–43, Springer, [Cham], 2016.

[39] Y.-M. Chu, M. Adil khan, T. Ali and S. S. Dragomir, Inequalities for α-fractional differentiable
functions, J. Inequal. Appl, 2017, 2017, Article 93, 12 pages.

[40] M. Adil khan, T. Ali, S. S. Dragomir and M. Z. Sarikaya, Hermite-Hadamard type inequalities
for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Math.

RACSAM, 2018, 112(4), 1033–1048.
[41] Y.-Q. Song, M. Adil Khan, S. Zaheer Ullah and Y.-M. Chu, Integral inequalities involving

strongly convex functions, J. Funct. Spaces, 2018, 2018, Article ID 6595921, 8 pages.
[42] M. Adil Khan, S. Begum, Y. Khurshid and Y.-M. Chu, Ostrowski type inequalities involving

conformable fractional integrals, J. Inequal. Appl., 2018, 2018, Article 70, 14 pages.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.4, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

601 YOUSAF KHURSHID et al 585-604



18 YOUSAF KHURSHID1,2, MUHAMMAD ADIL KHAN2, AND YU-MING CHU3,∗∗

[43] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of

real numbers and to midpoint formula, Appl. Math. Comput., 2004, 147(1), 137–146.
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Neutrosophic BCC-ideals in BCC-algebras

Sun Shin Ahn

Department of Mathematics Education, Dongguk University, Seoul 04620, Korea

Abstract. The notions of a neutrosophic subalgebra and a neutrosohic ideal of a BCC-algebra are introduced

and consider characterizations of a neutrosophic subalgebra and a neutrosophic ideal. We define the notion of a

neutrosophic BCC-ideal of a BCC-algebra, and investigated some properties of it.

1. Introduction

Y. Kormori [8] introduced a notion of a BCC-algebras, and W. A. Dudek [4] redefined the notion of BCC-

algebras by using a dual from of the ordinary definition of Y. Kormori. In [6], J. Hao introduced the notion

of ideals in a BCC-algebra and studied some related properties. W. A. Dudek and X. Zhang [5] introdued a

BCC-ideals in a BCC-algebra and described connections between such BCC-ideals and congruences. S. S. Ahn

and S. H. Kwon [2] defined a topological BCC-algebra and investigated some properties of it.

Zadeh [10] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a general-

ization of fuzzy sets, Atanassov [3] introduced the degree of nonmembership/falsehood (f) in 1986 and defined

the intuitionistic fuzzy set. Smarandache introduced the degree of indeterminacy/neutrality (i) as independent

component in 1995 (published in 1998) and defined the neutrosophic set on three components (t, i, f) = (truth,

indeterminacy, falsehood). Jun et. al [7] introduced the notions of a neutrosophic N -subalgebras and a (closed)

neutrosophic N -ideal in a BCK/BCI-algebras and investigated some related properties. subalgebras

In this paper, we introduce the notions of a neutrosophic subalgebra and a neutrosohic ideal of a BCC-algebra

and consider characterizations of a neutrosophic subalgebra and a neutrosophic ideal. We define the notion of a

neutrosophic BCC-ideal of a BCC-algebra, and investigate some properties of it.

2. Preliminaries

By a BCC-algebra [4] we mean an algebra (X, ∗, 0) of type (2,0) satisfying the following conditions: for all

x, y, z ∈ X,

(a1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,

(a2) 0 ∗ x = 0,

(a3) x ∗ 0 = x,

(a4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

For brevity, we also call X a BCC-algebra. In X, we can define a partial order “≤” by putting x ≤ y if and

only if x ∗ y = 0. Then ≤ is a partial order on X.

0 2010 Mathematics Subject Classification: 06F35; 03G25; 03B52.
0 Keywords: BCC-algebra; ; (BCC-)ideal; neutrosophic subalgebra; neutrosophic (BCC-)ideal.
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A BCC-algebra X has the following properties: for any x, y ∈ X,

(b1) x ∗ x = 0,

(b2) (x ∗ y) ∗ x = 0,

(b3) x ≤ y ⇒ x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.

Any BCK-algebra is a BCC-algebra, but there are BCC-algebras which are not BCK-algebra [4]. Note that

a BCC-algebra is a BCK-algebra if and only if it satisfies:

(b4) (x ∗ y) ∗ z = (x ∗ z) ∗ y, for all x, y, z ∈ X.

Let (X, ∗, 0X) and (Y, ∗, 0Y ) be BCC-algebras. A mapping φ : X → Y is called a homomorphism if φ(x ∗X y) =

φ(x) ∗Y φ(y) for all x, y ∈ X. A non-empty subset S of a BCC-algebra X is called a subalgebra of X if x ∗ y ∈ S
whenever x, y ∈ S. A non-empty subset I of a BCI-algebra X is called an ideal [6] of X if it satisfies:

(c1) 0 ∈ I,
(c2) x ∗ y, y ∈ I ⇒ x ∈ I for all x, y ∈ X.

I is called an BCC-ideal [5] of X if it satisfies (c1) and

(c3) (x ∗ y) ∗ z, y ∈ I ⇒ x ∗ z ∈ I, for all x, y, z ∈ X.

Theorem 2.1. [6] In a BCC-algebra, an ideal is a subalgebra.

Theorem 2.2. [5] In a BCC-algebra, a BCC-ideal is an ideal.

Corollary 2.3. [5] Any BCC-ideal of a BCC-algebra is a subalgebra.

Definition 2.4. Let X be a space of points (objects) with generic elements in X denoted by x. A simple valued

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership

function IA(x), and a falsity-membership function FA(x). Then a simple valued neutrosophic set A can be denoted

by

A := {⟨x, TA(x), IA(x), FA(x)⟩|x ∈ X},

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore the sum of TA(x), IA(x), and FA(x) satisfies

the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

For convenience, “simple valued neutrosophic set” is abbreviated to “neutrosophic set” later.

Definition 2.5. Let A be a neutrosophic set in a B-algebra X and α, β, γ ∈ [0, 1] with 0 ≤ α+ β + γ ≤ 3 and an

(α, β, γ)-level set of X denoted by A(α,β,γ) is defined as

A(α,β,γ) = {x ∈ X|TA(x) ≤ α, IA(x) ≥ β, FA(x) ≤ γ}.

For any family {ai|i ∈ Λ}, we define

∨
{ai|i ∈ Λ} :=

{
max{ai|i ∈ Λ} if Λ is finite,

sup{ai|i ∈ Λ} otherwise
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and ∧
{ai|i ∈ Λ} :=

{
min{ai|i ∈ Λ} if Λ is finite,

inf{ai|i ∈ Λ} otherwise.

3. Neutrosophic BCC-ideals

In what follows, let X be a BCC-algebra unless otherwise specified.

Definition 3.1. A neutrosophic set A in a BCC-algebra X is called a neutrosophic subalgebra of X if it satisfies:

(NSS) TA(x ∗ y) ≤ max{TA(x), TA(y)}, IA(x ∗ y) ≥ min{IA(x), IA(y)}, and FA(x ∗ y) ≤ max{FA(x), FA(y)}, for

any x, y ∈ X.

Proposition 3.2. Every neutrosophic subalgebra of a BCC-algebra X satisfies the following conditions:

(3.1) TA(0) ≤ TA(x), IA(0) ≥ IA(x), and FA(0) ≤ FA(x) for any x ∈ X.

Proof. Straightforward. □

Example 3.3. Let X := {0, 1, 2, 3} be a BCC-algebra [6] with the following table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 1 0 1

3 3 3 3 0

Define a neutrosophic set A in X as follows:

TA : X → [0, 1], x 7→
{

0.12 if x ∈ {0, 1, 2}
0.83 if x = 3,

IA : X → [0, 1], x 7→
{

0.81 if x ∈ {0, 1, 2}
0.14 if x = 3,

and

FA : X → [0, 1], x 7→
{

0.12 if x ∈ {0, 1, 2}
0.83 if x = 3.

It is easy to check that A is a neutrosophic subalgebra of X.

Theorem 3.4. Let A be a neutrosophic set in a BCC-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α+ β + γ ≤ 3.

Then A is a neutrosophic subalgebra of X if and only if all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when

A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic subalgebra of X. Let α, β, γ ∈ [0, 1] be such that 0 ≤ α+ β + γ ≤ 3 and

A(α,β,γ) ̸= ∅. Let x, y ∈ A(α,β,γ). Then TA(x) ≤ α, TA(y) ≤ α, IA(x) ≥ β, IA(y) ≥ β and FA(x) ≤ γ, FA(y) ≤ γ.

Using (NSS), we have TA(x ∗ y) ≤ max{TA(x), TA(y)} ≤ α, IA(x ∗ y) ≥ min{IA(x), IA(y)} ≥ β, and FA(x ∗ y) ≤
max{FA(x), FA(y)} ≤ γ. Hence x ∗ y ∈ A(α,β,γ). Therefore A(α,β,γ) is a subalgebra of X.

Conversely, all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when A(α,β,γ) ̸= ∅. Assume that there exist

at, bt, ai, bi ∈ X and af , bf ∈ X such that TA(at ∗ bt) > max{TA(at), TA(bt)}, IA(ai ∗ bi) < min{IA(ai), IA(bi)}
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and FA(af ∗ bf ) > max{FA(af ), FA(bf )}. Then TA(at ∗ bt) > α1 ≥ max{TA(at), TA(bt)}, IA(ai ∗ bi) < β1 ≤
min{IA(ai), IA(bi)} and FA(af ∗ bf ) > γ1 ≥ max{FA(af ), FA(bf )} for some α1, γ1 ∈ [0, 1) and β1 ∈ (0, 1]. Hence

at, bt, ai, bi ∈ A(α1,β1,γ1), and af , bf ∈ A(α1,β1,γ1). But at ∗ bt, ai ∗ bi /∈ A(α1,β1,γ1), and af ∗ bf /∈ A(α1,β1,γ1),

which is a contradiction. Hence TA(x ∗ y) ≤ max{TA(x), TA(y)}, IA(x ∗ y) ≥ min{IA(x), IA(y)}, and FA(x ∗ y) ≤
max{TA(x), TA(y)}, for any x, y ∈ X. Therefore A is a neutrosophic subalgebra of X. □

Since [0, 1] is a completely distributive lattice with respect to the usual ordering, we have the following theorem.

Theorem 3.5. If {Ai|i ∈ N} is a family of neutrosopic subalgebras of a BCC-algebra X, then ({Ai|i ∈ N},⊆)

forms a complete distributive lattice.

Theorem 3.6. Let A be a neutrosophic subalgebra of a BCC-algebra X. If there exists a sequence {an} in

X such that limn→∞ TA(an) = 0, limn→∞ IA(an) = 1, and limn→∞ FA(an) = 0, then TA(0) = 0, IA(0) = 1, and

FA(0) = 0.

Proof. By Proposition 3.2, we have TA(0) ≤ TA(x), IA(0) ≥ IA(x), and FA(0) ≤ FA(x) for all x ∈ X. Hence we

have TA(0) ≤ TA(an), IA(0) ≥ IA(an), and FA(0) ≤ FA(an) for every positive integer n. Therefore 0 ≤ TA(0) ≤
limn→∞ TA(an) = 0, 1 = limn→∞ IA(an) ≤ IA(0) ≤ 1, and 0 ≤ FA(0) ≤ limn→∞ FA(an) = 0. Thus we have

TA(0) = 0, IA(0) = 1, and FA(0) = 0. □

Proposition 3.7. If every neutrosophic subalgebra A of a BCC-algebra X satisfies the condition

(3.2) TA(x ∗ y) ≤ TA(y), IA(x ∗ y) ≥ IA(y), FA(x ∗ y) ≤ FA(y), for any x, y ∈ X,

then TA, IA, and FA are constant functions.

Proof. It follows from (3.2) that TA(x) = TA(x ∗ 0) ≤ TA(0), IA(x) = IA(x ∗ 0) ≥ IA(0), and FA(x) = FA(x ∗ 0) ≤
FA(0) for any x ∈ X. By Proposition 3.2, we have TA(x) = TA(0), IA(x) = IA(0), and FA(x) = FA(0) for any

x ∈ X. Hence TA, IA, and FA are constant functions. □

Theorem 3.8. Every subalgebra of a BCC-algebraX can be represented as an (α, β, γ)-level set of a neutrosophic

subalgebra A of X.

Proof. Let S be a subalgebra of a BCC-algebra X and let A be a neutrosophic subalgebra of X. Define a

neutrosophic set A in X as follows:

TA : X → [0, 1], x 7→
{
α1 if x ∈ S
α2 otherwise,

IA : X → [0, 1], x 7→
{
β1 if x ∈ S
β2 otherwise,

FA : X → [0, 1], x 7→
{
γ1 if x ∈ S
γ2 otherwise,

where α1, α2, γ1, γ2 ∈ [0, 1) and β1, β2 ∈ (0, 1] with α1 < α2, β1 > β2, γ1 < γ2, and 0 ≤ α1 + β1 + γ1 ≤ 3, 0 ≤
α2 + β2 + γ2 ≤ 3. Obviously, S = A(α1,β1,γ1). We now prove that A is a neutrosophic subalgebra of X. Let

x, y ∈ X. If x, y ∈ S, then x ∗ y ∈ S because S is a subalgebra of X. Hence TA(x) = TA(y) = TA(x ∗ y) = α1,
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IA(x) = IA(y) = IA(x ∗ y) = β1, FA(x) = FA(y) = FA(x ∗ y) = γ1 and so TA(x ∗ y) ≤ max{TA(x), TA(y)},
IA(x∗y) ≥ min{IA(x), IA(y)}, FA(x∗y) ≤ max{FA(x), FA(y)}. If x ∈ S and y /∈ S, then TA(x) = α1, TA(y) = α2

, IA(x) = β1, IA(y) = β2, FA(x) = γ1, FA(y) = γ2 and so TA(x ∗ y) ≤ max{TA(x), TA(y)} = α2, IA(x ∗ y) ≥
min{IA(x), IA(y)} = β2, FA(x ∗ y) ≤ max{FA(x), FA(y)} = γ2. Obviously, if x /∈ A and y /∈ A, then TA(x ∗ y) ≤
max{TA(x), TA(y)} = α2, IA(x ∗ y) ≥ min{IA(x), IA(y)} = β2, FA(x ∗ y) ≤ max{FA(x), FA(y)} = γ2. Therefore

A is a neutrosophic subalgebra of X. □

Definition 3.9. A neutrosophic set A in a BCC-algebra X is said to be neutrosophic ideal of X if it satisfies:

(NSI1) TA(0) ≤ TA(x), IA(0) ≥ IA(x), and FA(0) ≤ FA(x) for any x ∈ X;

(NSI2) TA(x) ≤ max{TA(x ∗ y), TA(y)}, IA(x) ≥ min{IA(x ∗ y), IA(y)}, and FA(x) ≤ max{FA(x ∗ y), FA(y)}, for

any x, y ∈ X.

Proposition 3.10. Every neutrosophic ideal of a BCC-algebra X is a neutrosophic subalgebra of X.

Proof. Let A be a neutrosophic ideal of X. Put x := x ∗ y and y := x in (NSI2). Then we have TA(x ∗
y) ≤ max{TA((x ∗ y) ∗ x), TA(x)}, IA(x ∗ y) ≥ min{IA((x ∗ y) ∗ x), IA(x)}, and FA(x ∗ y) ≤ max{FA((x ∗ y) ∗
x), FA(x)}. It follows from (b2) and (NSI1) that TA(x ∗ y) ≤ max{TA((x ∗ y) ∗x), TA(x)} = max{TA(0), TA(x)} ≤
max{TA(x), TA(y)}, IA(x ∗ y) ≥ min{IA((x ∗ y) ∗ x), IA(x)} = max{IA(0), IA(x)} ≥ max{IA(x), IA(y)}, and

FA(x ∗ y) ≤ max{FA((x ∗ y) ∗ x), FA(x)} = max{FA(0), FA(x)} ≤ max{FA(x), FA(y)}. Thus A is a neutrosophic

subalgebra of X. □

Theorem 3.11. Let A be a neutrosophic set in a BCC-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α+ β + γ ≤ 3.

Then A is a neutrosophic ideal of X if and only if all of (α, β, γ)-level set A(α,β,γ) are ideals of X when A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic ideal of X. Let α, β, γ ∈ [0, 1] be such that 0 ≤ α + β + γ ≤ 3 and

A(α,β,γ) ̸= ∅. Let x, y ∈ X be such that x∗y, y ∈ A(α,β,γ). Then TA(x∗y) ≤ α, TA(y) ≤ α, IA(x∗y) ≥ β, IA(y) ≥ β,
and FA(x ∗ y) ≤ γ, FA(y) ≤ γ. By Definition 3.9, we have TA(0) ≤ TA(x) ≤ max{TA(x ∗ y), TA(y)} ≤ α, IA(0) ≥
IA(x) ≥ min{IA(x ∗ y)), IA(y)} ≥ β, and FA(0) ≤ FA(x) ≤ max{FA(x ∗ y), TA(y)} ≤ γ. Hence 0, x ∈ A(α,β,γ).

Therefore A(α,β,γ) is an ideal of X.

Conversely, suppose that there exist a, b, c ∈ X such that TA(0) > TA(a), IA(0) < IA(b), and FA(0) > FA(c).

Then there exist at, ct ∈ [0, 1) and bt ∈ (0, 1] such that TA(0) > at ≥ TA(a), IA(0) < bt ≤ IA(b) and FA(0) >

ct ≥ FA(c). Hence 0 /∈ A(at,bt,ct), which is a contradiction. Therefore TA(0) ≤ TA(x), IA(0) ≥ IA(x) and

FA(0) ≤ FA(x) for all x ∈ X. Assume that there exist at, bt, ai, bi, af , bf ∈ X such that TA(at) > max{TA(at ∗
bt), TA(bt)}, IA(ai) < min{IA(ai ∗ bi), IA(bi)}, and FA(af ) > max{TA(af ∗ bf ), TA(bf )}. Then there exist st, sf ∈
[0, 1) and si ∈ (0, 1] such that TA(at) > st ≥ max{TA(at ∗ bt), TA(bt)}, IA(ai) < si ≤ min{IA(ai ∗ bi), IA(bi)}, and

FA(af ) > sf ≥ max{TA(af ∗bf ), TA(bf )}. Hence at∗bt, bt, ai∗bi, af ∗bf ∈ A(st,si,sf ), and bt, bi, bf ∈ A(st,si,sf ). But

at, ai /∈ A(st,si,sf ) and af /∈ A(st,si,sf ). This is a contradiction. Therefore TA(x) ≤ max{TA(x∗y), TA(y)}, IA(x) ≥
min{IA(x∗y)), IA(y)} and FA(x) ≤ max{FA(x∗y), FA(y)}, for any x, y ∈ X. Therefore A is a neutrosophic ideal

of X □

Proposition 3.12. Every neutrosophic ideal A of a BCC-algebra X satisfies the following properties:
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(i) (∀x, y ∈ X)(x ≤ y ⇒ TA(x) ≤ TA(y), IA(x) ≥ IA(y), FA(x) ≤ FA(y)),

(ii) (∀x, y, z ∈ X)(x∗y ≤ z ⇒ TA(x) ≤ max{TA(y), TA(z)}, IA(x) ≥ min{IA(y), IA(z)}, FA(x) ≤ max{FA(y), FA(z)}).

Proof. (i) Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 0. Using (NSI2) and (NSI1), we have TA(x) ≤
max{TA(x ∗ y), TA(y)} = max{TA(0), TA(y)} = TA(y), IA(y) ≥ min{IA(x ∗ y), IA(y)} = min{IA(0), IA(y)} =

IA(y), and FA(x) ≤ max{FA(x ∗ y), FA(y)} = max{FA(0), FA(y)} = FA(y).

(ii) Let x, y, z ∈ X be such that x ∗ y ≤ z. By (NSI2) and (NSI1). we get TA(x ∗ y) ≤ max{TA((x ∗ y) ∗
z), TA(z)} = max{TA(0), TA(z)} = TA(z), IA(x∗y) ≥ min{IA((x∗y)∗z), IA(z)} = min{IA(0), IA(z)} = IA(z), and

FA(x ∗ y) ≤ max{FA((x ∗ y) ∗ z), FA(z)} = max{FA(0), FA(z)} = FA(z). Hence TA(x) ≤ max{TA(x ∗ y), TA(y)} ≤
max{TA(y), TA(z)}, IA(x) ≥ min{IA(x ∗ y), IA(y)} ≥ min{IA(y), IA(z)}, and FA(x) ≤ max{FA(x ∗ y), FA(y)} ≤
max{FA(y), FA(z)}. □

The following corollary is easily proved by induction.

Corollary 3.13. Every neutrosophic ideal A of a BCC-algebra X satisfies the following property:

(3.3) (· · · (x ∗ a1) ∗ · · · ) ∗ an = 0⇒ TA(x) ≤
∨n
k=1 TA(ak), IA(x) ≥

∧n
k=1 IA(ak), FA(x) ≤

∨n
k=1 FA(ak), for all

x, a1, · · · , an ∈ X.

Definition 3.14. Let A and B be neutrosophic sets of a set X. The union of A and B is defined to be a

neutrosophic set

A∪̃B := {⟨x, TA∪B(x), IA∪B(x), FA∪B(x)⟩|x ∈ X},

where TA∪B(x) = min{TA(x), TB(x)}, IA∪B(x) = max{IA(x), IB(x)}, FA∪B(x) = min{FA(x), FB(x)}, for all

x ∈ X. The intersection of A and B is defined to be a neutrosophic set

A∩̃B := {⟨x, TA∩B(x), IA∩B(x), FA∩B(x)⟩|x ∈ X},

where TA∩B(x) = max{TA(x), TB(x)}, IA∩B(x) = min{IA(x), IB(x)}, FA∩B(x) = max{FA(x), FB(x)}, for all

x ∈ X.

Theorem 3.15. The intersection of two neutrosophic ideals of a BCC-algebra X is a also a neutrosophic ideal

of X.

Proof. Let A and B be neutrosophic ideals of X. For any x ∈ X, we have TA∩B(0) = max{TA(0), TB(0)} ≤
max{TA(x), TB(x)} = TA∩B(x), IA∩B(0) = min{TA(0), TB(0)} ≥ min{IA(x), IB(x)} = IA∩B(x), and FA∩B(0) =

max{FA(0), FB(0)} ≤ max{FA(x), FB(x)} = FA∩B(x). Let x, y ∈ X. Then we have

TA∩B(x) = max{TA(x), TB(x)}

≤max{max{TA(x ∗ y), TA(y)},max{TB(x ∗ y), TB(y)}}

= max{max{TA(x ∗ y), TB(x ∗ y)},max{TA(y), TB(y)}}

= max{TA∩B(x ∗ y), TA∩B(y)},
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IA∩B(x) = min{IA(x), IB(x)}

≥min{min{IA(x ∗ y), IA(y)},min{IB(x ∗ y), IB(y)}}

= min{min{IA(x ∗ y), IB(x ∗ y)},min{IA(y), IB(y)}}

= min{IA∩B(x ∗ y), IA∩B(y)},
and

FA∩B(x) = max{FA(x), FB(x)}

≤max{max{FA(x ∗ y), FA(y)},max{FB(x ∗ y), FB(y)}}

= max{max{FA(x ∗ y), FB(x ∗ y)},max{FA(y), FB(y)}}

= max{FA∩B(x ∗ y), FA∩B(y)}.

Hence A∩̃B is a neutrosophic ideal of X. □

Corollary 3.16. If {Ai|i ∈ N} is a family of neutrosophic ideals of a BCC-algebra X, then so is ∩̃ı∈NAi.

The union of any set of neutrosophic ideals of a BCC-algebra X need not be a neutrosophic ideal of X.

Example 3.17. Let X = {0, 1, 2, 3, 4} be a BCC-algebra [5] with the following table:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 1 0 0

4 4 3 4 3 0

Define neutrosophic sets A and B of X as follows:

TA : X → [0, 1], x 7→
{

0.12, if x ∈ {0, 1}
0.74 otherwise,

IA : X → [0, 1], x 7→
{

0.63, if x ∈ {0, 1}
0.11 otherwise,

FA : X → [0, 1], x 7→
{

0.12, if x ∈ {0, 1}
0.74 otherwise,

TB : X → [0, 1], x 7→
{

0.13, if x ∈ {0, 2}
0.63 otherwise,

IB : X → [0, 1], x 7→
{

0.75, if x ∈ {0, 2}
0.14 otherwise,

and

FB : X → [0, 1], x 7→
{

0.13, if x ∈ {0, 2}
0.63 otherwise.

It is easy to check that A and B are neutrosophic ideals of X. But A∪̃B is not a neutrosophic ideal of

X, since TA∪B(3) = min{TA(3), TB(3)} = 0.63 ≰ max{TA∪B(3 ∗ 2), TA∪B(2)} = max{TA∪B(1), TA∪B(2)} =

max{min{TA(1), TB(1)},min{TA(2), TB(2)}} = max{0.12, 0.13} = 0.13.
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Definition 3.18. A neutrosophic set A in a BCC-algebra X is said to be a neutrosophic BCC-ideal of X if it

satisfies (NSI1) and

(NSI3) TA(x ∗ z) ≤ max{TA((x ∗ y) ∗ z), TA(y)}, IA(x ∗ z) ≥ min{IA((x ∗ y) ∗ z), IA(y)}, and FA(x ∗ z) ≤
max{FA((x ∗ y) ∗ z), FA(y)}, for any x, y, z ∈ X.

Lemma 3.19. Every neutrosophic BCC-ideal of a BCC-algebra X is a neutrosophic ideal of X.

Proof. Let A be a neutrosophic BCC-ideal of a BCC-algebra X. Put z := 0 in (NSI3). By (a3), we have

TA(x ∗ 0) = TA(x) ≤ max{TA((x ∗ y) ∗ 0), TA(y)} = max{TA(x ∗ y), TA(y)}, IA(x ∗ 0) = IA(x) ≥ min{IA((x ∗ y) ∗
0), IA(y)} = min{IA(x∗y), IA(y)}, and FA(x∗0) = FA(x) ≤ max{FA((x∗y)∗0), FA(y)} = max{FA(x∗y), FA(y)},
for any x, y ∈ X. Hence A is a neutrosophic ideal of X. □

Corollary 3.20. Every neutrosophic BCC-ideal of a BCC-algebra X is a neutrosophic subalgebra of X.

The converse of Proposition 3.10 and Lemma 3.19 need not be true in general (see Example 3.21).

Example 3.21. Let X = {0, 1, 2, 3, 4} be a BCC-algebra as in Example 3.17. Define a neutrosophic set A of X

as follows:

TA : X → [0, 1], x 7→
{

0.13 if x ∈ {0, 1, 2, 3}
0.83 if x = 4,

IA : X → [0, 1], x 7→
{

0.82 if x ∈ {0, 1, 2, 3}
0.11 if x = 4,

and

FA : X → [0, 1], x 7→
{

0.13 if x ∈ {0, 1, 2, 3}
0.83 if x = 4,

It is easy to check that A is a neutrosophic subalgebra of X, but not a neutrosophic ideal of X, since TA(4) =

0.83 ≰ max{TA(4∗3), TA(3)} = max{TA(3), TA(3)} = 0.13. Consider a neutrosophic set B of X which is given by

TB : X → [0, 1], x 7→
{

0.14 if x ∈ {0, 1},
0.84 if x ∈ {2, 3, 4}

IB : X → [0, 1], x 7→
{

0.85 if x ∈ {0, 1}
0.12 if x ∈ {2, 3, 4},

and

FB : X → [0, 1], x 7→
{

0.14 if x ∈ {0, 1}
0.84 if x ∈ {2, 3, 4}.

It is easy to show that B is a neutrosophic ideal of X, but not a neutrosophic BCC-ideal of X, since TB(4 ∗ 3) =

TB(3) = 0.84 ≰ max{TB((4 ∗ 1) ∗ 3), TB(1)} = max{TB(0), TB(1)} = 0.14.
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Example 3.22. Let X = {0, 1, 2, 3, 4, 5} be a BCC-algebra [5] with the following table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 1 0 0 0 0 1

2 2 2 0 0 1 1

3 3 2 1 0 1 1

4 4 4 4 4 0 1

5 5 5 5 5 5 0

Define a neutrosophic set A of X as follows:

TA : X → [0, 1], x 7→
{

0.43 if x ∈ {0, 1, 2, 3, 4}
0.55 if x = 5,

IA : X → [0, 1], x 7→
{

0.54 if x ∈ {0, 1, 2, 3 4}
0.42 if x = 5,

and

FA : X → [0, 1], x 7→
{

0.43 if x ∈ {0, 1, 2, 3, 4}
0.55 if x = 5.

It is easy to check that A is a neutrosophic BCC-ideal of X.

Theorem 3.23. Let A be a neutrosophic set in a BCC-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α+ β + γ ≤ 3.

Then A is a neutrosophic BCC-ideal of X if and only if all of (α, β, γ)-level set A(α,β,γ) are BCC-ideals of X

when A(α,β,γ) ̸= ∅.

Proof. Similar to Theorem 3.11. □

Proposition 3.24. Let A be a neutrosophic BCC-ideal of a BCC-algebra X. Then XT := {x ∈ X|TA(x) =

TA(0)}, XT := {x ∈ X|IA(x) = IA(0)}, and XF := {x ∈ X|FA(x) = FA(0)} are BCC-ideals of X.

Proof. Clearly, 0 ∈ XT . Let (x ∗ y) ∗ z, y ∈ XT . Then TA((x ∗ y) ∗ z) = TA(0) and TA(y) = TA(0). It follows

from (NSI3) that TA(x ∗ z) ≤ max{TA((x ∗ y) ∗ z), TA(y)} = TA(0). By (NSI1), we get TA(x ∗ z) = TA(0). Hence

x ∗ z ∈ XT . Therefore XT is a BCC-ideal of X. By a similar way, XI and XF are BCC-ideals of X. □
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Abstract. We investigate the global behavior of two difference equations with exponential nonlinearities

xn+1 = be−cxn + pxn−1, n = 0, 1, . . .

where the parameters b, c are positive real numbers and p ∈ (0, 1) and

xn+1 = a+ bxn−1e
−xn , n = 0, 1, . . .

where the parameters a, b are positive numbers. The the initial conditions x−1, x0 are arbitrary nonnegative numbers. The
two equations are well known mathematical models in biology which behavior was studied by other authors and resulted
in partial global dynamics behavior. In this paper, we complete the results of other authors and give the global dynamics
of both equations. In order to obtain our results we will prove several results on global attractivity and boundedness and
unboundedness for general second order difference equations

xn+1 = f(xn, xn−1), n = 0, 1, . . .

which are of interest on their own.

Keywords. attractivity, difference equation, invariant sets, period doubling, periodic solutions, stable set .
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1 Introduction and Preliminaries

We investigate the global behavior of the system of difference equations

xn+1 = be−cxn + pyn, yn+1 = xn, n = 0, 1, . . . (1)

where the parameters b and c are positive real numbers, p ∈ (0, 1), and the initial conditions x−1, x0 are arbitrary nonnegative
numbers. This system can be rewritten in the form of the second order difference equation

xn+1 = be−cxn + pxn−1, n = 0, 1, . . . (2)

In [5], the authors originally studied this model to describe the synchrony of ovulation cycles of the Glaucous-winged Gulls.
The model assumed that there is an infinite breeding season as well as the number of gulls available to breed is infinite. The
value of c is a positive number representing the colony density. The parameter b is the number of birds per day ready to
begin ovulating. The parameter p is the probability that a bird will begin to ovulate and 1 − e−cxn is the probability of
delaying ovulation. In making the model, the authors assumed that the delay only occurs for birds entering the system, not
birds switching between different segments of the cycle. Note the authors state that the bifurcation of two-cycle solutions
is the same as ovulation synchrony with the value of c increasing. In [5], they used the local bifurcation theory to come to
the conclusion that there exists a unique equilibrium such that for sufficiently small values of c, the equilibrium branch is
locally asymptotically stable. Additionally, for large enough values of c, there exists a two-cycle branch that will be locally
asymptotically stable. In this paper we will improve these results by making them global. Using the results of Camouzis and
Ladas, see [2] and [6], we are able to find the global dynamics of (1), which was not completed in [5]. We will show that
Equation (1) exhibits global period doubling bifurcation described by Theorem 5.1 in [11], which shows that global dynamics
of Equation (1) changes from global asymptotic stability of the unique equilibrium solution to the global asymptotic stability
of the minimal period-two solution within its basin of attraction, as the parameter passes through the critical value.

By using a similar method, we investigate the dynamics of

xn+1 = a+ bxn−1e
−xn , n = 0, 1, . . . (3)

where the parameters a, b are positive real numbers and the the initial conditions x−1, x0 are arbitrary nonnegative numbers.
As it was mentioned in [8], Equation (3) could be considered as a mathematical model in biology where a represent the

1Corresponding author, e-mail: mkulenovic@uri.edu
2Partially supported by Maitland P. Simmons Foundation
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constant immigration and b represent the population growth rate. In this paper we find a simpler equivalent condition to

−a+
√
a2+4a

a+
√
a2+4a

e
a+

√
a2+4a

2 < b in [8] for the existence of a minimal period-two solution. We split the results into the two cases of

b ≥ ea and b < ea. While using a similar method as in [9] to establish the existence of a period-two solution when b < ea, we
are able to find the global dynamics of Equation (3). By using new results for general second order difference equation we will
prove the existence of unbounded solutions for the case when b ≥ ea. Similar as for Equation (1) we will show that Equation
(3) exhibits global period doubling bifurcation described by Theorem 5.1 in [11]. In addition, we give the precise description
of the basins of attractions of all attractors of both Equations (1) and (3).
The rest of the paper is organized as follows. In the rest of this section we introduce some known results about monotone
systems in the plane needed for the proofs of the main results as well as some new results about the existence of unbounded
solutions. Section 2 gives the global dynamics of Equation (1) and Section 3 gives the global dynamics of Equation (3).

The next result, which is combination of two theorems from [2] and [6], is important for the global dynamics of general
second order difference equation.

Theorem 1 Let I be a set of real numbers and f : I × I → I be a function which is either non-increasing in the first variable
and non-decreasing in the second variable or non-decreasing in both variables. Then, for every solution {xn}∞n=−1 of the
equation

xn+1 = f (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, . . . (4)

the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution are eventually monotonic.

We now give some basic notions about monotone maps in the plane.
Consider a partial ordering � on R2 where x, y ∈ R2 are said to be related if x � y or y � x. Also, a strict inequality

between points may be defined as x ≺ y if x � y and x 6= y. A stronger inequality may be defined as x = (x1, x2)� y = (y1, y2)
if x � y with x1 6= y1 and x2 6= y2.

A map T on a nonempty set R ⊂ R2 is a continuous function T : R → R. The map T is monotone if x � y implies
T (x) � T (y) for all x, y ∈ R, and it is strongly monotone on R if x ≺ y implies that T (x)� T (y) for all x, y ∈ R. The map
is strictly monotone on R if x ≺ y implies that T (x) ≺ T (y) for all x, y ∈ R.

Throughout this paper we shall use the North-East ordering (NE) for which the positive cone is the first quadrant, i.e.
this partial ordering is defined by (x1, y1) �ne (x2, y2) if x1 ≤ x2 and y1 ≤ y2 and the South-East (SE) ordering defined as
(x1, y1) �se (x2, y2) if x1 ≤ x2 and y1 ≥ y2.

A map T on a nonempty set R ⊂ R2 which is monotone with respect to the North-East ordering is called cooperative and
a map monotone with respect to the South-East ordering is called competitive.

If T is differentiable map on a nonempty set R, a sufficient condition for T to be strongly monotone with respect to the
SE ordering is that the Jacobian matrix at all points x has the sign configuration

sign (JT (x)) =

[
+ −
− +

]
, (5)

provided that R is open and convex.
For x ∈ R2, define Q`(x) for ` = 1, . . . , 4 to be the usual four quadrants based at x and numbered in a counterclockwise

direction. Basin of attraction of a fixed point (x̄, ȳ) of a map T , denoted as B((x̄, ȳ)), is defined as the set of all initial points
(x0, y0) for which the sequence of iterates Tn((x0, y0)) converges to (x̄, ȳ). Similarly, we define a basin of attraction of a
periodic point of period p. The next five results, from [12, 11], are useful for determining basins of attraction of fixed points
of competitive maps. Related results have been obtained by H. L. Smith in [14, 13].

Theorem 2 Let T be a competitive map on a rectangular region R ⊂ R2. Let x ∈ R be a fixed point of T such that
∆ := R ∩ int (Q1(x) ∪ Q3(x)) is nonempty (i.e., x is not the NW or SE vertex of R), and T is strongly competitive on ∆.
Suppose that the following statements are true.

a. The map T has a C1 extension to a neighborhood of x.
b. The Jacobian JT (x) of T at x has real eigenvalues λ, µ such that 0 < |λ| < µ, where |λ| < 1, and the eigenspace Eλ

associated with λ is not a coordinate axis.
Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of attraction of x, such that C is

tangential to the eigenspace Eλ at x, and C is the graph of a strictly increasing continuous function of the first coordinate on
an interval. Any endpoints of C in the interior of R are either fixed points or minimal period-two points. In the latter case,
the set of endpoints of C is a minimal period-two orbit of T .

We shall see in Theorem 4 that the situation where the endpoints of C are boundary points of R is of interest. The
following result gives a sufficient condition for this case.
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Theorem 3 For the curve C of Theorem 2 to have endpoints in ∂R, it is sufficient that at least one of the following conditions
is satisfied.

i. The map T has no fixed points nor periodic points of minimal period-two in ∆.
ii. The map T has no fixed points in ∆, det JT (x) > 0, and T (x) = x has no solutions x ∈ ∆.
iii. The map T has no points of minimal period-two in ∆, det JT (x) < 0, and T (x) = x has no solutions x ∈ ∆.

For maps that are strongly competitive near the fixed point, hypothesis b. of Theorem 2 reduces just to |λ| < 1. This
follows from a change of variables [14] that allows the Perron-Frobenius Theorem to be applied. Also, one can show that in
such case no associated eigenvector is aligned with a coordinate axis.

The next result is useful for determining basins of attraction of fixed points of competitive maps.

Theorem 4 (A) Assume the hypotheses of Theorem 2, and let C be the curve whose existence is guaranteed by Theorem 2.
If the endpoints of C belong to ∂R, then C separates R into two connected components, namely

W− := {x ∈ R \ C : ∃y ∈ C with x �se y} and W+ := {x ∈ R \ C : ∃y ∈ C with y �se x} , (6)

such that the following statements are true.
(i) W− is invariant, and dist(Tn(x), Q2(x))→ 0 as n→∞ for every x ∈ W−.
(ii) W+ is invariant, and dist(Tn(x), Q4(x))→ 0 as n→∞ for every x ∈ W+.
(B) If, in addition to the hypotheses of part (A), x is an interior point of R and T is C2 and strongly competitive in a

neighborhood of x, then T has no periodic points in the boundary of Q1(x) ∪Q3(x) except for x, and the following statements
are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that Tn(x) ∈ intQ2(x) for n ≥ n0.
(iv) For every x ∈ W+ there exists n0 ∈ N such that Tn(x) ∈ intQ4(x) for n ≥ n0.

If T is a map on a set R and if x is a fixed point of T , the stable set Ws(x) of x is the set {x ∈ R : Tn(x) → x} and
unstable set Wu(x) of x is the set{

x ∈ R : there exists {xn}0n=−∞ ⊂ R s.t. T (xn) = xn+1, x0 = x, and lim
n→−∞

xn = x

}
When T is non-invertible, the set Ws(x) may not be connected and made up of infinitely many curves, or Wu(x) may not be
a manifold. The following result gives a description of the stable and unstable sets of a saddle point of a competitive map. If
the map is a diffeomorphism on R, the sets Ws(x) and Wu(x) are the stable and unstable manifolds of x.

Theorem 5 In addition to the hypotheses of part (B) of Theorem 4, suppose that µ > 1 and that the eigenspace Eµ associated
with µ is not a coordinate axis. If the curve C of Theorem 2 has endpoints in ∂R, then C is the stable set Ws(x) of x, and
the unstable set Wu(x) of x is a curve in R that is tangential to Eµ at x and such that it is the graph of a strictly decreasing
function of the first coordinate on an interval. Any endpoints of Wu(x) in R are fixed points of T .

Remark 1 We say that f(u, v) is strongly decreasing in the first argument and strongly increasing in the second argument
if it is differentiable and has first partial derivative D1f negative and first partial derivative D2f positive in a considered set.
The connection between the theory of monotone maps and the asymptotic behavior of Equation (4) follows from the fact that
if f is strongly decreasing in the first argument and strongly increasing in the second argument, then the second iterate of a
map associated to Equation (4) is a strictly competitive map on I × I, see [11].

Set xn−1 = un and xn = vn in Equation (4) to obtain the equivalent system

un+1 = vn
vn+1 = f(vn, un)

, n = 0, 1, . . . .

Let T (u, v) = (v, f(v, u)). The second iterate T 2 is given by

T 2(u, v) = (f(v, u), f(f(v, u), v))

and it is strictly competitive on I × I, see [12].

Remark 2 The characteristic equation of Equation (4) at an equilibrium point (x̄, x̄):

λ2 −D1f(x̄, x̄)λ−D2f(x̄, x̄) = 0, (7)

has two real roots λ, µ which satisfy λ < 0 < µ, and |λ| < µ, whenever f is strictly decraesing in first and increasing in second
variable. Thus the applicability of Theorems 2-5 depends on the existence or nonexistence of minimal period-two solutions.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.4, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

617 KULENOVIC-BEAVER 615-627



We now present theorems relating to the existence of unbounded solutions of Equation (4). The original result was
obtained in [4]. Here we give an improved version of Theorem 2.1 in [4] taking out the extraneous conditions of requiring
a continuity of f and the existence of an equilibrium solution. Additionally, we have extended the results in [4] to obtain a
theorem in which the function f is nondecreasing in both arguments.

Theorem 6 Assume that the function f : I× I → I is nonincreasing in the the first variable and nondecreasing in the second
variable, where I ⊂ R is an interval. Assume there exists numbers L,U ∈ I such that L < U which satisfy

f(U,L) ≤ L (8)

and
f(L,U) ≥ U, (9)

where at least one inequality is strict. If x−1 ≤ L and x0 ≥ U, then the corresponding solution {xn}∞n=−1 satisfies

x2n−1 ≤ L and x2n ≥ U, n = 0, 1, . . .

If, in addition, f is continuous and Equation (4) has no minimal period-two solution then,

lim
n→∞

x2n =∞ and/or lim
n→∞

x2n−1 = −∞.

Similarily, if x−1 ≥ U and x0 ≤ L, then the corresponding solution {xn}∞n=−1 satisfies

x2n−1 ≥ U and x2n ≤ L, n = 0, 1, . . .

If, in addition, f is continuous and Equation (4) has no minimal period-two solution then,

lim
n→∞

x2n−1 =∞ and/or lim
n→∞

x2n = −∞.

Proof. Assume that x−1 ≤ L and x0 ≥ U. Then by using the monotonicity of f (nonincreasing in the first variable and
nondecreasing in the second variable) and conditions (8) and (9) we obtain

x1 = f(x0, x−1) ≤ f(U,L) ≤ L

and
x2 = f(x1, x0) ≥ f(L,U) ≥ U.

By using induction it follows that x2n−1 ≤ L and x2n ≥ U for all n = 0, 1, . . . where at least one inequality is strict. In view of
Theorem 1 both sequences {x2n}∞n=0 and {x2n−1}∞n=0 are eventually monotonic. Assume that f is a continuous function and
there is no minimal period-two solution. We will consider a few cases based on the properties of the interval I. First suppose
there exist a ∈ R such that I = [a,∞) and a < L. Then {x2n−1}∞n=0 will be convergent as the subsequence is bounded in
[a, L]. If {x2n}∞n=0 converges, this would create a contradiction as there would exist a minimal period-two solution. Therefore,

lim
n→∞

x2n =∞.

Next suppose that for some b ∈ R, both I = (−∞, b] and U < b. Here {x2n}∞n=0 will be convergent as the subsequence is
bounded in the interval of [U, b]. So {x2n−1}∞n=0 cannot converge as there is no minimal period-two solution resulting in

lim
n→∞

x2n−1 = −∞.

If I = (−∞,∞), then similar to the two cases above, at most one subsequence can converge as there is no minimal period-two
solution. So either

lim
n→∞

x2n =∞ or lim
n→∞

x2n−1 = −∞.

with the option of both occurring. Finally, we will prove that I cannot be I = [a, b] where a, b ∈ R. Suppose that I = [a, b]
such that a < L < U < b and a, b ∈ R. Since xn ∈ [a, b] for all n, both subsequences would be convergent. As limn→∞ x2n−1 =
p < limn→∞ x2n = q for some p, q ∈ R, there exists a period-two solution, which is a contradiction. The case when x−1 ≥ U
and x0 ≤ L will follow similarly to the proof used here. 2

Many examples of the use of Theorem 6 are provided in [4].

Theorem 7 Assume that f : I × I → I is a function which is nondecreasing in both variables, where I ⊂ R is an interval.
Assume there exists numbers L,U ∈ I such that L < U where

f(L,L) ≤ L (10)
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and
f(U,U) ≥ U (11)

are satisfied, where at least one inequality is strict. If x−1, x0 ≤ L, then the corresponding solution {xn}∞n=−1 of Equation (4)
satisfies

xn ≤ L, n = 0, 1, . . .

If, in addition, f is continuous and Equation (4) has no minimal period-two solution, then either xn converges to an equilibrium
point or

lim
n→∞

x2n−1 = −∞ and/or lim
n→∞

x2n = −∞.

If x−1, x0 ≥ U, then the corresponding solution {xn}∞n=−1 satisfies

xn ≥ U, n = 0, 1, . . .

If, in addition, f is continuous and Equation (4) has no period-two solution, then either xn converges to an equilibrium point
or

lim
n→∞

x2n−1 =∞ and/or lim
n→∞

x2n =∞.

Proof. Assume that x−1, x0 ≤ L. Then by using the monotonicity of f (both variables are nondecreasing) and conditions
(10) and (11) we obtain

x1 = f(x0, x−1) ≤ f(L,L) ≤ L and x2 = f(x1, x0) ≤ f(L,L) ≤ L.

By using induction it follows that x2n−1, x2n ≤ L for all n = 0, 1, . . . with at least one inequality being strict. In view of
Theorem 1 both sequences {x2n}∞n=0 and {x2n−1}∞n=0 are eventually monotonic. We can assume that f is continuous and
that there is no minimal period-two solution. We can choose the value of L such that at most one equilibrium is included
in the region. Note the subsequences may converge to the equilibrium point if present. We will break this proof into cases
for different intervals I assuming that the subsequences do not converge to an equilibrium point. First suppose that either
I = [a,∞) or I = [a, b] for some a, b ∈ R such that a < L < U < b. As both subsequences are less than L, then xn ∈ [a, L] for
every n. As a consequence, both subsequences will be convergent. Thus, limn→∞ x2n−1 = p and limn→∞ x2n = q. If p = q, we
get a contradiction as the subsequences do not converge to an equilibrium point. Otherwise, p 6= q, so (p, q) is a period-two
solution, which is a contradiction as well. Thus, for I = [a,∞) or I = [a, b], there must be an equilibrium point present. Next
suppose that either I = (−∞, a] or I = (−∞,∞). Now xn ∈ (−∞, L] for all n. At least one subsequence must be decreasing as
the subsequences do not converge to an equilibrium point. Furthermore since there is no period-two solution, the subsequences
cannot be bounded below resulting in either

lim
n→∞

x2n = −∞ or lim
n→∞

x2n−1 = −∞.

with the possibility of both options occurring.
Now assume that x−1, x0 ≥ U. Then by using the monotonicity of f and conditions (10) and (11) we obtain

x1 = f(x0, x−1) ≥ f(U,U) ≥ U

and
x2 = f(x1, x0) ≥ f(U,U) ≥ U.

By using induction it follows that x2n−1, x2n ≥ U for all n = 0, 1, . . . with at least one inequality being strict. In view of
Theorem 1 both sequences {x2n}∞n=0 and {x2n−1}∞n=0 are eventually monotonic. Assume that f is continuous and that there
is no minimal period-two solution. We can choose the value of U such that at most one equilibrium is included in the region.
Note the subsequences may converge to the equilibrium point if present. We will break this proof into cases for different
intervals I assuming that the subsequences do not converge to an equilibrium point. First suppose that either I = (−∞, b]
or I = [a, b] for some a, b ∈ R such that a < L < U < b. As both subsequences are greater than U , then xn ∈ [U, b] for every
n. As a consequence, both subsequences will be convergent. Thus, limn→∞ x2n−1 = p and limn→∞ x2n = q. If p = q, we
get a contradiction as the subsequences do not converge to an equilibrium point. Otherwise, p 6= q, so (p, q) is a period-two
solution, which is a contradiction as well. Thus, for I = (−∞, b] or I = [a, b], there must be an equilibrium point present. Next
suppose that either I = [a,∞] or I = (−∞,∞). Now xn ∈ [U,∞) for all n. At least one subsequence must be increasing as the
subsequences do not converge to an equilibrium point. Furthermore since there is no period-two solution, the subsequences
cannot be bounded above resulting in either

lim
n→∞

x2n =∞ or lim
n→∞

x2n−1 =∞.

with the option of both occurring. 2

Now we give few examples which illustrate all possible scenarios of Theorem 7.
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Example 1 Consider the difference equation

xn+1 = x2n + x2n−1, n = 1, 2, . . .

where x−1, x0 ∈ R+, and xn ≥ 0 for n = 1, 2, . . .. Here f(u, v) = u2 + v2 is increasing in both variables. The equilibrium
points are x0 = 0 and x+ = 1/2. The linearized difference equation is zn+1 = 2xzn + 2xzn−1 and the characteristic equation
is λ2 = 2xλ+ 2x. The zero equilibrium x0 is locally asymptotically stable. For the equilibrium point x+, λ

2 = λ+ 1, so that

λ1,2 = 1±
√
5

2
. As 1+

√
5

2
> 1 and 1−

√
5

2
∈ (−1, 0), then x+ is a saddle point. There is no minimal period-two solution as

φ = ψ2 + φ2 and ψ = φ2 + ψ2

implies φ = ψ. Now we want to find a L < U that satisfies the conditions (10) and (11). Condition (10) f(L,L) ≤ L implies
2L2 ≤ L, which simplifies to L ≤ 1/2. As well, f(U,U) ≥ U if 2U2 ≥ U , which simplifies to U ≥ 1/2. We can choose at
least one of these inequalities to be strict. From Theorem 7, we can conclude that every solution with x1, x0 ≤ L converges
to 0, while every solution with x−1, x0 ≥ U is eventually increasing and tends toward ∞. As L < 1/2 < U are arbitrary this
conclusion holds for every case where x−1, x0 ≤ L or x−1, x0 ≥ U . These results do not give conclusions when x−1 ≤ L and
x0 ≥ U or x−1 ≥ U and x0 ≤ L. In this case one may use theory of monotone maps as in [3].

Example 2 Consider the difference equation

xn+1 = x2n + x2n−1 + a, n = 1, 2, . . .

where a > 1/8, xn ≥ 0, and x−1, x0 ∈ R. Here f(u, v) = u2 + v2 + a is increasing in both variables. There is no equilibrium
points as the discriminant of the equilibrium equation 1− 8a < 0 and no minimal period-two solution exists as

φ = ψ2 + φ2 + a and ψ = φ2 + ψ2 + a

implies φ = ψ. We can find U that satisfies the conditions (10) and (11) of Theorem 7. As f(U,U) ≥ U simplifies to
2U2 + a ≥ U , which always holds, every solution will be eventually increasing and tends to ∞.

Example 3 Consider the difference equation

xn+1 = x5n + x5n−1, n = 1, 2, . . .

where x−1, x0 ∈ R. The function f(u, v) = u5 + v5 is increasing in both variables. The equilibrium points are x0 = 0 and
x± = ±1/ 4

√
2. The characteristic equation at the equilibrium solution x̄ is λ2 = 5x4λ + 5x4. For the equilibrium point x0,

λ2 = 0 so that λ1,2 = 0 and x0 is locally asymptotically stable. For the equilibrium point x±, λ
2 = 5/2λ + 5/2, so that

λ1,2 = 5±
√

65
4

. As 5+
√
65

4
> 1 and 5−

√
65

4
∈ (−1, 0), then the equilibrium points x± are saddle points. There is no minimal

period-two solution as

φ = ψ5 + φ5 and ψ = φ5 + ψ5

implies φ = ψ.
Now we want to find L < U that satisfies the conditions of Theorem 7. Clearly f(L,L) ≤ L if 2L5 ≤ L, which simplifies

to L ≤ 1/ 4
√

2 if L > 0 and to L ≤ −1/ 4
√

2 if L < 0. As well, f(U,U) ≥ U if 2U5 ≥ U , which simplifies to U ≥ 1/ 4
√

2.
We can choose at least one of these inequalities to be strict. From Theorem 7, we can conclude that every solution with
x1, x0 ≤ L,L > 0 converges to 0, while every solution with x−1, x0 ≥ U is eventually increasing and tends toward ∞. As
L < 1/ 4

√
2 < U are arbitrary we conclude that

lim
n→∞

xn =


0 when x̄− < x−1, x0 < x̄+,
∞ when x−1, x0 > x̄+,
−∞ when x−1, x0 < x̄−.

Theorem 7 does not apply when x−1 ≤ L and x0 ≥ U or x−1 ≥ U and x0 ≤ L. In this cases one can use the results from [3].

Example 4 Consider the difference equation

xn+1 =
ax2n

1 + x2n
+

bx2n−1

1 + x2n−1

, n = 1, 2, . . .

where a, b > 0 and x−1, x0 ∈ R. The function f(u, v) = au2

1+u2 + bv2

1+v2
is increasing in both variables. One equilibrium point

is x0 = 0. The non-zero equilibrium point satisfies the quadratic equation 1 + x2 − (a + b)x = 0 which has real solutions if
(a+ b)2−4 ≥ 0. If a+ b < 2, then there only exist x0, if a+ b = 2, then there exists x0 and x, and if a+ b > 2, then there exist
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three equilibrium points x0 < x− < x+. The characteristic equation at the equilibrium solution x̄ is λ2 = 2ax
(1+x2)2

λ+ 2bx
(1+x2)2

.

For the equilibrium point x0, λ
2 = 0 so that λ1,2 = 0 and thus, x0 is locally asymptotically stable. The conditions for local

stability of the equilibrium points x̄± are quite involved and can be found in [1]. In particular x− will either be a saddle point,
repeller, or non-hyperbolic depending on whether 2a(a + b) + (a − b)

√
(a+ b)2 − 4 is greater than, less than, or equal to 0,

and the equilibrium point x+ is either locally asymptotically stable or non-hyperbolic when it exists.

Now we want to find a L < U that satisfies the conditions (10) and (11) of Theorem 7. First f(L,L) ≤ L if (a+b)L2

1+L2 ≤ L,

which simplifies to 0 ≤ 1 + L2 − (a+ b)L. This will occur when L < L− or L > L+ where we can set L− = x− and L+ = x+.

As well, f(U,U) ≥ U if (a+b)U2

1+U2 ≥ U , which simplifies to 0 ≥ 1 +U2− (a+ b)U. This occurs when U− < U < U+ where we can
set U− = x− and U+ = x+. For both L and U to exist, we need L < L− to satisfy L < U. From Theorem 7, we can conclude
that every solution with x1, x0 ≤ L converges to 0, while every solution with x−1, x0 ≥ U converges to x+. Note that in the
region where L and U exist, no minimal period-two solutions exists. All the period-two solutions are located in the region
which is the union of the second and the fourth quadrant with respect to x−.

2 Global Dynamics of Equation (1)

In this section we present the global dynamics of Equation (1).

2.1 Local stability results

We begin by observing that the function f (u, v) = be−cu + pv is decreasing in the first variable and increasing in the second
variable and so by Theorem 1, for every solution {xn}∞n=−1 of Equation (1) the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 are
eventually monotonic.

Equation (1) has a unique positive equilibrium point xecx = b
1−p where 0 < x < b

1−p . Note that ∂f
∂u

(x, x) = −cbe−cx =

−c(1− p)x and ∂f
∂v

(x, x) = p. The characteristic equation of Equation (1) is

λ2 + (1− p)cxλ− p = 0.

Applying local stability test [10] we obtain

Lemma 1 Equation (1) has a unique positive equilibrium solution xecx = b
1−p .

i) If x < 1
c
, then the equilibrium point x is locally asymptotically stable.

ii) If x > 1
c
, then the equilibrium point x is a saddle point.

iii) If x = 1
c
, then the equilibrium point x is non-hyperbolic of the stable type (with eigenvalues λ1 = −1 and λ2 = p).

Proof.
i) Equilibrium point x is locally asymptotically stable if

|(1− p)cx| < 1− p < 2.

As p ∈ (0, 1) then 1− p < 2 holds. As (1− p)cx > 0, then x is stable if

(1− p)cx < 1− p⇔ cx < 1⇔ x <
1

c
.

Therefore, the equilibrium x is locally asymptotically stable if x < 1
c

ii) If |(1− p)cx| > |1− p| , then the equilibrium point x is a saddle point. As (1− p)cx is positive, we obtain

(1− p)cx > 1− p⇔ cx > 1⇔ x >
1

c
.

So the equilibrium point x is a saddle point if x > 1
c
.

iii) The equilibrium point x is non-hyperbolic if

|(1− p)cx| = |1− p| .

We see that cx = 1⇔ x = 1
c
. The characteristic equation at the equilibrium becomes

λ2 + (1− p)λ− p = 0,

with eigenvalues λ1 = −1 and λ2 = p. 2
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2.2 Periodic solutions

In this section we present results about existence and uniqueness of the minimal period-two solution of Equation (1).

Theorem 8 If x > 1
c
, then Equation (1) has a unique minimal period-two solution:

φ, ψ, φ, ψ, . . . (φ 6= ψ, φ > 0 and ψ > 0) .

Proof. Let {φ, ψ} be a minimal period-two solution of Equation (1), where φ and ψ are distinct positive real numbers.
Then we have

φ = be−cψ + pφ, ψ = be−cφ + pψ, (12)

where φ 6= ψ. This implies

ψ =
be−cφ

1− p , φ = be
−cbe−cφ

1−p + pφ.

Let F (φ) = be
−cbe−cφ

1−p + (p− 1)φ. The equilibrium point x = b
1−pe

−cx will be a zero of F as

F (x) = be
−cbe−cx

1−p + (p− 1)x = be−cx + (p− 1)x = 0.

Note that F (0) = be
−cb
1−p > 0 since b > 0. Additionally, as φ approaches ∞, then F (φ) approaches −∞. Notice graphically,

the the function F begins above the x-axis and ends approaching −∞. As the function F crosses the x-axis at least once at
x, then F must cross the x-axis at least three times when F ′(x) > 0. This will result in the existence of a minimal period-two
solution. We want to prove that F ′(x) > 0 holds true for some values of parameters. Observe that the derivative of F is

F ′(φ) =
b2c2

1− pe
−cφe

−cbe−cφ
1−p + (p− 1)

so that when x is substituted F ′(x) = xbc2e−cx + (p− 1). Then F ′(x) > 0 when x > 1
c

as

F ′(x) = xbc2e−cx + (p− 1) > 0⇔ c2x >
1− p
b

ecx ⇔ c2x >
1

x
⇔ x >

1

c
.

Thus when x > 1
c
, there will be a minimal period-two solution.

Next we want to prove that the period-two solution is unique. Rewritting (12) we obtain

φecψ =
b

1− p = ψecφ ⇔ φe−cφ = ψe−cψ.

Let g(x) = xe−cx. As g′(x) = e−cx(1 − cx), then the global maximum of g is attatined at x = 1
c
. For each y value there will

be two corresponding x values when g(x) < g( 1
c
) = 1

ce
. This will happen when

xe−cx <
1

ce
⇔ ecx − ecx > 0.

Let G(x) = ecx− ecx and notice that G(0) = 1. The derivative of G will be G′(x) = c(ecx− e). Notice G′(x) ≤ 0 when ecx ≤ e
such that x ≤ 1

c
, and G′(x) > 0 when x > 1

c
. Thus, G(x) > 0 on [0, 1

c
) ∪ ( 1

c
,∞) where G( 1

c
) = 0 is a global minimum. Thus

when the period-two solution exists, it is unique. 2

2.3 Global stability results

In view of Theorem 1 every bounded solution of Equation (1) converges to either an equilibrium solution or a minimal
period-two solution.

Lemma 2 The solutions of Equation (1) are bounded.

Proof. Equation (1) implies

xn+1 = be−cxn + pxn−1 ≤ b+ pxn−1, n = 0, 1, . . . .

Consider the difference equation of
un+1 = b+ pun−1, n = 0, 1, . . . . (13)

The solution of Equation (13) is un = b
1−p +C1(

√
p)n+C2(−√p)n. As n→∞, then un → b

1−p . In view of difference inequality

result, see [7] xn ≤ un ≤ b
1−p + ε = U for n = 0, 1, ... and some +ε > 0 when x0 ≤ u0. 2
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Theorem 9 (i) If x̄ > 1
c
, then the equilibrium solution x̄ is a saddle point and the minimal period-two solution {φ, ψ}, φ < ψ

is globally asymptotically stable within the basin of attraction B(φ, ψ) = [0,∞)2 \Ws(x̄, x̄), where Ws(x̄, x̄) is the global stable
manifold of (x̄, x̄).
(ii) If x̄ ≤ 1

c
, then the equilibrium solution x̄ is globally asymptotically stable.

Proof. Using Theorem 1 every bounded solution of Equation (1) converges to an equilibrium solution or period-two
solution. By Lemma 2, every solution of Equation (1) is bounded so that all solutions converge to either an equilibrium
solution or to the unique period-two solution {φ, ψ}, φ < ψ. When x > 1

c
, then x is a saddle point, by Lemma 1 part (ii),

and has the global stable Ws(x, x) and global unstable manifolds Wu(x, x), where Ws(x, x) is the graph of a non-decreasing
function and Wu(x, x) is the graph of a non-increasing function, which has endpoints at (φ, ψ) and (ψ, φ). Every initial point
(x−1, x0) which starts south east of Ws(x, x) is attracted to (ψ, φ), while every initial point (x−1, x0) which starts north west
of Ws(x, x) is attracted to (φ, ψ), see Theorems 2, 4. In this case in view of Theorem 1 global attractivity of period-two
solution implies its local stability since the convergence is monotonic.

When x ≤ 1
c
, the equilibrium solution is locally and so globally asymptotically stable by Lemma 1 part (i) and part (iii)

. 2

Remark 3 For instance, case i) of Theorem 9 holds when b = 1, p = .5, c = 2, case ii) holds when b = 1, p = .5, c = 1 and
when b = 1, p = (e− 1)/e, c = 1.

3 Global Dynamics of Equation (3)

In this section we present global dynamics of Equation (3).

3.1 Local stability results

First, notice that the function f (u, v) = a+ bve−u is decreasing in the first variable and increasing in the second variable. By
Theorem 1, for all solutions {xn}∞n=−1 of Equation (3) the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 are eventually monotonic.

Equation (3) has a unique positive equilibrium point x = a
1−be−x where a < x. Note that ∂f

∂u
(x, x) = −bxe−x and

∂f
∂v

(x, x) = be−x. The characteristic equation of Equation (3) is

λ2 + bxe−xλ− be−x = 0.

Lemma 3 Equation (3) has a unique positive equilibrium solution x = a
1−be−x .

i) If x <
a+
√
a2+4a

2
, then the equilibrium solution x is locally asymptotically stable.

ii) If x >
a+
√
a2+4a

2
, then the equilibrium solution x is a saddle point.

iii) If x =
a+
√
a2+4a

2
, then the equilibrium solution x is non-hyperbolic of stable type (with eigenvalues λ1 = −1 and

λ2 = be−x).

Proof.
i) The equilibrium point x is locally asymptotically stable if∣∣∣bxe−x∣∣∣ < 1− be−x < 2.

As be−x > 0, then 1− be−x < 2 holds true. So rearranging the other inequality we obtain

bxe−x < 1− be−x ⇔ be−x(x+ 1) < 1⇔ x+ 1 <
1

b
ex ⇔ x <

ex

b
− 1.

Therefore, the equilibrium x is locally asymptotically stable if x < ex

b
− 1. As x = a+ bxe−x we have

ex =
bx

x− a . (14)

Then we can equivalently write the condition to be locally asymptotically stable as

x <
ex

b
− 1⇔ x <

bx
x−a

b
− 1⇔ x <

x

x− a − 1

⇔ x2 − xa− a < 0⇔ x <
a+
√
a2 + 4a

2
.
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ii) If ∣∣∣bxe−x∣∣∣ > ∣∣∣1− be−x∣∣∣ ,
then the equilibrium solution x is a saddle point. Note that be−x < 1 since

be−x < 1⇔ x− a
x

< 1⇔ −a
x

< 0

always holds as a > 0. The condition for x to be a saddle point yields

bxe−x > 1− be−x ⇔ be−x(x+ 1) > 1⇔ x+ 1 >
1

b
ex ⇔ x >

ex

b
− 1.

So the equilibrium point x is a saddle point if x > ex

b
− 1. By using (14), the inequality can then equivalently be written as

x >
ex

b
− 1⇔ x >

bx
x−a

b
− 1⇔ x >

x

x− a − 1⇔ x2 − xa− a > 0⇔ x >
a+
√
a2 + 4a

2
.

iii) The equilibrium point x is non-hyperbolic point if∣∣∣bxe−x∣∣∣ =
∣∣∣1− be−x∣∣∣ .

We see that

bxe−x = 1− be−x ⇔ be−x(x+ 1) = 1⇔ x+ 1 =
1

b
ex ⇔ x =

ex

b
− 1.

In view of (14) this can be rewritten as

x =
ex

b
− 1⇔ x =

bx
x−a

b
− 1⇔ x =

x

x− a − 1⇔ x2 − xa− a = 0⇔ x =
a+
√
a2 + 4a

2
.

The characteristic equation at the equilibrium point will become

λ2 + (1− be−x)λ− be−x = 0,

with eigenvalues λ1 = −1 and λ2 = be−x ∈ (0, 1). 2

3.2 Periodic solutions

In this section we present results about existence and uniqueness of minimal period-two solutions of Equation (3).

Theorem 10 Assume that b < ea. If x >
a+
√
a2+4a

2
, then Equation (3) has minimal period-two solution:

φ, ψ, φ, ψ, . . . (φ 6= ψ and φ > 0, ψ > 0) .

Proof. We want to find for which values of x there exists a minimal period-two solution (φ, ψ) where φ and ψ are distinct
positive real numbers. A period-two solution satisfies

φ = a+ bφe−ψ, ψ = a+ bψe−φ, (15)

where φ and ψ are distinct real numbers. Rewritting ψ and then substituting into φ we obtain

ψ =
a

1− be−φ , φ = a+ bφe
− a

1−be−φ . (16)

Let F (φ) = a+ φ(be
− a

1−be−φ − 1). The equilibrium point x = ex(x−a)
b

will be a zero of F as

F (x) = a+ x(be
− a

1−be−x − 1) = a+ x(be−x − 1) = 0.

Now

F (a) = a+ a(be
− a

1−be−a − 1) = abe
− a

1−be−a
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is positive as a and b are positive constants. As φ approaches ∞, then F approaches −∞ assuming that b < ea. When
F ′(x) > 0 then F will cross the x−axis at least three times resulting in a minimal period-two solution. Thus, we want to
prove when F ′(x) > 0 holds. Taking the derivative of F we have

F ′(φ) = (be
− a

1−be−φ − 1) +
φab2e−φ

(1− be−φ)2
e
− a

1−be−φ

so that F ′(x) = −a
x

+ x3b2e−2x

a
. Then F ′(x) > 0 hold true when

−a
x

+
x3b2e−2x

a
> 0⇔ x4b2e−2x > a2 ⇔ x2be−x > a⇔ x2b >

axb

x− a ⇔ x(x− a) > ax2 − xa− a > 0.

Thus, when x >
a+
√
a2+4a

2
, there will be a minimal period-two solution.

When x >
a+
√
a2+4a

2
, then

a

1− be−x >
a+
√
a2 + 4a

2
⇔ 2a

a+
√
a2 + 4a

> 1− be−x

⇔ −a+
√
a2 + 4a

a+
√
a2 + 4a

ex < b⇔ −a+
√
a2 + 4a

a+
√
a2 + 4a

e
a+

√
a2+4a

2 < b.

Next we want to prove that the minimal period-two solution is unique. By rewriting (15) we find that

φ(1− be−ψ) = a = ψ(1− be−φ)⇔ φ

1− be−φ =
ψ

1− be−ψ .

Let g(x) = x
1−be−x . Using g′(x) = 1−be−x(x+1)

(1−be−x)2 to find the critical points we get that 1 − be−x(x + 1) = 0 ⇔ ex = b(x + 1).

There exists a unique value of m where 1
m+1

= be−m for which this holds. Using the first-derivative theorem we can check

that m is a local minima. Note it suffices to check the numerator of g′(m − 1) as the denominator is always positive. Using
the fact that 1

m+1
= be−m

1− be−(m−1)m < 0⇔ 1

m
< be−(m−1) ⇔ 1

m
<

e

m+ 1
⇔ m+ 1

m
< e.

This proves that g′(m− 1) < 0. Next using the same method taking the numerator of g′(m+ 1) we see that

1− be−(m+1)(m+ 2) > 0⇔ 1

m+ 2
> be−(m+1) ⇔ 1

m+ 2
>

e−1

m+ 1
⇔ m+ 1

m+ 2
> e−1.

This proves that g′(m+ 1) > 0. As the derivative changes from negative to positive around the critical point, it will be a local
minima. Note that g(a) > 0 and as x approaches ∞, g(x) approaches ∞. Since m is the only critical point, each y value will
have two x values with the exception at m. This results in the fact that there can only be one period-two solution. 2

Proposition 1 If b ≥ ea, there are no minimal period-two solutions.

Proof. Assume that {φ, ψ} is a period-two solution. Then {φ, ψ} satisfies (15) and so it satisfies (16) as well.

Let F (φ) = a+ φ(be
− a

1−be−φ − 1). The equilibrium point x = ex(x−a)
b

will be a zero of F as

F (x) = a+ x(be
− a

1−be−x − 1) = a+ x(be−x − 1) = 0.

We see that

F (a) = a+ a(be
− a

1−be−a − 1) = abe
− a

1−be−a

which is a positive value as a and b are positive constants. As φ approaches ∞, then F approaches ∞ as b ≥ ea. As the
function begins above the x-axis at a and approaches ∞, F will cross the x-axis an even number of times. Since F (x) = 0 is
one of the points that lie on the x-axis and the only equilibrium point, there cannot be a minimal period-two solution. 2
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3.3 Global stability results

By Theorem 1 every bounded solution of Equation (1) converges to either an equilibrium solution or a minimal period-two
solution.

Lemma 4 The solutions of Equation (3) are bounded if b < ea .

Proof. By Equation (3),
xn+1 = a+ bxn−1e

−xn ≤ a+ bxn−1, n = 0, 1, ....

Consider the difference equation of
un+1 = a+ bun−1, n = 0, 1, .... (17)

Suppose that b < ea. The solution of Equation (17) is un = a
1−b +C1(

√
b)n +C2(−

√
b)n. As n→∞, then un → a

1−b . In view
of difference inequality result, see [7] xn ≤ un ≤ a

1−b + ε = U for n = 0, 1, ... when x0 ≤ u0 , where ε > 0. 2

Theorem 11 Consider Equation (3).

(i) If b < ea and x >
a+
√
a2+4a

2
, then there exists a period-two solution that is locally asymptotically stable and the

equilibrium point, x, that is is a saddle point. The unique period-two solution attracts all solutions which start off the
global stable manifold of Ws(E(x, x)).

(ii) If b < ea and x <
a+
√
a2+4a

2
, then the equilibrium solution, x, is globally asymptotically stable.

(iii) If b < ea and x =
a+
√
a2+4a

2
, then the equilibrium solution, x, is non-hyperbolic of the stable type and is global attractor.

Proof.

(i) Using Theorem 1 every bounded solution of Equation (3) converges to an equilibrium solution or period-two solution.
By Lemma 4, when b < ea every solution of Equation (3) is bounded such that all solutions will converge to either an

equilibrium solution or period-two solution. If b < ea and x >
a+
√
a2+4a

2
, then x will be a saddle point by Lemma 3

part (ii), and there will be a minimal period-two solution by Theorem 10. In view of Theorems 2, 4 there exist the
global stable manifoldWs(x, x) and global unstable manifoldWu(x, x), whereWs(x, x) is the graph of a non-decreasing
function andWu(x, x) is the graph of a non-increasing function, which has endpoints at (φ, ψ) and (ψ, φ). Every initial
point (x−1, x0) which starts south east ofWs(x, x) is attracted to (ψ, φ), while every initial point (x−1, x0) which starts
north west of Ws(x, x) is attracted to (φ, ψ).

(ii) When b < ea and x <
a+
√
a2+4a

2
, then x is locally asymptotically stable by Lemma 3 part (i). Since [a, U ]2 is invariant

box and (x, x) is the only fixed point then, by Theorem 2.1 in [11] is global attractor and so globally asymptotically
stable.

(iii) Moreover, when b < ea and x =
a+
√
a2+4a

2
, x will be non-hyperbolic of the stable type by Lemma 3 part (iii). Since

[a, U ]2 is invariant box and (x, x) is the only fixed point then, by Theorem 2.1 in [11] is global attractor and so globally
asymptotically stable.

2

Theorem 12 If b ≥ ea, then Equation (3) has unbounded solutions.

Proof. We will use Theorem 6 to prove this theorem. The conditions of (8) and (9) of Theorem 6 become

f(U,L) = a+ bLe−U ≤ L and f(L,U) = a+ bUe−L ≥ U.

These inequalities can be reduced to

a ≤ L(1− be−U ) and a ≥ U(1− be−L).

Any value of L and U such that U
1−be−U ≤

L
1−be−L will satisfy the theorem. Let G(x) = x

1−be−x . There is a vertical asymptote

at 1 − be−x = 0 that is at x = ln(b). In interval (ln(b),∞) we can find L and U that satisfies these inequalities. As b ≥ ea

then ln(b) ≥ a so that (ln(b),∞) is part of the domain of difference equation (3). An example of where this holds is when
L = a+ ε. Using the fact that b ≥ ea and ε is small, then b ≥ ea+ε. By condition (9) the inequality holds true as

a+ bUe−(a+ε) ≥ U ⇔ ea+ε ≤ bU

U − a .
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We will use condition (8) and b ≥ ea to find the criteria for U based on our L. Thus,

a+ b(a+ ε)e−U ≤ (a+ ε)⇔ eU ≥ b(a+ ε)

ε
⇔ eU ≥ ea(a+ ε)

ε
⇔ U ≥ a+ ln

(a+ ε

ε

)
.

Let U be such that U > a + ln
(
a+ε
ε

)
. It holds that U ≥ L. Overall, as f is continuous and there is no minimal period-two

solution by Proposition 1, using Theorem (6) some solutions will approach ∞. 2

Remark 4 For instance, case i) of Theorem 11 holds when a = 1, b = 2, case ii) holds when a = 4, b = 2 and case iii) holds

when a = 2, b =
√

3−1√
3+1

e1+
√
3, and the conditions of Theorem 12 holds when a = .5, b = 2.

In conclusion, Equations (1) and (3) exhibit the global period doubling bifurcation described by Theorem 5.1 in [11].
Checking the conditions of Theorem 5.1 in [11] is exactly the content of Lemmas 1-3 and Theorems 10-12.
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Abstract

In this paper, we derive some bounds for the real parts and arguments of the
functionals given by

zJ ′s,b(f)(z)

Js,b(f)(z)
,

Js,b(f)(z)

z
and

Js,b(f)(z)

Js+1,b(f)(z)
(z ∈ D),

where Js,b is the widely-investigated Srivastava-Attiya operator defined on the
class of normalized analytic functions f in the open unit disk

D := {z : z ∈ C and |z| < 1}

with suitable real parameters s and b. These results reduce upon specialization
to some well-known inclusion relationships for several classes of functions with
given geometric properties. We also make a comparison between one of the results
obtained here and an already known result for some specific cases.

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C55.

Key Words and Phrases. Analytic functions; Univalent functions; Starlike functions; Convex
functions; Srivastava-Attiya operator; Strongly starlike functions; Strongly convex functions;
Principle of differential subordination; Inclusion relationships.

1. Introduction and Preliminaries

Let A denote the class of functions f normalized by

f(z) = z +

∞∑
n=2

anz
n, (1.1)
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which are analytic in the open unit disk

D := {z : z ∈ C and |z| < 1}.

The general Hurwitz-Lerch Zeta function Φ(z, s, b) is defined by

Φ(z, s, b) =

∞∑
n=0

zn

(b+ n)s(
b ∈ C \ Z−0 ; s ∈ C when |z| < 1; R{s} > 1 when |z| = 1

)
.

It is known that the function Φ(z, s, b) reduces to such more familiar functions of Analytic
Number Theory as the Riemann and the Hurwitz Zeta functions, Lerch’s Zeta function, the
Polylogarithmic function and the Lipschitz-Lerch Zeta function (see, for details, [12]).

Srivastava and Attiya [11] introduced the linear operator Js,b : A → A defined by

Js,b(f)(z) = Gs,b(z) ∗ f(z) (b ∈ C \ Z−0 ; s ∈ C),

where the symbol ∗ denotes the Hadamard product (or convolution) of analytic functions and
the function Gs,b is defined by

Gs,b(z) = (b+ 1)s[Φ(z, s, b)− b−s].
For a f ∈ A of the form given by (1.1), we get

Js,b(f)(z) = z +

∞∑
n=2

(
b+ 1

b+ n

)s
anz

n (z ∈ D). (1.2)

Srivastava and Attiya [11] showed that (see also the recent work by Srivastava et al. [13])

J0,b(f)(z) = f(z),

J1,0(f)(z) =

∫ z

0

f(t)

t
dt =: A(f)(z),

J1,γ(f)(z) =
1 + γ

zγ

∫ z

0
tγ−1f(t)dt =: Jγ(f)(z) (γ > −1)

and

Jσ,1(f)(z) = z +
∞∑
n=2

(
2

n+ 1

)σ
anz

n =: Iσ(f)(z) (σ > 0),

where A, Jγ and Iσ are the familiar Alexander [1], Bernardi [2] and Jung-Kim-Srivastava [4]
integral operators, respectively.

From the equation (1.2), we can obtain the following recurrence relation:

zJ ′s+1,b(f)(z) = (1 + b)Js,b(f)(z)− bJs+1,b(f)(z). (1.3)

For α ∈ [0, 1) and β ∈ (0, 1], let Ωα,β denote a subset of C defined by

Ωα,β =
{
w : w ∈ C and |arg (w − α)| < π

2
β
}
.

We denote by S∗(α, β) and C(α, β) the classes of functions f ∈ A satisfying the following
conditions:

zf ′(z)

f(z)
∈ Ωα,β and 1 +

zf ′′(z)

f ′(z)
∈ Ωα,β (∀ z ∈ D),
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respectively. The function f in the classes S∗(α, β) and C(α, β) is called starlike of order β and
type α in D and strongly convex of order β and type α in D, respectively. We note that

S∗(α, 1) ≡ S∗(α) and C(α, 1) ≡ C(α),

which are the well-known classes of starlike functions of order α in D and convex functions of
order α in D.

Wilken and Feng [15] showed that f ∈ C(α, 1) implies that f ∈ S∗(β, 1), where

β := β(α) =


1− 2α

22−2α[1− 22α−1]

(
α 6= 1

2

)
1

2 log 2

(
α =

1

2

)
.

(1.4)

Nunokawa et al. [8] investigated relations between γ ∈ (0, 1) and δ ∈ (0, 1) so that S∗(α, γ)
implies that C(β, δ), where β is given by (1.4). We will discuss this relation in Section 4.

The relation given above can be represented by using the operator Js,b as follows:

zJ ′s,b(f)(z)

Js,b(f)(z)
∈ Ωα,γ =⇒

zJ ′s+1,b(f)(z)

Js+1,b(f)(z)
∈ Ωβ,δ (z ∈ D), (1.5)

for s = −1 and b = 0.

In the present paper, we will consider the implication given in (1.5) for suitable values of s
and b in R. We also consider other similar problems associated with (1.5), which are related to
the forms given by

Js,b(f)(z)

z
and

Js,b(f)(z)

Js+1,b(f)(z)
.

We say that f is subordinate to F in D, written as f ≺ F or as f(z) ≺ F (z) in D, if and
only if f(z) = F

(
ω(z)

)
for some Schwarz function ω(z) with ω(0) = 0 and |ω(z)| < 1 for z ∈ D.

It is well known that, if F is univalent in D, then f ≺ F is equivalent to f(0) = F (0) and
f(D) ⊂ F (D) (see, for details, [10, p. 36]).

Let ψ : C2 → C and let h be univalent in D. If p is analytic in D and satisfies the following
differential subordination:

ψ
(
p(z), zp′(z)

)
≺ h(z) (z ∈ D),

then p is called a solution of the differential subordination. A univalent function q is called a
dominant of the solutions of the differential subordination (or, simply, a dominant) if p ≺ q in
D for all solutions p. A function q̃ is called best dominant if q̃ ≺ q in D for all dominants q.

We recall the following lemmas which are required in our present investigation.

Lemma 1. (see Hallenbeck and Ruscheweyh [3]; see also [6, p. 71]) Let h be convex in D with
h(0) = a, γ 6= 0 and R{γ} = 0. If p is analytic in D with the form given by

p(z) = a+ cnz
n + cn+1z

n+1 · · · (n ∈ N := {1, 2, 3, · · · })

and

p(z) +
zp′(z)

γ
≺ h(z) (z ∈ D), (1.6)
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then
p(z) ≺ q(z) ≺ h(z) (z ∈ D),

where

q(z) =
γ

nzγ/n

∫ z

0
h(t)t(γ/n)−1dt.

The function q is convex and is the best dominant of (1.6).

Lemma 2. (see Miller and Mocanu [5]) If −1 5 B < A 5 1, β > 0 and the complex number γ
satisfies the inequality:

R{γ} = −(1−A)β

1−B
,

then the following differential equation:

q(z) +
zq′(z)

βq(z) + γ
=

1 +Az

1 +Bz
(z ∈ D)

has a univalent solution in D given by

q(z) =



zβ+γ(1 +Bz)β(A−B)/B

β
∫ z
0 t

β+γ−1(1 +Bt)(A−B)β/Bdt
− γ

β
(B 6= 0)

zβ+γ exp(βAz)

β
∫ z
0 t

β+γ−1 exp(βAt)dt
− γ

β
(B = 0).

If the function p(z) given by
p(z) = 1 + c1z + c2z

2 + · · ·
is analytic in D and satisfies the following subordination condition:

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Az

1 +Bz
(z ∈ D), (1.7)

then

p(z) ≺ q(z) ≺ 1 +Az

1 +Bz
(z ∈ D),

and q is the best dominant of (1.7).

The generalized hypergeometric function qFs is defined by

qFs(z) = qFs(α1, · · · , αq;β1, · · · , βs; z) =
∞∑
n=0

(α1)n · · · (αq)n
(β1)n · · · (βs)n

zn

n!
(z ∈ D), (1.8)

where αj ∈ C (j = 1, · · · , q), βj ∈ C \ Z−0 , Z−0 := {0,−1,−2, · · ·} (j = 1, · · · , s), q 5 s + 1,
q, s ∈ N0, and (α)n is the Pochhammer symbol defined by

(α)0 = 1 and (α)n =
Γ(α+ n)

Γ(α)
= α(α+ 1) · · · (α+ n− 1) (n ∈ N),

Γ(z) being the Gamma function of the argument z.

We recall following well-known identities for the Gaussian hypergeometric function 2F1, that
is, the special case of (1.8) when q− 1 = s = 1:

Lemma 3. (see [14, pp. 285 and 293]) For real or complex numbers a, b and c (c /∈ Z−0 ), the
following identities hold true:
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(i)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt =

Γ(b)Γ(c− b)
Γ(c)

2F1 (a, b; c; z)

when R{c} > R{b} > 0;
(ii) 2F1 (a, b; c; z) = 2F1 (b, a; c; z) ;

(iii) 2F1 (a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z−1

)
.

The following lemmas will also be required in our present investigation.

Lemma 4. (see Wilken and Feng [15]) Let ν be a positive measure on [0, 1] and let h be a
complex-valued function defined on D× [0, 1] such that h(·, t) is analytic in D for each t ∈ [0, 1]
and that h(z, ·) is ν-integrable on [0, 1] for all z ∈ D. In addition, suppose that R{h(z, t)} > 0,
h(−r, t) is real and

R

{
1

h(z, t)

}
=

1

h(−r, t)
(|z| 5 r < 1; t ∈ [0, 1]).

If the function H is defined by

H(z) =

∫ 1

0
h(z, t)dν(t),

then

R

{
1

H(z)

}
=

1

H(−r)
(|z| 5 r < 1).

Lemma 5. (see Nunokawa [7]) Let the function P be analytic in D, P (0) = 1, P (z) 6= 0 in D
and suppose that there exists a point z0 ∈ D such that∣∣arg

(
P (z)

)∣∣ < π

2
δ (|z| < |z0|)

and ∣∣arg
(
P (z0)

)∣∣ =
π

2
δ (δ > 0).

Then

z0P
′(z0)

P (z0)
= ikδ, (1.9)

where

k =
1

2

(
a+

1

a

)
when arg

(
P (z0)

)
=
π

2
δ

and

k 5 −1

2

(
a+

1

a

)
when arg

(
P (z0)

)
= −π

2
δ,

and where

P (z0)
1
δ = ±ia

with a > 0.
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2. Bounds for the Real Parts

In this section, we investigate the bounds for the real parts of normalized analytic functions
defined by the Srivastava-Attiya operator Js,b.

Theorem 1. Let f ∈ A and

R

{
zJ ′s,b(f)(z)

Js,b(f)(z)

}
> α (z ∈ D), (2.1)

where s ∈ R, 0 5 α < 1 and b = −α. Then

R

{
zJ ′s+1,b(f)(z)

Js+1,b(f)(z)

}
> −b+ (b+ 1)

[
2F1

(
1, 2− 2α; b+ 2;

1

2

)]−1
(z ∈ D). (2.2)

This result is sharp.

Proof. Let us define a function p : D→ C by

p(z) =
zJ ′s+1,b(f)(z)

Js+1,b(f)(z)
.

Then p is analytic in D with p(0) = 1. Thus, from the recurrence relation (1.3), we have

zJ ′s,b(f)(z)

Js,b(f)(z)
= p(z) +

zp′(z)

p(z) + b
. (2.3)

From (2.1), the above relation shows that

p(z) +
zp′(z)

p(z) + b
≺ 1 + (1− 2α)z

1− z
. (2.4)

Also, from Lemma 2 with A = 1− 2α, B = −1, β = 1 and γ = b, we find that

p(z) ≺ 1

Q(z)
− b (z ∈ D), (2.5)

where Q is defined by

Q(z) =

∫ 1

0
tb
(

1− zt
1− z

)−2(1−α)
dt.

By applying Lemma 3, we have

Q(z) =
Γ(b+ 1)

Γ(b+ 2)
2F1

(
2− 2α, 1; b+ 2;

z

z − 1

)
.

Moreover, the function Q is represented as follows:

Q(z) =

∫ 1

0
g(t, z)dµ(t),

where

g(t, z) =
1− z

1− (1− t)z
and

dµ(t) =
Γ(b+ 1)

Γ(2− 2α)Γ(b+ 2α)
t1−2α(1− t)b+2α−1dt
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with t ∈ [0, 1] and z ∈ D. We note that dµ(t) is a positive measure on [0, 1]. We can easily
verify that the assertions hold true:

(i) g(·, t) is analytic in D for each t ∈ [0, 1];
(ii) g(z, ·) is integrable with respect to µ on [0, 1];

(iii) R {g(z, t)} > 0 for all z ∈ D and t ∈ [0, 1];
(iv) g(−r, t) is real for all r and for t ∈ [0, 1].

Indeed, we have

R

{
1

g(z, t)

}
= R

{
1 +

zt

1− z

}
= 1− tr

1 + r
=

1

g(−r, t)
,

for |z| 5 r < 1 and t ∈ [0, 1]. Therefore, by applying Lemma 4, we obtain

R

{
1

Q(z)

}
=

Γ(b+ 2)

Γ(b+ 1)

[
2F1

(
2− 2α, 1; b+ 2;

r

1 + r

)]−1
(|z| 5 r < 1). (2.6)

Letting r → 1− in (2.6) we conclude that the inequality (2.2) holds true from the relation (2.5).
The sharpness of this result follows from the fact that the function Q is the best dominant of
(2.4). �

Theorem 2. Let f ∈ A and suppose that

R

{
Js,b(f)(z)

z

}
> α (z ∈ D), (2.7)

where s ∈ R, 0 5 α < 1 and b > −1. Then

R

{
Js+1,b(f)(z)

z

}
> 1− (1− α)(b+ 1)

b+ 2
2F1

(
1, 1; b+ 3;

1

2

)
(z ∈ D). (2.8)

This result is sharp.

Proof. Let us define a function p : D→ C by

p(z) =
Js+1,b(f)(z)

z
(z ∈ D).

Then we have
Js,b(f)(z)

z
= p(z) +

1

b+ 1
zp′(z).

From (2.7), we see that

p(z) +
zp′(z)

b+ 1
≺ h(z) (z ∈ D),

where

h(z) =
1 + (1− 2α)z

1− z
(z ∈ D).

Thus, by applying Lemma 1 with γ = b+ 1 and h given above, we have p(z) ≺ q(z) in D, where
q is a convex function in D defined by

q(z) =
b+ 1

zb+1

∫ z

0

1 + (1− 2α)t

1− t
tbdt,
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which, in view of Lemma 3, yields

q(z) = 1 +
2(1− α)(b+ 1)z

(b+ 2)(1− z) 2F1

(
1, 1; b+ 3;

z

z − 1

)
.

Since the function q is convex with real coefficients, by the subordination relation:

p(z) ≺ q(z) (z ∈ D),

we obtain the inequality (2.8) by letting z → −1+. The sharpness of this result follows from
the fact that the function q is the best dominant of the differential subordination given by

p(z) +
zp′(z)

b+ 1
≺ h(z) (z ∈ D).

�

We recall the following special case due to Prajapat and Bulboacă [9, Corollary 2.10].

Theorem 3. Let f ∈ A and suppose that

R

{
Js,b(f)(z)

Js+1,b(f)(z)

}
> α (z ∈ D),

where s ∈ R, 0 5 α < 1 and b = −α. Then

R

{
Js+1,b(f)(z)

Js+2,b(f)(z)

}
>

[
2F1

(
1, 2− 2α; b+ 2;

1

2

)]−1
(z ∈ D). (2.9)

This result is sharp.

3. Bounds for the Arguments

For given α ∈ [0, 1), let the parameters β1, β2 and β3 be real numbers defined by

β1 = β1(α, b) := −b+ (b+ 1)

[
2F1

(
1, 2− 2α; b+ 2;

1

2

)]−1
(b = −α), (3.1)

β2 = β2(α, b) := 1− (1− α)(b+ 1)

b+ 2
2F1

(
1, 1; b+ 3;

1

2

)
(b > −1) (3.2)

and

β3 = β3(α, b) :=

[
2F1

(
1, 2− 2α; b+ 2;

1

2

)]−1
(b = −α). (3.3)

We note that βj < 1 (j = 1, 2, 3). We also note that

βj = α (j = 1, 2, 3).

These inequalities are immediate consequences of Lemma 1 or 2 with

h(z) =
1 +Az

1 +Bz
=

1 + (1− 2α)z

1− z
(A = 1− 2α; B = −1)

such that
R{h(z)} > α (z ∈ D).

In this section, we investigate the bounds for the arguments of normalized analytic functions
defined by the Srivastava-Attiya operator Js,b. In order to get our results, we need the following
propositions.
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Proposition 1. Let w1, w2, w3 ∈ C satisfy the following conditions:

(i) R{w1} > 0 and I{w1} < 0;
(ii) 0 < arg(w3) 5 arg(w2) <

π
2 ;

(iii) |w3| 5 |w2|.
Then the inequality:

arg(w1 + w3) 5 arg(w1 + w2) (3.4)

holds true.

Proof. First of all, we consider a case for which arg(w3) = arg(w2). In this case, we let

w1 = x+ iy, w2 = R2e
iθ and w3 = R3e

iθ,

where x > 0, y < 0 and R2 = R3. Then the inequality (3.4) is equivalent to

y +R2 sin θ

x+R2 cos θ
=
y +R3 sin θ

x+R3 cos θ
.

Furthermore, since x > 0 and θ ∈ (0, π/2), the above inequality is equivalent to

(R2 −R3)(x sin θ − y cos θ) = 0.

Therefore, it follows from x > 0 and y < 0 that the above inequality holds true.

To complete the proof of Proposition 1, let Ω ⊂ C be defined by

Ω =
{
Reiψ ∈ C : 0 < R 5 R2 and 0 < ψ 5 arg(w2)

}
.

Letting w3 ∈ Ω, we suppose that `1 be a straight line through the points −w1 and w2 and `2
be a straight line through the points −w1 and w3. From Condition (ii) of Proposition 1, we can
take the unique intersection point denoted by w̃3 ∈ Ω of `1 and `2. For this point, we have

arg
(
w3 − (−w1)

)
= arg

(
w̃3 − (−w1)

)
= arg

(
w2 − (−w1)

)
,

which completes the proof of Proposition 1. �

The demonstration of Proposition 2 below is fairly straightforward.

Proposition 2. Let w1 and w2 be in C \ {0}. Then

arg(w1 + w2) = min {arg(w1), arg(w2)} .

Theorem 4. Let β ∈ R be the parameter β1 given by (3.1). Suppose also that f ∈ A and∣∣∣∣∣arg

(
zJ ′s,b(f)(z)

Js,b(f)(z)
− α

)∣∣∣∣∣ < π

2
γ (z ∈ D), (3.5)

where s ∈ R, b = −β, 0 5 α < 1 and 0 < γ < 1. Then∣∣∣∣∣arg

(
zJ ′s+1,b(f)(z)

Js+1,b(f)(z)
− β

)∣∣∣∣∣ < π

2
δ (z ∈ D; 0 < δ < 1),

where 0 < δ < 1 and

γ = min

{
δ,

2

π
arctan

(
δ(1− β)(x1+δ0 + xδ−10 )

2(β − α)[(1− β)xδ0 + β + b]

)}
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and x0 ∈ (0, 1) is the root of the following equation:

(1− β)(x2 − 1)xδ = (β + b)[1− δ − (1 + δ)xδ]. (3.6)

Proof. Let us define the functions p and P : D→ C by

p(z) =
zJ ′s+1,b(f)(z)

Js+1,b(f)(z)
and P (z) =

p(z)− β
1− β

.

Then the functions p and P are analytic in D with p(0) = P (0) = 1. From the recurrence
relation (1.3), we have

zJ ′s,b(f)(z)

Js,b(f)(z)
= p(z) +

zp′(z)

p(z) + b
. (3.7)

We now assume that there exists a point z0 ∈ R such that∣∣arg
(
P (z)

)∣∣ =
∣∣arg

(
p(z)− β

)∣∣ < π

2
δ

for |z| < |z0| and ∣∣arg
(
P (z0)

)∣∣ =
∣∣arg

(
p(z0)− β

)∣∣ =
π

2
δ.

Consider the case when

arg
(
P (z0)

)
= arg

(
p(z0)− β

)
=
π

2
δ.

Then, by Lemma 5, we have
z0P

′(z0)

P (z0)
=

z0p
′(z0)

p(z0)− β
= iδk, (3.8)

where

k =
1

2

(
a+

1

a

)
(3.9)

with a > 0. Also, from (3.7) and (3.8), we have

arg

(
z0J
′
s,b(f)(z0)

Js,b(f)(z0)
− α

)

= arg

(
p(z0) +

z0p
′(z0)

p(z0) + b
− α

)
= arg

(
p(z0)− β

)
+ arg

(
p(z0)− α
p(z0)− β

+
z0p
′(z0)

p(z0)− β
· 1

p(z0) + b

)
=
π

2
δ + arg

(
1− β + (β − α)(ia)−δ +

iδk(1− β)

(1− β)(ia)δ + β + b

)
. (3.10)

Let us define w1, w2 and w3 by

w1 = 1− β + (β − α)(ia)−δ,

w2 =
iδk(1− β)

(1− β)(ia)δ + β + b

and

w3 =
iδk(1− β)

[(1− β)aδ + β + b]e
iπ
2
δ
.
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We note that

R {w1} = 1− β +
β − α

(β − α)aδ
cos
(π

2
δ
)
> 0

and

I {w1} = − β − α
(β − α)aδ

sin
(π

2
δ
)
< 0.

Also, from the inequality β + b = 0, we can easily verify that the inequality arg(w2) = arg(w3)
holds true. Furthermore, the inequality |w2| = |w3| is true, since

|w2|2 =
δ2k2(1− β)2

(1− β)2a2δ + 2(1− β)(β + b)aδ cos
(
π
2 δ
)

+ (β + b)2

=
δ2k2(1− β)2

[(1− β)aδ + β + b]2

= |w3|2.

Therefore, by applying Proposition 1 with (3.10), we have

arg

(
z0J
′
s,b(f)(z0)

Js,b(f)(z0)
− α

)

=
π

2
δ + arg

(
1− β + (β − α)(ia)−δ +

iδk(1− β)

[(1− β)aδ + β + b]e
iπ
2
δ

)

=
π

2
δ + arg

(
e−

iπ
2
δ

(
e

iπ
2
δ +

β − α
(1− β)aδ

+
iδk

(1− β)aδ + β + b

))
= arg

(
e

iπ
2
δ +

β − α
(1− β)aδ

+
iδ(a+ a−1)

2[(1− β)aδ + β + b]

)
. (3.11)

Let us now put

w4 =
β − α

(1− β)aδ
+ i

δ(a+ a−1)

2[(1− β)aδ + β + b]
.

Then

arg (w4) = arctan

(
(1− β)δ

2(β − α)
g(a)

)
,

where g : (0,∞)→ R is a function defined by

g(x) =
x+ x−1

1− β + (β + b)x−δ
.

Differentiating the function g with respect to x, we have

xδ+2[1− β + (β + b)x−δ]2g′(x) = h(x),

where the function h : (0,∞)→ R is defined by

h(x) = (x2 − 1)[(1− β)xδ + β + b] + δ(β + b)(x2 + 1).

Since the function h is continuous on (0,∞) with

h(0) = −(β + b)(1− δ) < 0 and h(1) = 2δ(β + b) > 0,
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there exists an x0 ∈ (0, 1) such that h(x0) = 0, which is equivalent to the equation given by
(3.6). Differentiating the function h twice with respect to x, we find that

h′′(x) = (2 + δ)(1− β)(1 + δ)xδ + δ(1− δ)(1− β)xδ−2 + 2(1 + δ)(β + b) > 0

for all x ∈ (0, 1). Since h(x) > 0 for x ∈ (1,∞), it follows from the convexity of h(x) on (0, 1)
that the function g′(x) vanishes only at x0 ∈ (0, 1). Furthermore, we can easily verify that g(x0)
is the minimum value of g(x) on (0,∞). Therefore, we have

arg (w4) = arctan

(
(1− β)δ

2(β − α)
g(x0)

)
= arctan

(
δ(1− β)(x1+δ0 + xδ−10 )

2(β − α)
[
(1− β)xδ0 + β + b

]) . (3.12)

Finally, from (3.11), (3.12) and Proposition 2, we have

arg

(
z0J
′
s,b(f)(z0)

Js,b(f)(z0)
− α

)
= arg

(
e

iπ
2
δ + w4

)
= min

{π
2
δ, arg(w4)

}
= min

{
π

2
δ, arctan

(
δ(1− β)(x1+δ0 + xδ−10 )

2(β − α)[(1− β)xδ0 + β + b]

)}
=
π

2
γ,

which leads to a contradiction to the hypothesis (3.5).

For the case when

arg
(
P (z0)

)
= arg

(
p(z0)− β

)
= −π

2
δ,

Lemma 5 yields

z0P
′(z0)

P (z0)
=

z0p
′(z0)

p(z0)− β
= iδk, (3.13)

where

k 5 −1

2

(
a+

1

a

)
(3.14)
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with a > 0. We also have

arg

(
z0J
′
s,b(f)(z0)

Js,b(f)(z0)
− α

)

= arg
(
p(z0)− β

)
+ arg

(
p(z0)− α
p(z0)− β

+
z0p
′(z0)

p(z0)− β
· 1

p(z0) + b

)
= −π

2
δ + arg

(
(1− β)(−ia)δ + β − α

(1− β)(−ia)δ
+

iδk

(1− β)(−ia)δ + β + b

)
= −

[
π

2
δ + arg

(
1− β + (β − α)(ia)−δ +

iδk̃(1− β)

(1− β)(ia)δ + β + b

)]
,

where

k̃ := −k > a+ a−1

2
.

Therefore, from the proof of the first case, we have

arg

(
z0J
′
s,b(f)(z0)

Js,b(f)(z0)
− α

)
5 −π

2
γ,

which also leads to a contradiction to the hypothesis (3.5). This completes the proof of Theo-
rem 4. �

Theorem 5. Let β ∈ R be the parameter β2 given by (3.2). Let f ∈ A and suppose that∣∣∣∣arg

(
Js,b(f)(z)

z
− α

)∣∣∣∣ < π

2
γ (z ∈ D), (3.15)

where s ∈ R, b > −1, 0 5 α < 1 and 0 < γ < 1. Then∣∣∣∣arg

(
Js+1,b(f)(z)

z
− β

)∣∣∣∣ < π

2
δ (z ∈ D; 0 < δ < 1),

where

γ = δ +
2

π
arctan

{
−2(b+ 1)(β − α) sin

(
π
2 δ
)

+ δ(1− β)(xδ+1
0 + xδ−10 )

2(b+ 1)
[
(1− β)xδ0 + (β − α) cos

(
π
2 δ
)] }

,

and x0 ∈ (0, 1) is the unique zero of the function h defined by

h(x) = Cxδ(x2 − 1) +AC(δ + 1)x2 + δBx+AC(δ − 1) (3.16)

with

A =
β − α
1− β

cos
(π

2
δ
)
, B =

β − α
1− β

sin
(π

2
δ
)

and C =
δ

2(b+ 1)
. (3.17)

Proof. Let us define the functions p and P : D→ C by

p(z) =
Js+1,b(f)(z)

z
and P (z) =

p(z)− β
1− β

. (3.18)

Then the functions p and P are analytic in D with p(0) = P (0) = 1. We also have

Js,b(f)(z)

z
= p(z) +

1

b+ 1
zp′(z). (3.19)
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We now assume that there exists a point z0 ∈ R such that∣∣arg
(
P (z)

)∣∣ =
∣∣arg

(
p(z)− β

)∣∣ < π

2
δ,

for |z| < |z0| and ∣∣arg
(
P (z0)

)∣∣ =
∣∣arg

(
p(z0)− β

)∣∣ =
π

2
δ.

We consider the case when

arg
(
P (z0)

)
= arg

(
p(z0)− β

)
=
π

2
δ.

Then, by Lemma 5, we have the relations given by (3.8) and (3.9) with a > 0. From (3.18) and
(3.19), we have

arg

(
Js,b(f)(z0)

z0
− α

)
= arg

(
p(z0)− β

)
+ arg

(
p(z0)− α
p(z0)− β

+
z0p
′(z0)

(b+ 1)
(
p(z0)− β

))

=
π

2
δ + arg

(
1 +

β − α
(1− β)(ia)δ

+
iδk

b+ 1

)

=
π

2
δ + arctan

− β−α
(1−β)aδ sin

(
π
2 δ
)

+ δk
b+1

1 + β−α
(1−β)aδ cos

(
π
2 δ
)


=
π

2
δ + arctan

(
g(a)

)
, (3.20)

where

g(x) =
−B + C(xδ+1 + xδ−1)

xδ +A
,

and A, B and C are positive constants given by (3.17). Differentiating the function g(x) with
respect to x, we have

a2−δ(aδ +A)2g′(x) = h(x),

where h is given by (3.16). Simple calculations show that

h(0) = −AC(1− δ) < 0 and h(x) = h(1) = δ(2AC +B) > 0 (x = 1)

and
h′′(x) = C[(δ + 2)(δ + 1)xδ + δ(1− δ)xδ−2] + 2AC(δ + 1) > 0 (0 < x < 1).

Similar methods as in the proof of Theorem 4 would yield

g(x) = g(x0) (0 < x <∞), (3.21)

where x0 is the unique zero of h(x) on (0,∞). Therefore, by (3.20) and (3.21), we obtain

arg

(
Js,b(f)(z0)

z0
− α

)
=
π

2
δ + arctan

(
−2(b+ 1)(β − α) sin(δπ/2) + δ(1− β)(xδ+1

0 + xδ−10 )

2(b+ 1)[(1− β)xδ0 + (β − α) cos(δπ/2)]

)
=
π

2
γ,
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which provides a contradiction to the hypothesis (3.15).

For the case when

arg
(
P (z0)

)
= arg

(
p(z0)− β

)
= −π

2
δ,

we have the relations given by (3.13) and (3.14) with a > 0. Therefore, we have

arg

(
Js,b(f)(z0)

z0
− α

)

= −

π
2
δ + arctan

− β−α
(1−β)aδ sin

(
π
2 δ
)

+ δk̃
b+1

1 + β−α
(1−β)aδ cos

(
π
2 δ
)


5 −
(π

2
δ + arctan

(
g(a)

))
, (3.22)

where

k̃ := −k > a+ a−1

2
.

Therefore, from (3.22) and (3.21), we have

arg

(
Js,b(f)(z0)

z0
− α

)
5 −π

2
γ,

which also provides a contradiction to the hypothesis (3.15). This evidently completes the proof
of Theorem 5. �

Next, for given suitable real of the parameters s and b and for f ∈ A, we define a function
p : D→ C by

p(z) =
Js+1,b(f)(z)

Js+2,b(f)(z)
.

Then, by using the recurrence relation (1.3), we obtain

Js,b(f)(z)

Js+1,b(f)(z)
= p(z) +

zp′(z)

(b+ 1)p(z)
(z ∈ D). (3.23)

By applying the same methods as in the proof of Theorem 4 to the differential equation
(3.23) instead of (3.7), we can establish the following argument property associated with the
Srivastava-Attiya operator.

Theorem 6. Let β ∈ R be the parameter β3 given by (3.3). Also let f ∈ A and∣∣∣∣arg

(
Js,b(f)(z)

Js+1,b(f)(z)
− α

)∣∣∣∣ < π

2
γ (z ∈ D),

where s ∈ R, 0 5 α < 1, b = −α and 0 < γ < 1. Then∣∣∣∣arg

(
Js+1,b(f)(z)

Js+2,b(f)(z)
− β

)∣∣∣∣ < π

2
δ (z ∈ D),

where 0 < δ < 1 and

γ = min

{
δ,

2

π
arctan

(
δ(1− β)(x1+δ0 + xδ−10 )

2(β − α)(b+ 1)[(1− β)xδ0 + β]

)}
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and x0 is the root in the interval (0, 1) of the following equation:

[(1− β)xδ + β](1− x2) = βδ(x2 + 1). (3.24)

4. Numerical and Computational Analysis

Let s = −1 and b = 0. Since the following equalities:

Js,b(f)(z) = zf ′(z) and Js+1,b(f)(z) = f(z)

hold true for f ∈ A, it follows from Theorem 4 that f ∈ C(α, γ1) implies that f ∈ S∗(β, δ),
where

γ1 = min

{
δ,

2

π
arctan

(
δ(1− β)(x1+δ0 + xδ−10 )

2(β − α)[(1− β)xδ0 + β]

)}
(4.1)

and x0 ∈ (0, 1) is the root of the following equation:

(1− β)(x2 − 1)xδ = β[1− δ − (1 + δ)xδ]).

On the other hand, Nunokawa et al. [8] showed that f ∈ C(α, γ2) implies that f ∈ S∗(β, δ),
where

γ2 =
2

π
arctan

(
δ(1− β)(x1+δ0 + xδ−10 )

(1− β)xδ0 + β

)
, (4.2)

and x0 ∈ (0, 1) is the root of the following equation:

(1− β)(x2 − 1)xδ = β(1− δ − (1 + δ)x2). (4.3)

As it does not seem to be so easy to compare the values γ1 and γ2 for the whole ranges of the
parameters α ∈ (0, 1) and δ ∈ (0, 1), we will compare them here in several particular cases of α
and δ. Thus, if we fix α = 1

2 , then we have

β =
1

2 log 2
.

With the aid of Mathematica, we can thus obtain Table 1 (see below) which gives the approximate
values of γ1 ∈ (0, 1) and γ2 ∈ (0, 1) defined by (4.1) and (4.2), respectively, when δ is given by

δ =
j

10
(j = 1, 2, · · · , 9).

As we see from Table 1, we can verify that the results in this paper would significantly improve
the results in the earlier work [8] for the special cases considered above.

Finally, we give another table (Table 2 below) which gives the approximate values of γ defined
in Theorem 5 and Theorem 6, respectively, when δ is given by

δ =
j

10
(j = 1, 2, · · · , 9).
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δ γ1 γ2
0.9 0.44897 0.27427
0.8 0.43647 0.28576
0.7 0.41317 0.28270
0.6 0.38021 0.26598
0.5 0.33781 0.23485
0.4 0.28596 0.18916
0.3 0.22487 0.13310
0.2 0.15544 0.07889
0.1 0.07952 0.03626

Table 1. The Approximate Values of γ1 and γ2

δ Theorem 5 (γ) Theorem 6 (γ)
0.9 0.75302 0.28582
0.8 0.75151 0.27787
0.7 0.67933 0.26303
0.6 0.59106 0.24205
0.5 0.49662 0.21506
0.4 0.39926 0.18205
0.3 0.30036 0.14316
0.2 0.20061 0.09896
0.1 0.10041 0.05062

Table 2. The Approximate Values of γ in Theorem 5 and Theorem 6
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SHARP BOUNDS FOR THE COMPLETE ELLIPTIC INTEGRALS

OF THE FIRST AND SECOND KINDS∗

XIAO-HUI ZHANG1,2, YU-MING CHU3,∗∗, AND WEN ZHANG4

Abstract. In the article, we prove that α = 3, β = log 4/(π/2 − log 4) =

7.51371 · · · , γ = 1/4 and δ = 1 + log 2 − π/2 = 0.122351 · · · are the best
possible constants such that the double inequalities

β + 1

β + r2
log

4

r′
< K(r) <

α+ 1

α+ r2
log

4

r′
,

1 +

(
1

2
log

4

r′
− γ
)
r′2 < E(r) < 1 +

(
1

2
log

4

r′
− δ
)
r′2

hold for all r ∈ (0, 1), where r′ =
√

1− r2, and K(r) =
∫ π/2
0

dθ√
1−r2 sin2 θ

and

E(r) =
∫ π/2
0

√
1− r2 sin2 θdθ are the complete elliptic integrals of the first and

second kinds.

1. Introduction

The complete elliptic integrals K(r) and E(r) [1-5] of the first and the second
kinds are respectively defined by{

K(r) =
∫ π/2
0

dθ√
1−r2 sin2 θ

,

K(0) = π
2 , K(1) =∞

and {
E(r) =

∫ π/2
0

√
1− r2 sin2 θdθ,

E(0) = π
2 , E(1) = 1.

It is well known that the function r → K(r) is strictly increasing from (0, 1)
onto (π/2,∞) and the function r → E(r) is strictly decreasing from (0, 1) onto
(1, π/2). The complete elliptic integrals K(r) and E(r) are the particular cases of
the Gaussian hypergeometric function [6-15]

F (a, b; c;x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
(−1 < x < 1),

where (a)0 = 1 for a 6= 0, (a)n = a(a + 1)(a + 2) · · · (a + n − 1) = Γ(a + n)/Γ(a)
is the shifted factorial function and Γ(x) =

∫∞
0
tx−1e−tdt (x > 0) is the gamma
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function [16-21]. Indeed,

K(r) =
π

2
F

(
1

2
,

1

2
; 1; r2

)
=
π

2

∞∑
n=0

(
1
2

)2
n

(n!)2
r2n,

E(r) =
π

2
F

(
−1

2
,

1

2
; 1; r2

)
=
π

2

∞∑
n=0

(
− 1

2

)
n

(
1
2

)
n

(n!)2
r2n.

The complete elliptic integrals play a very important role in the study of geo-
metric function theory and they have numerous applications in various problems of
physics and engineering. In particular, Many remarkable inequalities and elemen-
tary approximations for the complete elliptic integrals can be found in the literature
[22-34].

In the sequel, we will use the symbols K and E for K(r) and E(r), respectively.

Throughout this paper we let r′ =
√

1− r2 for 0 < r < 1. Then we use the symbols
K′ and E ′ for K(r′) and E(r′), respectively.

Carlson and Gustafson [35] proved that the double inequality

1 <
K(r)

log(4/r′)
<

4

3 + r2

holds for all 0 < r < 1.
Kühnau [36] proved the inequality

(1.1)
9

8 + r2
<

K(r)

log(4/r′)

for all 0 < r < 1.
It is well known that the double inequality

π

2
M3/2(1, r′) < E(r) <

π

2
M2(1, r′)

holds for all 0 < r < 1 (see [37, 19.9.4]), where

Mp(a, b) =

(
ap + bp

2

)1/p

(p 6= 0), M0(a, b) =
√
ab

is the pth power mean [38-51]
It is the aim of this paper to refine the inequality (1.1) for the complete elliptic

integral of the first kind, and to obtain sharp upper and lower bounds for the
complete elliptic integral of the second kind. Our main results are the following
Theorems 1.1 and 1.2.

Theorem 1.1. The double inequality

(1.2)
β + 1

β + r2
<

K(r)

log(4/r′)
<

α+ 1

α+ r2

holds for all r ∈ (0, 1) with the best possible constants α = 3 and β = (log 4)/(π/2−
log 4) = 7.51371 · · · .

Theorem 1.2. The double inequality

(1.3) 1 + r′2
(

1

2
log

4

r′
− γ
)
< E(r) < 1 + r′2

(
1

2
log

4

r′
− δ
)

holds for all r ∈ (0, 1) with the best possible constants γ = 1/4 and δ = 1 + log 2−
π/2 = 0.122351 · · · .
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3

2. Proof of Theorems 1.1 and 1.2

In order to prove our main results we need to establish some monotonicity prop-
erties for the functions defined by the complete elliptic integrals. The following
derivative formula can be found in the literature [52]:

dK
dr

=
E − r′2K
rr′2

,
dE
dr

=
E − K
r

,

d

dr
(E − r′2K) = rK, d

dr
(K − E) =

rE
r′2
.

Theorem 2.1. The function

F (r) = (3 + r2)K − 4 log(4/r′)

is strictly increasing from (0, 1) onto (−a, 0) with a = 4 log 4−3π/2 = 0.832788 · · · .
In particular, the double inequality

(2.1)
4 log(4/r′)− a

3 + r2
< K < 4 log(4/r′)

3 + r2

holds for all r ∈ (0, 1).

Proof. Let the functions g and h be defined by

g(r) = (3 + r2)E − (r4 − 4r2 + 3)K − 4r2,

h(r) = 3r′2K + 4E − 8.

Then differentiation gives

rr′2
d

dr
F (r) = g(r),

1

r

dg(r)

dr
= h(r).

It follows from [52, Theorem 3.21(7)] that the function h is strictly decreasing
from (0, 1) onto (−4, 7π/2−8) and there exists r0 ∈ (0, 1) such that h is positive on
(0, r0) and negative on (r0, 1). We conclude that g is strictly increasing on (0, r0)
and strictly decreasing on (r0, 1). From g(0) = 0 = g(1) we clearly see that g(r) > 0
for r ∈ (0, 1) and F is strictly increasing on (0, 1). It is easy to see that the limiting
value F (0) = −a, and by [53, 112.01] F (1−) = 0. �

Theorem 2.2. Let β = log 4/(π/2 − log 4) = 7.51371 · · · . Then there exists s0 ∈
(0, 1) such that the function

G(r) = (β + r2)K − (β + 1) log(4/r′)

is strictly increasing on (0, s0) and strictly decreasing on (s0, 1) with the limiting
values G(0+) = 0 = G(1−). In particular, the inequality

(2.2)
(β + 1) log(4/r′)

β + r2
< K

holds for all r ∈ (0, 1).
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Proof. Let the functions g, h, l and p be defined by

g(r) = (β + r2)E − (β − r2)r′2K − (β + 1)r2,

h(r) = 4E + (β − 3r2)K − 2(β + 1),

l(r) = (β + 4− 7r2)E − (β + 4 + 3r2)r′2K,
p(r) = (21r2 + 8 + β)K − 24E .

Then differentiation leads to

rr′2
d

dr
G(r) = g(r),

1

r

d

dr
g(r) = h(r),

rr′2
d

dr
h(r) = l(r),

1

r

d

dr
l(r) = p(r).

It is easy to see that the function p is strictly increasing from (0, 1) onto ((8 +
β − 24)π/2,∞). It follows from (8 + β − 24)π/2 = −13.3302 · · · < 0 that there
exists r1 ∈ (0, 1) such that p is negative on (0, r1) and positive on (r1, 1). Hence the
function l is strictly decreasing on (0, r1) and strictly increasing on (r1, 1). From
the limiting values l(0+) = 0 and l(1−) = β − 3 = 4.51371 · · · > 0 we clearly
see that there exists r2 ∈ (0, 1) such that l is negative on (0, r2) and positive on
(r2, 1). We conclude that h is strictly decreasing on (0, r2) and strictly increasing
on (r2, 1). This together with the values h(0+) = 2π−2+(π/2−1)β = 1.05827 · · · ,
h(0.8) = −0.760875 · · · and h(1−) = ∞ implies that there exists 0 < r3 < r4 < 1
such that h is positive on (0, r3) ∪ (r4, 1) and negative on (r3, r4). Hence g is
strictly increasing on (0, r3) and (r4, 1), and strictly decreasing on (r3, r4). Since
g(0+) = 0 = g(1−), we conclude that there exists s0 ∈ (0, 1) such that g is positive
on (0, s0) and negative on (s0, 1). Therefore, the function G is strictly increasing
on (0, s0) and strictly decreasing on (s0, 1). It is easy to see that G(0+) = 0 and

lim
r→1−

G(r) = lim
r→1−

(a+ 1)(K − log(4/r′))− r′2K = 0.

�

Proof of Theorem 1.1. Inequality (1.2) follows from inequality (2.2) and the
right-hand side inequality of (2.1) immediately.

Lemma 2.3. The function

u(r) = (1 + r2)E − r′2K − 5

2
r2 +

1

2
r4

is negative on (0, 1).

Proof. Let the functions f and g be defined by

f(r) = 3E + 2r2 − 5,

g(r) =
3(E − K)

r2
+ 4.

Then Applying the derivative formulas we get

d

dr
u(r) = rf(r),
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5

d

dr
f(r) = rg(r).

Since the function r 7→ (E−K)/r2 is strictly decreasing from (0, 1) onto (−∞,−π/4)
(see [52, 3.43(11)]), the function g is strictly decreasing from (0, 1) onto (−∞, (16−
3π)/4). Then from (16−3π)/4) > 0 we know that there exists r0 ∈ (0, 1) such that
rg(r) is positive on (0, r0) and negative on (r0, 1). Hence f is strictly increasing on
(0, r0) and strictly decreasing on (r0, 1). It is easy to see that f(0+) = 3π/2−5 < 0
and f(1−) = 0. We conclude that there exists r1 ∈ (0, 1) such that rf(r) is
negative on (0, r1) and positive on (r1, 1). Therefore, the function u is strictly
decreasing on (0, r1) and strictly increasing on (r1, 1). Then from the facts that
u(0+) = 0 = u(1−) we get u(x) < 0 for all r ∈ (0, 1). �

Theorem 2.4. The function

H(r) =
E − 1

r′2
− 1

2
log

4

r′

is strictly decreasing from (0, 1) onto (−1/4,−δ) with δ = 1 + log 2 − π/2 =
0.122351 · · · .

Proof. Differentiation yields

rr′4
d

dr
H(r) = (1 + r2)E − r′2K − 5

2
r2 +

1

2
r4 = u(r) < 0

by Lemma 2.3. Hence, the function H is strictly decreasing on (0, 1).
We clearly see that

H(0+) = π/2− 1− log 2 = −δ.
Let

h1(r) = E − 1− 1

2
r′2 log

4

r′
, h2(r) = r′2.

Then h1(1−) = 0 = h2(1−), and by l’Hospital’s rule one has

H(1−) = lim
r→1−

h′1(r)

h′2(r)
= lim
r→1−

1

2

(
r′2K
r2

+K − log
4

r′

)
− E

2r2
+

1

4
= −1

4
,

where the last equality follows from the facts (see [52, 3.21(7) and (3.25)] or [53,
112.01] that

lim
r→1−

r′
2K = 0, lim

r→1−

(
K − log

4

r′

)
= 0.

�

Proof of Theorem 1.2. Inequality (1.3) follows easily from Theorem 2.4 imme-
diately.
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1994, 74(2), 140–143.

[37] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Ed.), NIST Handbook of

Mathematical Functions, Cambridge University Press, Cambridge, 2010.
[38] B.-Y. Long and Y.-M. Chu, Optimal power mean bounds for the weighted geometric mean

of calssical means, J. Inequal. Appl., 2010, 2010, Article ID 905679, 6 pages.

[39] W.-F. Xia, Y.-M. Chu and G.-D. Wang, The optimal upper and lower power mean bounds
for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal., 2010,

2010, Article 604804, 9 pages.

[40] Y.-M. Chu and W.-F. Xia, Two optimal double inequalities between power mean and loga-
rithmic mean, Comput. Math. Appl., 2010, 60(1), 83–89.

[41] Y.-M. Chu, Y.-F. Qiu and M.-K. Wang, Sharp power mean bounds for the combination of

Seiffert and geometric means, Abstr. Appl. Anal., 2010, 2010, Article ID 108920, 12 pages.
[42] Y.-M. Chu, M.-K. Wang and Y.-F. Qiu, An optimal double inequality between power-type

Heron and Seiffert means, J. Inequal. Appl., 2010, Article ID 146945, 11 pages.
[43] Y.-M. Chu, S.-S. Wang and C. Zong, Optimal lower power mean bound for the convex

combination of harmonic and logarithmic means, Abstr. Appl. Anal., 2011, 2011, Article ID

520648, 9 pages.
[44] G.-D. Wang, X.-H. Zhang and Y.-M. Chu, A power mean inequality for the Grötzsch ring
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Symmetric identities for the second kind q-Bernoulli
polynomials

C. S. Ryoo
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Abstract : In [9], we studied the second kind q-Bernoulli numbers and polynomials. By using these

numbers and polynomials, we investigated the zeros of the second kind q-Bernoulli polynomials. In

this paper, by applying the symmetry of the fermionic p-adic q-integral on Zp, we give recurrence

identities the second kind q-Bernoulli polynomials and the sums of powers of consecutive q-odd

integers.

Key words : Symmetric properties, the sums of powers of consecutive q-odd integers, the second

kind Bernoulli numbers and polynomials, the second kind q-Bernoulli numbers and polynomials.

2000 Mathematics Subject Classification : 11B68, 11S40, 11S80.

1. Introduction

Bernoulli numbers, Bernoulli polynomials, q-Bernoulli numbers, q-Bernoulli polynomials, the

second kind Bernoulli number, the second kind Bernoulli polynomials, Euler numbers, Euler poly-

nomials, Genocchi numbers, Genocchi polynomials, tangent numbers, tangent polynomials, and Bell

polynomials were studied by many authors (see for details [1-11]). Bernoulli numbers and polynomi-

als possess many interesting properties and arising in many areas of mathematics and physics. In [8],

by using the second kind Euler numbers Ej and polynomials Ej(x), we investigated the alternating

sums of powers of consecutive odd integers. Let k be a positive integer. Then we obtain

Tj(k − 1) =
k−1∑
n=0

(−1)n(2n+ 1)j =
(−1)k+1Ej(2k) + Ej

2
.

In [9], we introduced the second kind q-Bernoulli numbers Bn,q and polynomials Bn,q(x). By using

computer, we observed an interesting phenomenon of ‘scattering’ of the zeros of the second kind

q-Bernoulli polynomials Bn,q(x) in complex plane. Also we carried out computer experiments for

doing demonstrate a remarkably regular structure of the complex roots of the second kind q-Bernoulli

polynomials Bn,q(x). The outline of this paper is as follows. We introduce the second kind q-

Bernoulli numbers Bn,q and polynomials Bn,q(x). In Section 2, we obtain the sums of powers

of consecutive q-odd integers. Finally, we give recurrence identities the second kind q-Bernoulli

polynomials and the sums of powers of consecutive q-odd integers.

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, · · · } denotes

the set of natural numbers, R denotes the set of real numbers, C denotes the set of complex numbers,

Zp denotes the ring of p-adic rational integers, Qp denotes the field of p-adic rational numbers, and

Cp denotes the completion of algebraic closure of Qp. Let νp be the normalized exponential valuation

of Cp with |p|p = p−νp(p) = p−1. When one talks of q-extension, q is considered in many ways such

as an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally

assume that |q| < 1. If q ∈ Cp, we normally assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q)

for |x|p ≤ 1. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},
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the p-adic q-integral was defined by [1, 2, 3, 4, 6]

Iq(g) =

∫
Zp

g(x)dµq(x) = lim
N→∞

1

[pN ]

pN−1∑
x=0

g(x)qx.

The bosonic integral was considered from a physical point of view to the bosonic limit q → 1, as

follows:

I1(g) = lim
q→1

Iq(g) =

∫
Zp

g(x)dµ1(x) = lim
N→∞

1

pN

pN−1∑
x=0

g(x) (see [1, 2, 3, 5]). (1.1)

By (1.1), we easily see that

I1(g1) = I1(g) + g′(0), cf. [1, 2, 3, 4, 6, 7], (1.2)

where g1(x) = g(x+ 1) and g′(0) =
dg(x)

dx

∣∣
x=0

.

First, we introduce the second kind Bernoulli numbers Bn and polynomials Bn(x). The second

kind Bernoulli numbers Bn and polynomials Bn(x) are defined by means of the following generating

functions (see [7]):

F (t) =
2tet

e2t − 1
=

∞∑
n=0

Bn
tn

n!
,

and

F (x, t) =
2tet

e2t − 1
ext =

∞∑
n=0

Bn,q(x)
tn

n!
,

respectively.

The second kind q-Bernoulli polynomials, Bn,q(x) are defined by means of the generating func-

tion:

Fq(x, t) =
(log q + 2t)et

qe2t − 1
ext =

∞∑
n=0

Bn,q(x)
tn

n!
. (1.3)

The second kind q-Bernoulli numbers Bn,q are defined by means of the generating function:

Fq(t) =
(log q + 2t)et

qe2t − 1
=

∞∑
n=0

Bn,q
tn

n!
. (1.4)

In (1.2), if we take g(x) = qxe(2x+1)t, then we have∫
Zp

qxe(2x+1)tdµ1(x) =
(log q + 2t)et

qhe2t − 1
. (1.5)

for |t| ≤ p−
1

p−1 . In (1.2), if we take g(x) = e2nxt, then we also have∫
Zp

e2nxtdµ1(x) =
2nt

e2nt − 1
. (1.6)

It will be more convenient to write (1.2) as the equivalent bosonic integral form∫
Zp

g(x+ 1)dµ1(x) =

∫
Zp

g(x)dµ1(x) + g′(0), (see [1,2,3,4,6]). (1.7)

For n ∈ N, we also derive the following bosonic integral form by (1.7),∫
Zp

g(x+ n)dµ1(x) =

∫
Zp

g(x)dµ1(x) +
n−1∑
k=0

g′(k), where g′(k) =
dg(x)

dx

∣∣
x=k

. (1.8)
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In [9], we introduced the second kind q-Bernoulli numbers Bn,q and polynomials Bn,q(x) and inves-

tigate their properties. The following elementary properties of the second kind q-Bernoulli numbers

Bn,q and polynomials Bn,q(x) are readily derived form (1.1), (1.2), (1.3) and (1.4). We, therefore,

choose to omit details involved.

Theorem 1(Witt formula). For q ∈ Cp with |1− q|p < p−
1

p−1 , we have∫
Zp

qx(2x+ 1)ndµ1(x) = Bn,q,

∫
Zp

qy(x+ 2y + 1)ndµ1(y) = Bn,q(x).

Theorem 2. For any positive integer n, we have

Bn,q(x) =

n∑
k=0

(
n

k

)
Bk,qx

n−k.

Theorem 3(Distribution Relation). For any positive integer m, we obtain

Bn,q(x) = mn−1
m−1∑
i=0

qiBn,qm

(
2i+ x+ 1−m

m

)
for n ≥ 0.

2. Symmetry identities for the second kind q-Bernoulli polynomials

In this section, we assume that q ∈ Cp. In [2], Kim investigated interesting properties of

symmetry p-adic invariant integral on Zp for Bernoulli polynomials and Bernoulli polynomials. By

using same method of [3], expect for obvious modifications, we obtain recurrence identities the second

kind q-Bernoulli polynomials. By (1.7), we obtain

1

h log q + 2t

(∫
Zp

qxqne(2x+2n+1)tdµ1(x)−
∫
Zp

qxe(2x+1)tdµ1(x)

)

=
n
∫
Zp
qxe(2x+1)tdµ1(x)∫

Zp
qnxe2ntxdµ1(x)

.

(2.1)

By (1.8), we obtain

1

h log q + 2t

(∫
Zp

qxqne(2x+2n+1)tdµ1(x)−
∫
Zp

qxe(2x+1)tdµ1(x)

)

=

∞∑
k=0

(
n−1∑
i=0

qi(2i+ 1)k

)
tk

k!
.

(2.2)

For each integer k ≥ 0, let

Ok,q(n) = 1k + q3k + q25k + q37k + · · ·+ qn(2n+ 1)k.

The above sum Ok,q(n) is called the sums of powers of consecutive q-odd integers.

From the above and (2.2), we obtain

1

log q + 2t

(∫
Zp

qxqne(2x+2n+1)tdµ1(x)−
∫
Zp

qxe(2x+1)tdµ1(x)

)
tk

k!
=

∞∑
k=0

Ok,q(n− 1)
tk

k!
. (2.3)
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Thus, we have

∞∑
k=0

(
qn
∫
Zp

qx(2x+ 2n+ 1)kdµ1(x)−
∫
Zp

qx(2x+ 1)kdµ1(x)

)
tk

k!
=

∞∑
k=0

(log q + 2t)Ok,q(n− 1)
tk

k!
.

By comparing coefficients
tk

k!
in the above equation, we arrive at the following theorem:

Theorem 4. Let k be a positive integer. Then we obtain

qnBn,q(2n)−Bn,q = log qOk,q(n− 1) + 2kOk−1,q(n− 1). (2.4)

Remark 5. For the sums of powers of consecutive odd integers, we have

lim
q→1

(log qOk,q(n− 1) + 2kOk−1,q(n− 1)) = 2k
n−1∑
i=0

(2i+ 1)k−1 = Bk(2n)−Bk for k ∈ N.

By using (2.1) and (2.3), we arrive at the following theorem:

Theorem 6. Let n be positive integer. Then we have

n
∫
Zp
qxe(2x+1)tdµ1(x)∫

Zp
qnxe2ntxdµ1(x)

=

∞∑
m=0

(Om,q(n− 1))
tm

m!
. (2.5)

Let w1 and w2 be positive integers. By using (1.5) and (1.6), we have∫
Zp

∫
Zp
q(w1x1+w2x2)e(w1(2x1+1)+w2(2x2+1)+w1w2x)tdµ1(x1)dµ1(x2)∫

Zp
qw1w2xe2w1w2xtdµ1(x)

=
(log q + 2t)ew1tew2tew1w2xt(qw1w2e2w1w2t − 1)

(qw1e2w1t − 1)(qw2e2w2t − 1)
.

(2.6)

By using (2.4) and (2.6), after elementary calculations, we obtain

a =

(
1

w1

∫
Zp

qw1x1e(w1(2x1+1)+w1w2x)tdµ1(x1)

)(
w1

∫
Zp
qw2x2e(2x2+1)(w2t)dµ1(x2)∫

Zp
qw1w2xe2w1w2txdµ1(x)

)

=

(
1

w1

∞∑
m=0

Bm,qw1 (w2x)wm1
tm

m!

)( ∞∑
m=0

Om,qw2 (w1 − 1)wm2
tm

m!

)
.

(2.7)

By using Cauchy product in the above, we have

a =

∞∑
m=0

 m∑
j=0

(
m

j

)
Bj,qw1 (w2x)wj−1

1 Om−j,qw2 (w1 − 1)wm−j
2

 tm

m!
. (2.8)

Again, by using the symmetry in (2.7), we have

a =

(
1

w2

∫
Zp

qw2x2e(w2(2x2+1)+w1w2x)tdµ1(x2)

)(
w2

∫
Zp
qw1x1e(2x1+1)(w1t)dµ1(x1)∫

Zp
qw1w2xe2w1w2txdµ1(x)

)

=

(
1

w2

∞∑
m=0

Bm,qw2 (w1x)wm2
tm

m!

)( ∞∑
m=0

Om,qw1 (w2 − 1)wm1
tm

m!

)
.

Thus we have

a =
∞∑
m=0

 m∑
j=0

(
m

j

)
Bj,qw2 (w1x)wj−1

2 Om−j,qw1 (w2 − 1)wm−j
1

 tm

m!
. (2.9)
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By comparing coefficients
tm

m!
on the both sides of (2.8) and (2.9), we arrive at the following theorem:

Theorem 7. Let w1 and w2 be positive integers. Then we obtain

m∑
j=0

(
m

j

)
Bj,qw1 (w2x)wj−1

1 Om−j,qw2 (w1 − 1)wm−j
2

=
m∑
j=0

(
m

j

)
Bj,qw2 (w1x)wj−1

2 Om−j,qw1 (w2 − 1)wm−j
1 ,

where Bk,q(x) and Om,q(k) denote the second kind q-Bernoulli polynomials and the sums of powers

of consecutive q-odd integers, respectively.

By using Theorem 2, we have the following corollary:

Corollary 8. Let w1 and w2 be positive integers. Then we have

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wm−k

1 wj−1
2 xj−kBk,qw2Om−j,qw1 (w2 − 1)

=
m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wj−1

1 wm−k
2 xj−kBk,qw1Om−j,qw2 (w1 − 1).

By using (2.6), we have

a =

(
1

w1
ew1w2xt

∫
Zp

qw1x1e(2x1+1)w1tdµ1(x1)

)(
w1

∫
Zp
qw2x2e(2x2+1)(w2t)dµ1(x2)∫

Zp
qw1w2xe2w1w2txdµ1(x)

)

=

(
1

w1
ew1w2xt

∫
Zp

qw1x1e(2x1+1)w1tdµ1(x1)

)w1−1∑
j=0

qw2je(2j+1)(w2t)


=

w1−1∑
j=0

qw2j

∫
Zp

qw1x1e

(
2x1+1+w2x+(2j+1)

w2

w1

)
(w1t)

dµ1(x1)

=
∞∑
n=0

w1−1∑
j=0

qw2jBn,qw1

(
w2x+ (2j + 1)

w2

w1

)
wn−1

1

 tn

n!
.

(2.10)

Again, by using the symmetry property in (2.10), we also have

a =

(
1

w2
ew1w2xt

∫
Zp

qw2x2e(2x2+1)w2tdµ1(x2)

)(
w2

∫
Zp
qw1x1e(2x1+1)(w1t)dµ1(x1)∫

Zp
qw1w2xe2w1w2txdµ1(x)

)

=

(
1

w2
ew1w2xt

∫
Zp

qw2x2e(2x2+1)w2tdµ1(x2)

)w2−1∑
j=0

qw1je(2j+1)(w1t)


=

w2−1∑
j=0

qw1j

∫
Zp

qw2x2e

(
2x2+1+w1x+(2j+1)

w1

w2

)
(w2t)

dµ1(x2)

=
∞∑
n=0

w2−1∑
j=0

qw1jBn,qw2

(
w1x+ (2j + 1)

w1

w2

)
wn−1

2

 tn

n!
.

(2.11)

By comparing coefficients
tn

n!
on the both sides of (2.10) and (2.11), we have the following theorem.
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Theorem 9. Let w1 and w2 be positive integers. Then we obtain

w1−1∑
j=0

qw2jBn,qw1

(
w2x+ (2j + 1)

w2

w1

)
wn−1

1

=

w2−1∑
j=0

qw1jBn,qw2

(
w1x+ (2j + 1)

w1

w2

)
wn−1

2 .

(2.12)

Substituting w1 = 1 into (2.12), we arrive at the following corollary.

Corollary 10. Let w2 be positive integer. Then we obtain

Bn,q(x) = wn−1
2

w2−1∑
j=0

qjBn,qw2

(
x− w2 + (2j + 1)

w2

)
.

This last result(Corollary 10) is shown to yield the known Distribution Relation of the second kind

q-Bernoulli polynomials(Theorem 3).

Acknowledgment

This work was supported by 2019 Hannam University Research Fund.

REFERENCES

1. Kim, T.(2002). q-Volkenborn integration, Russ. J. Math. Phys., v.9, pp. 288-299.

2. Kim, T.(2008). Euler numbers and polynomials associated with zeta function, Abstract and

Applied Analysis, Art. ID 581582.

3. Kim, T.(2008) Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomials,

Journal of Difference Equations and Applications, v.12, pp. 1267-1277.

4. Kim, T., Jang, L. C., Pak, H. K.(2001). A note on q-Euler and Genocchi numbers, Proc.

Japan Acad., v.77 A, pp. 139-141.

5. Liu, G.(2006). Congruences for higher-order Euler numbers, Proc. Japan Acad., v.82 A, pp.

30-33.

6. Ryoo, C.S., Kim, T., Jang, L. C.(2007). Some relationships between the analogs of Euler

numbers and polynomials, Journal of Inequalities and Applications, v.2007, ID 86052, pp. 1-

22.

7. Ryoo, C.S.(2011). Distribution of the roots of the second kind Bernoulli polynomials, Journal

of Computational Analysis and Applications, v.13, pp. 971-976.

8. Ryoo, C.S.(2011). On the alternating sums of powers of consecutive odd integers, Journal of

Computational Analysis and Applications, v.13, pp. 1019-1024.

9. Ryoo, C.S.(2013). Calculating zeros of q-extension of the second kind Bernoulli polynomials,

Journal of Computational Analysis and Applications, v.15, pp. 248-254.

10. Ryoo, C.S.(2016). Differential equations associated with generalized Bell polynomials and their

zeros, Open Mathematics, v.14, pp. 807-815.

11. Ryoo, C.S.(2016) Differential equations associated with tangent numbers, J. Appl. Math. &

Informatics, v.34, pp. 487-494.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.4, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

659 RYOO 654-659



On some finite difference methods on the Shishkin mesh for the

singularly perturbed problem ∗

Quan Zheng†, Ying Liu, Jie He

College of Sciences, North China University of Technology, Beijing 100144, China

Abstract: This paper studies the convergence behavior of three finite difference schemes

on the Shishkin mesh to solve the singularly perturbed two-point boundary value problem.

Three new error estimates are proved for the hybrid finite difference scheme that combines the

midpoint upwind scheme on the coarse part with the central difference scheme on the fine part,

the midpoint upwind scheme and the simple upwind scheme, respectively. Finally, numerical

experiments illustrate that these error estimates are sharp and the convergence is uniform with

respect to the perturbation parameter.

Keywords: Singularly perturbed boundary value problem; Finite difference scheme; Piece-

wise equidistant mesh; Error estimate; Uniform convergence

1 Introduction

Consider the singularly perturbed two-point boundary value problem:Lu(x) := −εu′′(x) + b(x)u′(x) + c(x)u(x) = f(x), x ∈ (0, 1),

u(0) = A, u(1) = B,
(1)

where 0 < ε � 1 is a small perturbation parameter, A and B are given constants, and the

functions b(x), c(x) and f(x) are sufficiently smooth satisfying 0 < β < b(x) < β∗ and 0 ≤
c(x) < γ∗, where β, β∗ and γ∗ are constants. Under these conditions, the singularly perturbed

problem (1) has a unique solution that possesses a boundary layer at x = 1 (see [1–4]).

Among various numerical methods to solve singularly perturbed problems, finite difference

schemes on layer-adapted meshes for the singularly perturbed two-point boundary value prob-

lem have been widely studied in the literature, see [1–10]. The simple upwind scheme was

proved to have the error estimate O(N−1) on the coarse part and O(N−1 lnN) on the fine part

on the Shishkin mesh and the error estimate O(N−1) on the whole interval on the Bakhvalov-

Shishkin mesh, see, e.g., [5, 6]. The central difference scheme on the Shishkin mesh was proved

∗This paper is supported by Natural Science Foundation of China (No. 11471019).
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to have the convergence O(N−2 ln2N) on the whole nodes by discrete Green’s functions, al-

though the computed solution had small oscillations on the coarse part, see [3, 7]. In order to

avoid oscillation, the midpoint upwind scheme on the Shishkin mesh was constructed and the

convergence O(max{N−2, N−5+4i/N lnN}) were proved for i = 1, · · · , N in [8]. The midpoint

upwind scheme on the Bakhvalov-Shishkin mesh was shown to be of order O(N−2) on the coarse

part and O(N−1) on the fine part in [9]. To improve the convergence behaviour of boundary

layer, the hybrid finite difference scheme was proposed and the convergence O(N−2) on the

coarse part and O(N−2 ln2N) on the fine part were proved for (1.1) with c(x) ≡ 0 in [8] and

with geeneral c(x) ≥ 0 in [4].

In this paper, we construct the hybrid finite difference scheme on the Shishkin mesh to slove

(1) with c(x) ≥ 0, not only give the suitable conditions especially for the c(x) to guarantee

an associated M -matrix and the discrete maximum principle, but also obtain a better error

estimate. Furthermore, new error estimates for the midpoint upwind scheme and the simple

upwind scheme are also obtained. Finally, the convergence behaviours according to these new

error estimates for these schemes are confirmed by numerical experiments.

Note: Throughout the paper, the nontrivial case ε ≤ CN−1 is considered, C denotes a generic

positive constant that is independent of both perturbation parameter ε and mesh parameter N ,

and C can take different values at each occurrence, even in the same argument.

2 Error estimates on the Shishkin mesh

Lemma 1 (see [1–3] The solution u(x) of (1) can be decomposed as u(x) = S(x) + E(x) on

[0, 1], where the smooth part S satisfies

LS(x) = f(x) and | S(i)(x) |≤ C, 0 ≤ i ≤ q,

while the layer part E satisfies

LE(x) = 0 and | E(i)(x) |≤ Cε−i exp

(
−β(1− x)

ε

)
, 0 ≤ i ≤ q,

where the maximal order q depends on the smoothness of the data. �

Let N be a positive even integer and τ = min
{

1
2 ,

4ε
β lnN

}
. Since the singularly perturbed

problem is considered, we generally take ε ≤ CN−1 and τ = 4ε
β lnN . Choose 1 − τ be the

transition point. Divide [0, 1 − τ ] and [1 − τ, 1] uniformly into N/2 subintervals, respectively.

Then the Shishkin mesh is:

xi =


2(1− τ)

N
i, 0 ≤ i ≤ N

2
,

1− 2τ

(
1− i

N

)
,
N

2
≤ i ≤ N.

(2)
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Lemma 2 Denote hi = xi− xi−1 for (2), then N−1 ≤ hi < 2N−1 and hN/2+i =
8ε

β
N−1 lnN for

i = 1, 2, · · · , N/2. �

We construct the following hybrid finite difference scheme:

LNuNi :=

−εD+D−uNi + bi−1/2D
−uNi + ci−1/2u

N
i−1/2 = fi−1/2, 0 < i ≤ N/2,

−εD+D−uNi + biD
0uNi + ciu

N
i = fi, N/2 < i < N,

uN0 = A, uNN = B,

(3)

where define LN as a discrete operator, D+uNi =
uNi+1 − uNi
hi+1

, D−uNi =
uNi − uNi−1

hi
, D+D−uNi =

2
(
D+uNi −D−uNi

)
hi+1 + hi

, D0uNi =
uNi+1 − uNi−1
hi+1 + hi

, uNi−1/2 =
uNi−1 + uNi

2
, bi−1/2 = b

(
xi−1/2

)
, bi = b (xi),

fi−1/2 = f
(
xi−1/2

)
and so on.

The scheme (3) is slightly different from the scheme (2.86) in [4] in the discretization of cu

at xi−1/2. The scheme (3) gives the following expression:

LNuNi =

− 2ε
hi+1(hi+hi+1)

uNi+1 + ( 2ε
hihi+1

+
bi−1/2

hi
+

ci−1/2

2 )uNi − ( 2ε
hi(hi+hi+1)

+
bi−1/2

hi
− ci−1/2

2 )uNi−1,

−( 2ε
hi+1(hi+hi+1)

− bi
hi+hi+1

)uNi+1 + ( 2ε
hihi+1

+ ci)u
N
i − ( 2ε

hi(hi+hi+1)
+ bi

hi+hi+1
)uNi−1.

Lemma 3 (Discrete comparison principle) If N >
γ∗

β
and

N

lnN
>

4β∗

β
, then the operator LN

defined by (3) on (2) satisfies the discrete comparison principle, i.e., let {vi} and {wi} are mesh

functions, if v0 ≤ w0, vN ≤ wN and LNvi ≤ LNwi for i = 1, 2, · · · , N − 1, then vi ≤ wi for all i.

Proof. Under the conditions of Lemma 3, the coefficient matrix associated with LN by the

above expression is clearly an (N − 1) × (N − 1) strictly diagonally dominant matrix, and has

positive diagonal entries and non-positive off diagonal entries. So it is an irreducible M -matrix.

Hence, the operator satisfies the discrete comparison principle. �

So, the scheme (3) on (2) has a unique solution and the function wi is defined as a barrier

function for vi by Lemma 3.

Lemma 4 Set Z0 = 1, define the mesh function Zi =

i∏
j=1

(
1 +

βhj
2ε

)
for i = 1, 2, · · · , N . Then

the operator LN of (3) satisfies

LNZi ≥
C

max{ε, hi}
Zi for i = 1, 2, · · · , N − 1.

Proof. Clearly

D+Zi =
β

2ε
Zi and D−Zi =

β

2ε+ βhi
Zi.

Hence

−εD+D−Zi = − 2ε

hi+1 + hi

(
D+Zi −D−Zi

)
= − β2hi

(hi+1 + hi) (2ε+ βhi)
Zi,
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and

D0Zi =
hi+1D

+Zi + hiD
−Zi

hi+1 + hi
=

(
β

2ε+ βhi
+

β2hi+1hi
2ε (hi+1 + hi) (2ε+ βhi)

)
Zi.

Thus, from (3), by using c(x) ≥ 0 and b(x) > β > 0, we have

LNZi ≥ −
β2hi

(hi+1 + hi) (2ε+ βhi)
Zi + bi−1/2 ·

β

2ε+ βhi
Zi

=
β

2ε+ βhi

(
bi−1/2 −

βhi
hi+1 + hi

)
Zi, i = 1, 2, · · · , N/2,

LNZi ≥ −
β2hi

(hi+1 + hi) (2ε+ βhi)
Zi + bi

(
β

2ε+ βhi
+

β2hi+1hi
2ε (hi+1 + hi) (2ε+ βhi)

)
Zi

≥ β

2ε+ βhi

(
bi −

βhi
hi+1 + hi

)
Zi, i = N/2 + 1, · · · , N − 1,

and obtain the result. �

Lemma 5 For the Shishkin mesh (2), there exists a constant C such that

N∏
j=i+1

(
1 +

βhj
2ε

)−1
≤ CN−4(1−i/N) for N/2 ≤ i < N.

Proof. By Lemma 4.1(b) in [1] and noting hj = h for j = N/2 + 1, · · · , N , we have

N∏
j=i+1

(
1 +

βhj
2ε

)−1
=

N∏
j=i+1

(
1 +

βh

2ε

)−1
≤ e−β(1−xi)/(2ε+βh) = e−4(1−i/N) lnN/(1+4N−1 lnN).

Then as the proof of Lemma 3.2 in [8], the result is proved. �

Lemma 6 Assuming that u(x) be sufficiently smooth function defined on [0, 1], for the truncation

error of (3) on the Shishkin mesh to solve (1), there exists a constant C such that∣∣LN (ui)− (Lu)(xi−1/2)
∣∣ ≤ C [∫ xi+1

xi−1

ε|u′′′(t)|dt+ hi

∫ xi

xi−1

(|u′′′(t)|+ |u′′(t)|)dt

]
, i = 1, · · · , N/2,

∣∣LN (ui)− (Lu) (xi)
∣∣ ≤ Chi ∫ xi+1

xi−1

(
ε
∣∣∣u(4)(t)∣∣∣+

∣∣u′′′(t)∣∣)dt, i = N/2 + 1, · · · , N − 1.

Proof. The results follow by noting that c(x)u(x) contributes∣∣ci−1/2∣∣ ∣∣(u(xi−1) + u(xi)) /2− u
(
xi−1/2

)∣∣ ≤ Chi ∫ xi

xi−1

∣∣u′′(t)∣∣ dt
for i = 1, 2, · · · , N/2 to the truncation error in the Lemma 2.4 in [8] and zero for i = N/2 +

1, · · · , N − 1 to the truncation error in Theorem 3.2 in [8], respectively. �

Similarly, the numerical solution can also be split into the smooth part and the layer part

by uNi = SNi + ENi , where SNi satisfies LNSNi = fi−1/2, i = 1, 2, · · · , N/2, LNSNi = fi, i =

N/2 + 1, · · · , N − 1, SN0 = S0 and SNN = SN , and ENi satisfies LNENi = 0, i = 1, 2, · · · , N − 1,

EN0 = E0 and ENN = EN , therefore∣∣ui − uNi ∣∣ ≤ ∣∣Si − SNi ∣∣+
∣∣Ei − ENi ∣∣ . (4)
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Lemma 7 If N >
γ∗

β
and

N

lnN
>

4β∗

β
, then for the smooth part of the solutions of (1) and (3)

on the Shishkin mesh, there exists a constant C such that∣∣Si − SNi ∣∣ ≤ CN−2 for all i.

Proof. By Lemma 1 and Lemma 6, we have

∣∣LN (Si − SNi )
∣∣ =


∣∣LN (Si)− (LS)(xi−1/2)

∣∣ ≤ C(hi + hi+1)(ε+ hi), i = 1, · · · , N/2,∣∣LN (Si)− (LS) (xi)
∣∣ ≤ Chi(hi + hi+1)(ε+ 1), i = N/2 + 1, · · · , N − 1.

Set wi = C0N
−1 (ε+N−1

)
xi for all i, where constant C0 is chosen sufficiently large. Then

LNwi =

bi−1/2C0N
−1(ε+N−1) + ci−1/2 (wi−1 + wi) /2 ≥ CN−1(ε+N−1), i = 1, · · · , N/2,

biC0N
−1(ε+N−1) + ciwi ≥ CN−1(ε+N−1), i = N/2 + 1, · · · , N − 1.

Therefore, LNwi ≥
∣∣LN (Si − SNi )∣∣ for i = 1, · · · , N − 1. Clearly, w0 = 0 =

∣∣S0 − SN0 ∣∣ and

wN = C0N
−1 (ε+N−1

)
≥ 0 =

∣∣SN − SNN ∣∣. By Lemma 3, wi is a barrier function for
∣∣Si − SNi ∣∣

and then the proof is completed. �

Lemma 8 If N >
γ∗

β
and

N

lnN
>

4β∗

β
, then for the layer part of the solutions of (1) and (3)

on the Shishkin mesh, there exists a constant C such that∣∣Ei − ENi ∣∣ ≤ CN−2 for i = 0, 1, · · · , N/2.

Proof. For i = 0, 1, · · · , N/2, from Lemma 1, we have

|Ei| ≤ Ce
−
β(1− xi)

ε ≤ Ce
−
β(1− xi)

2ε ≤ Ce
−
β(1− xN/2)

2ε = CN−2. (5)

Recall the function Zi in Lemma 4. Now et ≥ 1 + t for all t ≥ 0. So,

Zi
ZN

=

N∏
j=i+1

(
1 +

βhj
2ε

)−1
≥

N∏
j=i+1

e−βhj/(2ε) = e−β(1−xi)/(2ε). (6)

Let Yi = C0
Zi
ZN

for all i, where constant C0 is chosen sufficiently large. From Lemma 4, we

have LNYi = C0/ZN · LNZi ≥ 0 =
∣∣LNENi ∣∣ for i = 1, · · · , N − 1. By (6) and Lemma 1,

Y0 = C0Z0/ZN ≥ C0e
− β

2ε ≥ C0e
−β
ε ≥ |E (0)| =

∣∣EN0 ∣∣ and YN = C0 ≥ |E (1)| =
∣∣ENN ∣∣. Thus, by

Lemma 3, we have ∣∣ENi ∣∣ ≤ Yi = C
N∏

j=i+1

(
1 +

βhj
2ε

)−1
for all i. (7)

By Lemma 5, we have

∣∣ENi ∣∣ ≤ C N∏
j=N/2+1

(
1 +

βhj
2ε

)−1
≤ CN−2 for i = 0, 1, · · · , N/2.
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Consequently, combining this inequality with (5), the proof is completed. �

Lemma 9 If N >
γ∗

β
and

N

lnN
>

4β∗

β
, then for the layer part of the solutions of (1) and (3)

on the Shishkin mesh, there exists a constant C such that∣∣Ei − ENi ∣∣ ≤ C max
{
N−2, N−6+4i/N ln2N

}
for i = N/2 + 1, · · · , N.

Proof. By Lemmas 6, 1 and 2, we have∣∣LN (Ei − ENi )∣∣ =
∣∣LN (Ei)− (LE) (xi)

∣∣
≤ Chi

∫ xi+1

xi−1

(
ε
∣∣∣E(4)(t)

∣∣∣+
∣∣E′′′(t)∣∣)dt

≤ Chi
∫ xi+1

xi−1

ε−3 exp

(
−β(1− t)

ε

)
dt

= Cε−3hi ·
ε

β
sinh

βhi
ε
· e−β(1−xi)/ε

≤ Cε−3h2i e−β(1−xi)/(2ε)

≤ Cε−1N−2 ln2N
N∏

j=i+1

(
1 +

βhj
2ε

)−1
, since e−β(1−xi)/(2ε) ≤

N∏
j=i+1

(
1 +

βhj
2ε

)−1
= Cε−1N−2 ln2N · Zi/ZN .

Set φi = C0

{
N−2 +N−2 ln2N · Zi/ZN

}
for i = N/2, · · · , N , where constant C0 is chosen

sufficiently large. By Lemma 4, we have LNφi ≥ CN−2 ln2N/ZN · LNZi ≥
∣∣LN (Ei − ENi )∣∣

for i = N/2 + 1, · · · , N − 1. Clearly, φN/2 ≥ C0N
−2 ≥

∣∣∣EN/2 − ENN/2∣∣∣ by Lemma 8 and

φN ≥ 0 =
∣∣EN − ENN ∣∣. Thus, φi is a barrier function for

∣∣Ei − ENi ∣∣ by Lemma 3. And by

Lemma 5, the result follows. �

Theorem 1 Assuming that N >
γ∗

β
and

N

lnN
>

4β∗

β
, the hybrid finite difference scheme (3)

on the Shishkin mesh (2) for (1) satisfies:∣∣ui − uNi ∣∣ ≤ C max
{
N−2, N−6+4i/N ln2N

}
for i = 1, · · · , N. (8)

Furthermore, ∣∣ui − uNi ∣∣ ≤
 CN−2, 0 ≤ i ≤ phN,

CN−2 ln2N, phN < i ≤ N,
(9)

where ph = 1− 1

2e
≈ 0.8161.

Proof. From (4) and Lemmas 7, 8 and 9, we have the error estimate (8).

Furthermore, since N−6+4i/N ln2N = N−2N−4+4i/N ln2N , we consider the function

f(x) = x−4+4ph ln2 x, x > 1.
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From f ′(x) = x−4+4ph−1 lnx [(−4 + 4ph) lnx+ 2] = 0, we have x = e1/(2−2ph). So,

max
x>1
{f(x)} =

1

4(1− ph)2e2
,

then

N−4+4ph ln2N ≤ 1

4(1− ph)2e2
= 1.

Therefore, (9) is proved. �

Theorem 2 Assuming that N >
γ∗

β
, the midpoint upwind scheme on the Shishkin mesh (2) for

(1) satisfies: ∣∣ui − uNi ∣∣ ≤
 CN−2, 0 ≤ i ≤ pmN,

CN−1 lnN, pmN < i ≤ N,
(10)

where pm =
3

4
− 1

4e
≈ 0.6580.

Proof. Under the hypothesis of Theorem 2, the matrix associated with the midpoint upwind

scheme is an M -matrix.

In [8], it is shown that
∣∣Ei − ENi ∣∣ ≤ C max

{
N−2, N−5+4i/N lnN

}
for i = N/2, · · · , N .

Combining this with (3.1) and (3.2) in [8] yields the result:∣∣ui − uNi ∣∣ ≤ C max
{
N−2, N−5+4i/N lnN

}
for all i. (11)

Further, as the proof of Theorem 1, Theorem 2 follows. �

Theorem 3 The simple upwind scheme on the Shishkin mesh (2) for (1) satisfies:

∣∣ui − uNi ∣∣ ≤
CN−1, 0 ≤ i ≤ psN,

CN−1 lnN, psN < i ≤ N,
(12)

where ps = 1− 1

2e
≈ 0.8161.

Proof. The matrix associated with the simple upwind scheme is an M -matrix. From Lemma

2.95 in [3], we know
∣∣LN (Ei − ENi )

∣∣ ≤ Cε−1N−1e−β(1−xi)/ε.
Set a new φi = C0

{
N−1 +N−1 lnN · Zi/ZN

}
for i = N/2, · · · , N , where constant C0 is

chosen sufficiently large. It is easy to verify that
∣∣Ei − ENi ∣∣ ≤ φi for i = N/2, · · · , N , by the

discrete comparison principle.

Note that τ = 2ε
β lnN and hi = 4ε

β N
−1 lnN for i = N/2 + 1, · · · , N . As the proof of

Lemma 5, we have
N∏

j=i+1

(
1 +

βhj
2ε

)−1
≤ CN−2(1−i/N) for N/2 ≤ i < N . Thus

∣∣Ei − ENi ∣∣ ≤
C max

{
N−1, N−3+2i/N lnN

}
for i = N/2, · · · , N . Combining this inequality with Lemma 2.86

and Corollary 2.95 in [3], we have∣∣ui − uNi ∣∣ ≤ C max
{
N−1, N−3+2i/N lnN

}
for all i. (13)
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Consequently, as the proof of Theorem 1, the proof is completed. �

Remark. In this paper, for the hybrid scheme and the midpoint upwind scheme, the condition

N > γ∗

β , not in [4] and [8], is added in Theorems 1 and 2 for c(x) ≥ 0 in (1). Moreover, the

constants ph, pm and ps are much larger than 1
2 , and the factor C of new error estimates are

uniform to ε and N .

3 Numerical results

Example 1 (see [10]). Consider the singularly perturbed problem−εy
′′ +

1

x+ 1
y′ +

1

x+ 2
y = f(x), 0 < x < 1,

y(0) = 1 + 2−
1
ε , y(1) = e + 2,

where f(x) is chosen such that y(x) = ex + 2−
1
ε (x+ 1)1+

1
ε is the exact solution.

The numerical results of Example 1 by the hybrid scheme (3) on (2) are shown in Table 1,

where the numerical convergence order is computed by log2
max0<i≤phN |ui−uNi |
max0<i≤phN |ui−u2Ni |

, and the numer-

ical convergence constant is computed by max0<i≤phN
∣∣ui − uNi ∣∣ /N−2, with the corresponding

formulas for phN < i < N , and for the midpoint upwind scheme and the simple upwind scheme.

Table 1. The numerical results of the hybrid scheme (3) on the Shishkin mesh (2)
ε = 10−6 ε = 10−10

N i ≤ phN order const i > phN order const i ≤ phN order const i > phN order const

16 0.0178 —— 4.553 0.1711 —— 5.698 0.0178 —— 4.553 0.1711 —— 5.698

32 0.0031 2.522 3.212 0.0639 1.421 5.446 0.0031 2.522 3.212 0.0639 1.421 5.446

64 5.1389e-4 2.593 2.105 0.0211 1.599 4.988 5.1395e-4 2.593 2.105 0.0211 1.599 4.988

128 8.4857e-5 2.599 1.390 0.0071 1.571 4.922 8.4882e-5 2.599 1.391 0.0071 1.572 4.922

256 1.5179e-5 2.483 0.995 0.0023 1.626 4.874 1.5190e-5 2.482 0.996 0.0023 1.626 4.874

512 3.1035e-6 2.290 0.814 7.2139e-4 1.673 4.859 3.1083e-6 2.289 0.815 7.2139e-4 1.673 4.859

1024 6.8326e-7 2.183 0.717 2.2239e-4 1.698 4.854 6.8554e-7 2.181 0.719 2.2279e-4 1.695 4.862

2048 1.5924e-7 2.101 0.668 6.7248e-5 1.726 4.852 1.6034e-7 2.096 0.673 6.7628e-5 1.720 4.879

The third and ninth columns in Table 1 show second-order convergence and agree with (9)1

on [0, x[phN ]]. The sixth and twelfth columns show almost second-order convergence and agree

with (9)2 on (x[phN ], 1]. Moreover, the columns of orders and constants in Table 1 show that

the convergence is uniform to the different perturbation parameters.

Table 2. The numerical results of the midpoint upwind scheme on the Shishkin mesh
ε = 10−6 ε = 10−10

N i ≤ pmN order const i > pmN order const i ≤ pmN order const i > pmN order const

16 0.0058 —— 1.476 0.3578 —— 2.065 0.0058 —— 1.476 0.3578 —— 2.065

32 5.6856e-4 3.351 0.582 0.2550 0.489 2.355 5.6849e-4 3.351 0.582 0.2550 0.489 2.355

64 1.5345e-4 1.890 0.629 0.1735 0.556 2.670 1.5350e-4 1.889 0.629 0.1735 0.556 2.670

128 3.8769e-5 1.985 0.635 0.1091 0.670 2.877 3.8792e-5 1.984 0.636 0.1091 0.670 2.878

256 9.6954e-6 2.000 0.635 0.0655 0.736 3.023 9.7056e-6 1.999 0.636 0.0655 0.736 3.023

512 2.4218e-6 2.001 0.635 0.0381 0.782 3.127 2.4265e-6 2.000 0.636 0.0381 0.782 3.127

1024 6.0438e-7 2.003 0.634 0.0216 0.819 3.191 6.0664e-7 2.000 0.636 0.0216 0.819 3.191

2048 1.5056e-7 2.005 0.632 0.0120 0.848 3.225 1.5166e-7 2.000 0.636 0.0120 0.848 3.225
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Table 2 shows the uniform convergence of second-order on [0, x[pmN ]] and almost first-order

on (x[pmN ], 1], and agrees with Theorem 2.

Table 3. The numerical results of the simple upwind scheme on the Shishkin mesh
ε = 10−6 ε = 10−10

N i ≤ psN order const i > psN order const i ≤ psN order const i > psN order const

16 0.2228 —— 3.565 0.2409 —— 1.390 0.2228 —— 3.565 0.2409 —— 1.390

32 0.1123 0.988 3.594 0.1540 0.646 1.422 0.1123 0.988 3.594 0.1540 0.646 1.422

64 0.0516 1.122 3.303 0.0968 0.670 1.490 0.0516 1.122 3.303 0.0968 0.670 1.490

128 0.0226 1.191 2.888 0.0599 0.693 1.581 0.0226 1.191 2.888 0.0599 0.693 1.581

256 0.0097 1.220 2.484 0.0356 0.751 1.644 0.0097 1.220 2.484 0.0356 0.751 1.644

512 0.0043 1.174 2.187 0.0205 0.796 1.686 0.0043 1.174 2.187 0.0205 0.796 1.686

1024 0.0019 1.178 1.942 0.0116 0.822 1.709 0.0019 1.178 1.942 0.0116 0.822 1.709

2048 8.5786e-4 1.147 1.757 0.0064 0.858 1.719 8.5793e-4 1.147 1.757 0.0064 0.858 1.719

Table 3 shows the uniform convergence of first-order on [0, x[psN ]] and almost first-order on

(x[psN ], 1], and verifies Theorem 3.

The log2-log2 graphs of errors to illustrate the convergence orders for the hybrid scheme on

[0, 1− τ ], (1− τ, x[phN ]] and (x[phN ], 1] on the Shishkin mesh are shown in Fig. 1 (a), those for

the midpoint upwind scheme and the simple upwind scheme are in Figs. 1 (b) and (c).
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Fig. 1 The log2-log2 graphs of errors on the Shishkin mesh for: (a) the hybrid scheme, (b) the midpoint

upwind scheme, (c) the simple upwind scheme.

4 Conclusions

In this paper, the hybrid finite difference scheme is constructed, which is slightly different

from the schemes in [4] and [8]. The new estimates on the Shishkin mesh, which are O(N−2) for

1 ≤ i ≤ phN and O(N−2 ln2N) for phN < i < N with ph = 1− 1
2e for the hybrid finite difference

scheme, O(N−2) for 1 ≤ i ≤ pmN and O(N−1 lnN) for pmN < i < N with pm = 3
4 −

1
4e for

the midpoint upwind scheme, and O(N−1) for 1 ≤ i ≤ psN and O(N−1 lnN) for psN < i < N

with ps = 1− 1
2e for the simple upwind scheme, are better than those in [4–6, 8]. The numerical

example strongly support our results.
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FEKETE SZEGÖ PROBLEM RELATED TO SIMPLE LOGISTIC
ACTIVATION FUNCTION

C. RAMACHANDRAN AND D. KAVITHA

Abstract. In this present paper, we introduce the new subclass of analytic uni-
valent functions associated with quasi-subordination in the field of sigmoid func-
tions. We obtained the coefficient bounds and Fekete-Szego inequality belongs to
the defined class. Also, we extracted the new subclasses from the dened class of
analytic functions.

Mathematics Subject Classification: Primary:30C45; Secondary:30C50,33E99
Keywords: Univalent functions, Sigmoid function, Subordination, Quasi-subordination,
Fekete-Szegö Inequality.

1. Introduction and preliminaries

Sigmoid function playing an important role in the branch of special functions
which is the part of logistic activation function developed in eighteenth century. The
theory of special functions has been developed by C. F.Gauss, C. G. J. Jacobi, F.
Klein and many others in nineteenth century. However, in the twentieth century ,
from the perspective of fundamental science sigmoid functions are of special interest
in abstract areas such as approximation theory, functional analysis, topology, differ-
ential equations and probability theory and so on.

A typical applications of the sigmoid function includes neural networks, image
processing, artificial networks, biomathematics, chemistry, geoscience, probability
theory, economics etc., We can find the similar kind of functions called gompertz
function and ogee function which are used in modelling systems to saturate at more
values of time period. The evaluation process of sigmoid function in many ways
especially by truncated series expansion method was seen in [4, 10].

Recently Ramachandran et al. [13] discssed the problem of Hankel determinant
for the subclass of analytic and univalent functions. The sigmoid function is of the
form

h(z) =
1

1 + e−z
(1.1)

is differentiable and has the following properties:

1
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2 C. RAMACHANDRAN AND D. KAVITHA

• Bound output real numbers between 0 and 1, it leads to the probability
theory.
• It maps a very large input domain to a small range of outputs.
• It never loses information because it is an injective function.
• It increases monotonically.

The above properties permit us to use sigmoid function in the univalent function
theory.

In computational networks, this sigmoid function leads the output as digital
numbers 1 for ON and 0 for OFF. Kannan et al.[6] brought out contrast enhance-
ment using modified sigmoid function provides the highest measure of contrast and
can be effectively used for further analysis of sports color images.

Let A be the class of functions f(z) which are analytic in the open disk U =
{z : z ∈ C : |z| < 1} is of the form:

f(z) = z +
∞∑
n=2

anz
n (z ∈ U). (1.2)

and normalized by f(0) = f ′(0) − 1 = 0 and let S be a class of all functions in A
consisting of univalent functions in U .

If f(z) and g(z) be analytic in U, we say that the function f(z) is subordinate
to g(z) in U, and write f(z) ≺ g(z), z ∈ U if there exits a Schwarz function ω(z),
which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that f(z) = g(ω(z)), z ∈ U. In particular, if the function g is univalent in U,
then We have that

f ≺ g or f(z) ≺ g(z), z ∈ U
if and only if f(0) = g(0) and f(U) ⊆ g(U) defined by[11].

In the year 1970, Robertson [15] introduced the concept of quasi-subordination.
For, two analytic functions f(z) and g(z), the function f(z) is quasi-subordinate to
g(z) in the open unit disc U, written by

f(z) ≺q g(z).

If there exist an analytic function ϕ and ω, with |ϕ(z)| ≤ 1, ω(0) = 0 and |ω(z)| <
1 such that

f(z) = ϕ(z)g(ω(z)), (z ∈ U).
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Observe that if ϕ(z) ≡ 1, then f(z) = g(ω(z)), so that f(z) ≺ g(z) in U.
Furthermore, if ω(z) = z, then f(z) = ϕ(z)g(z), said to be that f(z) is majorized
by g(z) and symbolically written as f(z) � g(z) in U. Hence it is obvious that
the quasi-subordination is a generalization of subordination as well as majorization
[2, 8, 16].

Haji Mohd and Darus [5] introduced the concepts of q-starlike and q-convex func-
tions as follows:

Definition 1. Let the class S∗q (ϕ) consists of functions f ∈ A satisfies the quasi-
subordination (

zf
′
(z)

f(z)
− 1

)
≺q ϕ(z)− 1; (z ∈ U). (1.3)

Example 1. A function f ∈ U→ C defined by(
zf

′
(z)

f(z)
− 1

)
= z(ϕ(z)− 1) ≺q ϕ(z)− 1; (z ∈ U).

belongs to the class S∗q (ϕ).

Definition 2. Let the class Cq(ϕ) consists of functions f ∈ A satisfies the quasi-
subordination (

zf
′′
(z)

f ′(z)

)
≺q ϕ(z)− 1; (z ∈ U). (1.4)

Example 2. A function f ∈ U→ C defined by(
zf

′′
(z)

f ′(z)

)
= z(ϕ(z)− 1) ≺q ϕ(z)− 1; (z ∈ U).

belongs to the class Cq(ϕ).

To prove our main results, we need the following lemmas:

Lemma 1. [7] Let ω be the analytic function in D, with ω(0) = 0, |ω(z)| < 1 and
ω(z) = ω1z + ω2z

2 + . . . , then |ω2 − νω2
1| ≤ max[1; |ν|], where ν ∈ C. The result is

sharp for the functions ω(z) = z2 or ω(z) = z.

Lemma 2. [3] Let ω be the analytic function in D, with ω(0) = 0, |ω(z)| < 1 and
ω(z) = ω1z + ω2z

2 + . . . , then

|ωn| ≤
{

1, n = 1
1− |ω1|2, n ≥ 2.

The result is sharp for the functions ω(z) = z2 or ω(z) = z.
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4 C. RAMACHANDRAN AND D. KAVITHA

Lemma 3. [11] Let ϕ be an analytic function with positive real part in D, with
|ϕ(z)| < 1 and let ϕ(z) = c0 + c1z+ c2z

2 + . . . Then |c0| ≤ 1 and |cn| ≤ 1−|c0|2 ≤ 1,
for n > 0.

Lemma 4. [4] Let h be the sigmoid function defined in (1.1) and

Φ(z) = 2h(z) = 1 +
∞∑
m=1

(−1)m

2m

(
∞∑
n=1

(−1)n

n!
zn

)m

, (1.5)

then Φ(z) ∈ P, |z| < 1 where Φ(z) is a modified sigmoid function.

Lemma 5. [4] Let

Φn,m(z) = 1 +
∞∑
m=1

(−1)m

2m

(
∞∑
n=1

(−1)n

n!
zn

)m

then |Φn,m(z)| < 2.

Lemma 6. [4] If Φ(z) ∈ P and it is starlike, then f is a normalized univalent
function of the form (1.2). Taking m = 1, Joseph et al [4] remarked the following:

Remark 1. Let

Φ(z) = 1 +
∞∑
n=1

cnz
n

where cn =
(−1)n+1

2n!
then |cn| ≤ 2, n = 1, 2, 3 . . . this result is sharp for each n see

[4].

Motivated by the earlier works of Ramachandran et al. [14], we define the class
of function involving quasi-subordination in terms of sigmoid functions.

Definition 3. A function f ∈ A is in the class Mα,λ,β
q (Φn,m) if[

zf
′
(z)

f(z)

]α [
(1− λ)

zf
′
(z)

f(z)
+ λ

(
1 +

zf
′′
(z)

f ′(z)

)]β
− 1 ≺q Φ(z)− 1 (1.6)

here 0 < β ≤ 1, 0 ≤ α ≤ 1, 0 ≤ λ ≤ 1.
With various choices of the parameters, the class Mα,λ,β

q (Φn,m) reduces to the
following new classes,

(1) M0,0,1
q (Φn,m) ≡ S∗q (Φn,m),

(2) M0,1,1
q (Φn,m) ≡ Cq(Φn,m),

(3) M0,λ,1
q (Φn,m) ≡Mλ

q (Φn,m).

In this present paper, we determine the coefficient estimates including a Fekete-
Szegö inequality of functions belonging to the above defined class and the class
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involving majorization. This result can assist us to represent various geometric in-
terpretation as well as behaviours of the functions in complex domain.

Let f(z) be of the form (1.2), ϕ(z) = c0 + c1z + c2z
2 + . . . . and ω(z) = ω1z +

ω2z
2 + . . . , throughout this paper unless otherwise mentioned.

2. Fekete-Szegö Inequality

In this section we obtain the first two coefficient estimates and the Fekete-Szegö
Inequality for the class Mα,λ,β

q (Φn,m).

Theorem 1. If f(z) ∈Mα,λ,β
q (Φn,m) , then

|a2| ≤
1

2[α + β(1 + λ)]
,

|a3| ≤
1

4[α + β(1 + 2λ)]
max

{
1,

∣∣∣∣α(α− 3) + β(β − 1)(1 + λ)2 + 2αβ(1 + λ)− 2β(1 + 3λ)

4[α + β(1 + λ)]2

∣∣∣∣} ,
and for any complex number µ, we have

|a3 − µa22| ≤
1

4[α + β(1 + 2λ)]
max

{
1,

∣∣∣∣Λ +
µ[α + β(1 + 2λ)]

[α + β(1 + λ)]2

∣∣∣∣} ,
where

Λ =
α(α− 3) + β(β − 1)(1 + λ)2 + 2αβ(1 + λ)− 2β(1 + 3λ)

4[α + β(1 + λ)]2
. (2.1)

Proof. Since f ∈ A belongs to the class Mα,λ,β
q (Φn,m), then from (1.6) we have

[
zf

′
(z)

f(z)

]α [
(1− λ)

zf
′
(z)

f(z)
+ λ

(
1 +

zf
′′
(z)

f ′(z)

)]β
− 1 = ϕ(z)(Φ(z)− 1), z ∈ U. (2.2)

The modified sigmoid function Φ(z) can be expressed as

Φ(z) = 1 +
1

2
z − 1

24
z3 +

1

240
z5 − 1

64
z6 +

779

20160
z7 + . . .

since ϕ(z) as defined earlier, now we obtain

ϕ(z)(Φ(ω(z))− 1) = (c0 + c1z + c2z
2 + . . . .)

[
ω1

2
z +

ω2

2
z2 +

(
ω3

2
− ω3

1

24

)
z3 + . . .

]
=
c0ω1

2
z +

(c0ω2

2
+
c1ω1

2

)
z2 + . . .

(2.3)
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by replacing the equivalent expressions of f(z),
f

′
(z)

f(z)
and

zf
′′
(z)

f ′(z)
in (2.2) and the

simple calculation yields the following,[
zf

′
(z)

f(z)

]α [
(1− λ)

zf
′
(z)

f(z)
+ λ

(
1 +

zf
′′
(z)

f ′(z)

)]β
− 1 = [α + β(1 + λ)]a2z

+

{
2[α + β(1 + 2λ)]a3 +

[
α(α− 3)

2
+
β(β − 1)

2
(1 + λ)2 + αβ(1 + λ)− β(1 + 3λ)

]
a22

}
z2 + . . .

(2.4)

Equating right hand side part of (2.3) and (2.4), we get,

a2 =
c0ω1

2[α + β(1 + λ)]
, (2.5)

and

a3 =
1

4[α + β(1 + 2λ)]
{c1ω1 + c0 [ω2

−
(
α(α− 3) + β(β − 1)(1 + λ)2 + 2αβ(1 + λ)− 2β(1 + 3λ)

4[α + β(1 + λ)]2

)
ω2
1c0

]}
.

(2.6)

Using the hypothesis of Lemma 3 and the well-known inequality of Lemma 2,
for n > 0

|cn| ≤ 1− |c0|2 ≤ 1.

and

|ω1| ≤ 1

we have,

|a2| ≤
1

2[α + β(1 + λ)]
,

and for any µ ∈ C, we obtain from (2.5) and (2.6)

a3 − µa22 =
1

4[α + β(1 + 2λ)]

{
c1ω1 + c0

[
ω2 −

(
Λ +

µ[α + β(1 + 2λ)]

[α + β(1 + λ)]2

)
ω2
1c0

]}
.

Since ϕ(z) is analytic and bounded in U, using [11], for some y, |y| ≤ 1 :

|c0| ≤ 1 and c1 = (1− c20)y.

Now, replacing the value of c1 as defined above, we get

a3−µa22 =
1

4[α + β(1 + 2λ)]

{
yω1 + c0ω2 −

[(
Λ +

µ[α + β(1 + 2λ)]

[α + β(1 + λ)]2

)
ω2
1 + yω1

]
c20

}
.

(2.7)
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If c0 = 0 then

|a3 − µa22| ≤
|ω1||y|

4[α + β(1 + 2λ)]
=

1

4[α + β(1 + 2λ)]
.

If c0 6= 0 then

|a3 − µa22| ≤
1

4[α + β(1 + 2λ)]
max

{
1,

∣∣∣∣Λ +
µ[α + β(1 + 2λ)]

[α + β(1 + λ)]2

∣∣∣∣} (2.8)

and the result is sharp. �

Further setting µ = 0 in (2.8) we get the bound on |a3|. This completes the proof
of the Theorem 1.

Corollary 1. Let α = 0, λ = 0 and β = 1 the class Mα,λ,β
q (Φn,m) reduced to

S∗q (Φn,m) then we have,

a2 =
c0ω1

2
,

and

|a3 − µa22| ≤
1

4
max

{
1,

∣∣∣∣2µ− 1

2

∣∣∣∣} .
Corollary 2. Let α = 0, λ = 1 and β = 1 the class Mα,λ,β

q (Φn,m) reduced to
Cq(Φn,m) then we have,

a2 =
c0ω1

4
,

and

|a3 − µa22| ≤
1

12
max

{
1,

∣∣∣∣3µ− 2

4

∣∣∣∣} .
Corollary 3. Let α = 0 and β = 1 the class Mα,λ,β

q (Φn,m) reduced to Mλ
q (Φn,m)

then we have,

a2 =
c0ω1

2(1 + λ)
,

and

|a3 − µa22| ≤
1

4(1 + 2λ)
max

{
1,

∣∣∣∣2µ(1 + 2λ)− (1 + 3λ)

2(1 + λ)2

∣∣∣∣} .
Theorem 2. If f ∈ A, such that the function[

zf
′
(z)

f(z)

]α [
(1− λ)

zf
′
(z)

f(z)
+ λ

(
1 +

zf
′′
(z)

f ′(z)

)]β
− 1� Φ(z)− 1, z ∈ U

then,

|a2| ≤
1

2|α + β(1 + λ)|
,
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and for any complex number µ

|a3 − µa22| ≤
1

4[α + β(1 + 2λ)]
max

{
1,

∣∣∣∣Λ +
µ[α + β(1 + 2λ)]

[α + β(1 + λ)]2

∣∣∣∣} .
Proof. Taking ω(z) = z in the proof of Theorem 1, we get the desired result. �

3. Conclusion

Finding the estimates for various subclasses of analytic functions with normal-
ization is the most important role of geometric function theory. These estimates
characterise the behaviours of functions in complex domain. This characterisation
provides a tool using the sigmoid function in wide range of fields like image process-
ing, digital communications, neural sciences etc.,
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polynomials of higher order
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Abstract : In this paper, we introduce the second kind twisted q-Euler polynomials E
(k)
n,ω,q(x) of

order k. We also get interesting properties related to the second kind twisted q-Euler numbers and

polynomials. Finally, we construct twisted q-zeta function of order which interpolates the second

kind twisted q-Euler numbers of higher order at negative integer.

Key words : Euler numbers, Euler polynomials, the second kind Euler numbers and polynomials,

q-zeta function, twisted q-Euler numbers and polynomials, twisted q-Euler numbers and polynomials

of higher order, twisted q-zeta function.
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1. Introduction

Recently, mathematicians have studied Euler numbers, Euler polynomials, the second kind Euler

numbers and the second kind Euler polynomials (see [1-9]). These numbers and polynomials possess

many interesting properties and arising in many areas of mathematics, applied mathematics, and

physics. In this paper, we introduce the second kind twisted q-Euler numbers E
(k)
n,ω,q and polynomials

E
(k)
n,ω,q(x) of higher order. Throughout this paper we use the following notations. By Zp we denote

the ring of p-adic rational integers, Qp denotes the field of rational numbers, N denotes the set of

natural numbers, C denotes the complex number field, and Cp denotes the completion of algebraic

closure of Qp. Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},

the fermionic p-adic invariant integral on Zp of the function g ∈ UD(Zp) is defined by

I−1(g) =

∫
Zp

g(x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

g(x)(−1)x, see [1, 3]. (1.1)

From (1.1), we note that ∫
Zp

g(x+ 1)dµ−1(x) +

∫
Zp

g(x)dµ−1(x) = 2g(0). (1.2)

First, we introduce the second kind q-Euler numbers E
(k)
n,q of higher order k. The second kind q-Euler

numbers E
(k)
n,q of higher order k are defined by the generating function:(

2et

qe2t + 1

)k
=

∞∑
n=0

E(k)
n,q

tn

n!
, (| log q + 2t| < π). (1.3)

Let Tp = ∪N≥1CpN = limN→∞ CpN , where CpN = {ω|ωpN = 1} is the cyclic group of order pN .

For ω ∈ Tp, we denote by ϕω : Zp → Cp the locally constant function x 7−→ ωx. We introduce the

second kind twisted q-Euler polynomials En,ω,q(x) as follows:

2et

ωqe2t + 1
ext =

∞∑
n=0

En,w,q(x)
tn

n!
. (1.4)
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In [5], we obtain the second kind twisted q-Euler numbers En,ω,q polynomials En,ω,q(x) and inves-

tigate their properties.

Theorem 1. For positive integers n, ω ∈ Tp, we have∫
Zp

ϕω(x)qx(2x+ 1)ndµ−1(x) = En,ω,q,∫
Zp

ϕω(y)qy(x+ 2y + 1)ndµ−1(y) = En,ω,q(x).

2. The second kind twisted q-Euler polynomials of higher order

The main purpose of this section is to study a systemic properties of the second kind twisted

q-Euler numbers and polynomials of higher order. In this section, we assume that q ∈ Cp. We

construct the second kind twisted q-Euler numbers E
(k)
n,ω,q and polynomials E

(k)
n,ω,q(x) of higher order

k. We use the notation
m∑

k1=0

· · ·
m∑

kn=0

=

m∑
k1···kn=0

.

The binomial formulae are known as

(1− a)n =
n∑
i=0

(
n

i

)
(−a)i, where

(
n

i

)
=
n(n− 1) . . . (n− i+ 1)

i!
,

and
1

(1− a)n
= (1− a)−n

n∑
i=0

(
−n
i

)
(−a)i =

n∑
i=0

(
n+ i− 1

i

)
ai

Now, using multiple of p-adic q-integral, we introduce the second kind twisted q-Euler polynomials

E
(k)
n,w,q(x) of higher order : For k ∈ N, we define

∞∑
n=0

E(k)
n,ω,q(x)

tn

n!∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

k times

ωx1+···+xkqx1+x2+···+xke(x+2x1+2x2+···+2xk+k)tdµ−1(x1) · · · dµ−1(xk).
(2.1)

By using Taylor series of e(x+2x1+2x2+···+2xk+k)t in the above equation, we obtain

∞∑
n=0

(∫
Zp

· · ·
∫
Zp

ωx1+···+xkqx1+···+xk(x+ 2x1 + · · ·+ 2xk + k)ndµ−1(x1) · · · dµ−1(xk)

)
tn

n!

=

∞∑
n=0

E(k)
n,w,q(x)

tn

n!
.

By comparing coefficients
tn

n!
on the above equation, we arrive at the following theorem.

Theorem 2. For positive integers n and k, we have

E(k)
n,ω,q(x) =

∫
Zp

· · ·
∫
Zp

ωx1+···+xkqx1+···+xk(x+ 2x1 + · · ·+ 2xk + k)ndµ−1(x1) · · · dµ−1(xk). (2.2)

By (2.1), the second kind twisted q-Euler polynomials of higher order, E
(k)
n,ω,q(x) are defined by

means of the following generating function

F (k)
ω,q (x, t) =

(
2et

ωqe2t + 1

)k
ext =

∞∑
n=0

E(k)
n,ω,q(x)

tn

n!
. (2.3)
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Again, by using (2,1), the second kind twisted q-Euler numbers of higher order, E
(k)
n,ω,q are defined

by the following generating function(
2et

ωqe2t + 1

)k
=

∞∑
n=0

E(k)
n,ω,q

tn

n!
, |t+ log q| < π

2
. (2.4)

When k = 1, above (2.3) and (2.4) will become the corresponding definitions of the second kind

twisted q-Euler polynomials En,ω,q(x) and the second kind twisted q-Euler numbers En,ω,q. Observe

that for x = 0, the equation (2.4) reduces to (2.3). Note that when k = 1, then we have (1.4), when

q → 1, then we have (
2et

ωe2t + 1

)k
ext =

∞∑
n=0

E(k)
n,ω(x)

tn

n!
,

where E
(k)
n,ω(x) denote the second kind twisted Euler polynomials of higher order k. In the case when

x = 0 in (2.1), we have the following corollary.

Corollary 3. For positive integers n, k, we have

E(k)
n,ω,q =

∫
Zp

· · ·
∫
Zp

ωx1+···+xkqx1+···+xk(2x1 + · · ·+ 2xk + k)ndµ−1(x1) · · · dµ−1(xk).

By using binomial expansion in (2.2), we obtain

E(k)
n,ω,q(x) =

n∑
l=0

(
n

l

)
xn−l

∫
Zp

· · ·
∫
Zp

ωx1+···+xkqx1+···+xk(2x1 + · · ·+ 2xk +k)ldµ−1(x1) · · · dµ−1(xk).

Again, by Corollary 3, we arrive at the following theorem.

Theorem 4. For positive integers n, k, we have

E(k)
n,ω,q(x) =

n∑
l=0

(
n

l

)
E

(k)
l,ω,qx

n−l.

We define distribution relation of the second kind twisted q-Euler polynomials of higher order

as follows: For m ∈ N with m ≡ 1( mod 2), we obtain

∞∑
n=0

E(k)
n,ω,q(x)

tn

n!

=

(
2et

ωqe2t + 1

)(
2et

ωqe2t + 1

)
· · ·
(

2et

ωqe2t + 1

)
ext

=

(
2emt

ωmqme2mt + 1

)k m−1∑
a1,··· ,ak=0

ωa1+···+ak(−q)a1+···+ake

2a1 + · · ·+ 2ak + k + x−mk
m

(mt)

.

From the above, we obtain

∞∑
n=0

E(k)
n,ω,q(x)

tn

n!

=
m−1∑

a1,··· ,ak=0

ωa1+···+ak(−q)a1+···+ak
∞∑
n=0

E
(k)
n,ωm,qm

(
2a1 + · · ·+ 2ak + k + x−mk

m

)
(mt)n

n!
.
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By comparing coefficients of
tn

n!
in the above equation, we arrive at the following theorem.

Theorem 5 (Distribution relation of the second kind twisted q-Euler polynomials of higher

order). For m ∈ N with m ≡ 1( mod 2), we have

E(k)
n,ω,q(x) = mn

m−1∑
a1,··· ,ak=0

ωa1+···+ak(−q)a1+···+akE
(k)
n,ωm,qm

(
2a1 + · · ·+ 2ak + k + x−mk

m

)
.

By (2.3), we have

∞∑
n=0

E(k)
n,ω,q(x)

tn

n!
= 2k

∞∑
a1,··· ,ak=0

ωa1+···+ak(−q)a1+···+ake(2a1+···+2ak+k+x)t

= 2k
∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqme(2m+k+x)t.

(2.5)

From the above, we obtain

∞∑
n=0

E(k)
n,ω,q(x)

tn

n!
=

∞∑
n=0

(
2k

∞∑
a1,··· ,ak=0

ωa1+···+ak(−q)a1+···+ak(x+ 2a1 + · · ·+ 2ak + k)n

)
tn

n!

=
∞∑
n=0

(
2k

∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqm(2m+ k + x)n

)
tn

n!
.

By comparing coefficients of
tn

n!
in the above equation, we arrive at the following theorem.

Theorem 6. For positive integers n and k, we have

E(k)
n,ω,q(x) = 2k

∞∑
a1,··· ,ak=0

ωa1+···+ak(−q)a1+···+ak(2a1 + · · ·+ 2ak + k + x)n

= 2k
∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqm(2m+ k + x)n.

(2.6)

Since
∞∑
l=0

E
(k)
l,ω,q(x+ y)

tl

l!
=

(
2et

ωqe2t + 1

)k
e(x+y)t

=
∞∑
n=0

E(k)
n,ω,q(x)

tn

n!

∞∑
m=0

ym
tm

m!

=

∞∑
l=0

(
l∑

n=0

E(k)
n,ω,q(x)

tn

n!
yl−n

tl−n

(l − n)!

)

=
∞∑
l=0

(
l∑

n=0

(
l

n

)
E(k)
n,ω,q(x)yl−n

)
tl

l!
,

we have the following addition theorem.

Theorem 7. The second kind twisted q-Euler polynomials E
(k)
n,ω,q(x) of higher order satisfies

the following relation:

E(k)
n,ω,q(x+ y) =

n∑
l=0

(
n

l

)
E

(k)
l,ω,q(x)yn−l.
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3. Multiple twisted q-Euler zeta function

In this section, we assume that q ∈ C with |q| < 1. Let ω be the pN -th root of unity. We define

multiple twisted q-Euler zeta function. This function interpolates the second kind twisted q-Euler

polynomials of higher order at negative integers.

By using (2.5), we have

F (k)
ω,q (x, t) = 2k

∞∑
a1,··· ,ak=0

ωa1+···+ak(−q)a1+···+ake(2a1+···+2ak+k+x)t =

∞∑
n=0

E(k)
n,ω,q(x)

tn

n!
.

For s, x ∈ C with R(x) > 0, we can derive the following Eq. (3.1) form the Mellin transformation

of F
(k)
ω,q (x, t).

1

Γ(s)

∫ ∞

0

ts−1F (k)
ω,q (x,−t)dt = 2k

∞∑
a1,··· ,ak=0

(−1)a1+···+akωa1+···+akqa1+···+ak

(2a1 + · · ·+ 2ak + k + x)s
(3.1)

For s, x ∈ C with R(x) > 0, we define the multiple twisted q-Euler zeta function as follows:

Definition 8. For s, x ∈ C with R(x) > 0, we define

ζ(k)ω,q(s, x) = 2k
∞∑

a1,··· ,ak=0

(−1)a1+···+akωa1+···+akqa1+···+ak

(2a1 + · · ·+ 2ak + k + x)s
. (3.2)

For s = −l in (3.2) and using (2.6), we arrive at the following theorem.

Theorem 9. For positive integer l, we have

ζ(k)ω,q(−l, x) = E
(k)
l,ω,q(x).

By (2.4), we have

∞∑
n=0

E(k)
n,ω,q

tn

n!
=

(
2et

ωqe2t + 1

)k
= 2k

∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqme(2m+k)t.

By using Taylor series of e(2m+k)t in the above, we have

∞∑
n=0

E(k)
n,ω,q

tn

n!
=

∞∑
n=0

(
2k

∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqm(2m+ k)n

)
tn

n!
.

By comparing coefficients tn

n! in the above equation, we have

E(k)
n,ω,q = 2k

∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqm(2m+ k)n. (3.3)

By using (3.3), we define twisted q-Euler zeta function as follows:

Definition 10. For s ∈ C, we define

ζ(k)ω,q(s) = 2k
∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqm

(2m+ k)s
. (3.4)

The function ζ
(k)
ω,q(s) interpolates the number E

(k)
n,ω,q at negative integers. Substituting s = −n

with n ∈ Z+ into (3.4), and using (3.3), we obtain the following theorem:
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Theorem 11. Let n ∈ Z+, We have

ζ(k)ω,q(−n) = E(k)
n,ω,q.

Further, by (3.2) and (3.4), we have

∞∑
a1,··· ,ak=0

(−1)a1+···+akωa1+···+akqa1+···+ak

(2a1 + · · ·+ 2ak + k)s
=

∞∑
m=0

(
m+ k − 1

m

)
(−1)mωmqm

(2m+ k)s
.
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HERMITE-HADAMARD INEQUALITY AND GREEN’S

FUNCTION WITH APPLICATIONS∗

YING-QING SONG1, YU-MING CHU2,∗∗, MUHAMMAD ADIL KHAN3,
AND ARSHAD IQBAL3

Abstract. In the article, we derive the Hermite-Hadamard inequality by us-
ing Green’s function, establish some Hermite-Hadamrd type inequalities for

the class of monotonic as well as convex functions, and give applications for

means, mid-point and trapezoid formulae.

1. Introduction

Convexity plays an important role in different fields of pure and applied sciences
such as statistics, optimization theory, economics and finance etc. The fundamental
justification for the significance of convexity is its meaningful relationship with
the theory of inequalities. Many useful inequalities have been obtained by using
convexity. Among those inequalities, the most extensively and intensively attractive
inequality in the last decades is the well known Hermite-Hadamard inequality [1-9],
which can be stated as follows: the double inequality

(1.1) ψ

(
α1 + α2

2

)
≤ 1

α2 − α1

∫ α2

α1

ψ(x)dx ≤ ψ(α1) + ψ(α2)

2

holds if the function ψ : [α1, α2]→ R is a convex function. If ψ is a concave function
then (1.1) holds in the reverse direction.

The Hermite-Hadamard inequality gives an upper as well as lower estimations
for the integral mean of any convex function defined on closed and bounded interval
which involves the the endpoints and midpoint of the domain of the function. Also
inequality (1.1) provides the necessary and sufficient condition for the function to be
convex. There are several applications of the Hermite-Hadamard inequality in the
geometry of Banach spaces [10] and nonlinear analysis [11]. Some peculiar convex
functions can be used in (1.1) to obtain classical inequalities for means. For some
comprehensive surveys on various generalizations and developments of inequality
(1.1) we recommend [12]. Due to the great importance of the convexity and the
Hermite-Hadamard inequlity, in the recent years many generalizations, refinements
and extensions can be found in the literature [13-37]

In the article, we give a new proof for the Hermite-Hadamard inequality by using
Green’s function, obtain some refinements of the Hermite-Hadamard inequality

2010 Mathematics Subject Classification. Primary: 26D15; Secondary: 26A51, 26E60.
Key words and phrases. Hermite-Hadamard inequality, Green’s function, convexity.
∗The research was supported by the Natural Science Foundation of China (Grant Nos.

61673169, 11301127, 11701176, 11626101, 11601485) and the Science and Technology Research
Program of Zhejiang Educational Committee (Grant No. Y201635325).
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for monotonic functions as well as convex functions. At the end, we give some
applications for means, mid-point and trapezoid formulae.

2. Main Results

In order to obtain our main results we need to establish a lemma, which we
present in this section.

Lemma 2.1. Let G be the Green’s function defined on [α1, α2]× [α1, α2] by

(2.1) G(λ, µ) =

{
α1 − µ , α1 ≤ µ ≤ λ;

α1 − λ, λ ≤ µ ≤ α2.

Then any ψ ∈ C2([α1, α2]) can be expressed as

(2.2) ψ(x) = ψ(α1) + (x− α1)ψ′(α2) +

∫ α2

α1

G(x, µ)ψ′′(µ)dµ.

Proof. By using the techniques of integration by parts in
∫ b
a
G(t, µ)ψ′′(µ)dµ, we can

easily obtain (2.2). �

The following Theorem 2.2 give a new proof for the Hermite-Hadamard inequal-
ity.

Theorem 2.2. Let ψ ∈ C2([α1, α2]). Then the double inequality

(2.3) ψ

(
α1 + α2

2

)
≤ 1

α2 − α1

∫ α2

α1

ψ(x)dx ≤ ψ(α1) + ψ(α2)

2

holds if ψ is convex on [α1, α2].

Proof. Let x = (α1 + α2)/2. Then (2.2) leads to

ψ

(
α1 + α2

2

)
= ψ(α1) +

(
α1 + α2

2
− α1

)
ψ′(α2) +

∫ α2

α1

G
(
α1 + α2

2
, µ

)
ψ′′(µ)dµ,

(2.4) ψ

(
α1 + α2

2

)
= ψ(α1)+

(
α2 − α1

2

)
ψ′(α2)+

∫ α2

α1

G
(
α1 + α2

2
, µ

)
ψ′′(µ)dµ.

Taking integral of (2.2) with respect to x and dividing by α2 − α1, we get

1

α2 − α1

∫ α2

α1

ψ(x)dx = ψ(α1) +
1

α2 − α1

(
α2
2 − α2

1

2
− α1(α2 − α1)

)
ψ′(α2)

+
1

α2 − α1

∫ α2

α1

∫ α2

α1

G(x, µ)ψ′′(µ)dµdx,

1

α2 − α1

∫ α2

α1

ψ(x)dx = ψ(α1) +

(
α2 − α1

2

)
ψ′(α2)

(2.5) +
1

α2 − α1

∫ α2

α1

∫ α2

α1

G(x, µ)ψ′′(µ)dµdx.

Subtracting (2.5) from (2.4) we obtain

ψ

(
α1 + α2

2

)
− 1

α2 − α1

∫ α2

α1

ψ(x)dx
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3

=

∫ α2

α1

G
(
α1 + α2

2
, µ

)
ψ′′(µ)dµ− 1

α2 − α1

∫ α2

α1

∫ α2

α1

G(x, µ)ψ′′(µ)dµdx

(2.6) =

∫ α2

α1

[
G
(
α1 + α2

2
, µ

)
− 1

α2 − α1

∫ α2

α1

G(x, µ)dx

]
ψ′′(µ)dµ.

Note that

(2.7)

∫ α2

α1

G(x, µ)dx =
µ2

2
− α2

1

2
+ α1α2 − α2µ,

G
(
α1 + α2

2
, µ

)
=

{
α1 − µ , α1 ≤ µ ≤ α1+α2

2 ;
α1−α2

2 , α1+α2

2 ≤ µ ≤ α2.

If α1 ≤ µ ≤ α1+α2

2 , then

G
(
α1 + α2

2
, µ

)
− 1

α2 − α1

∫ α2

α1

G(x, µ)dx

= α1 − µ−
1

α2 − α1

(
µ2

2
− α2

1

2
+ α1α2 − α2µ

)

(2.8) =
− (µ− α1)

2

2(α2 − α1)
≤ 0.

If α1+α2

2 ≤ µ ≤ α2, then

G
(
α1 + α2

2
, µ

)
− 1

α2 − α1

∫ α2

α1

G(x, µ)dx

=
α1 − α2

2
− 1

α2 − α1

(
µ2

2
− α2

1

2
+ α1α2 − α2µ

)

(2.9) =
− (α2 − µ)

2

2(α2 − α1)
≤ 0.

From the convexity of ψ we know that ψ′′(µ) ≥ 0. Therefore, the first inequality of
(2.3) follows easily from (2.6), (2.8) and (2.9).

Next, we prove second inequality of (2.3).
Let x = α2. Then (2.2) gives

ψ(α2) = ψ(α1) + (α2 − α1)ψ′(α2) +

∫ α2

α1

G(α2, µ)ψ′′(µ)dµ,

(2.10)
ψ(α1) + ψ(α2)

2
= ψ(α1) +

1

2
(α2 − α1)ψ′(α2) +

1

2

∫ α2

α1

G(α2, µ)ψ′′(µ)dµ.

It follows from (2.5) and (2.10) that

ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

(2.11) =

∫ α2

α1

(
1

2
G(α2, µ)− 1

α2 − α1

∫ α2

α1

G(x, µ)dx

)
ψ′′(µ)dµ.

From (2.1) one has

(2.12) G(α2, µ) = α1 − µ
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if α1 ≤ µ ≤ α2.
It follows from (2.7) and (2.12) that

1

2
G(α2, µ)− 1

α2 − α1

∫ α2

α1

G(x, µ)dx

=
α1 − µ

2
− 1

α2 − α1

(
µ2

2
− α2

1

2
+ α1α2 − α2µ

)
=

1

2(α2 − α1)

(
(α1 − µ)(α2 − α1)− µ2 + α2

1 − 2α1α2 + 2α2µ
)

(2.13) =
1

2(α2 − α1)
((µ− α1)(α2 − µ)) ≥ 0.

Therefore,
ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx ≥ 0

follows from (2.11) and (2.13) together with ψ′′(µ) ≥ 0. �

Next, we give some refinements of the Hermite-Hadamard inequality for the class
of monotonic and convex functions.

Theorem 2.3. Let ψ ∈ C2([α1, α2]). Then the following statements are true:
(1) If |ψ′′| is increasing, then∣∣∣∣∣ψ
(
α1 + α2

2

)
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣∣ ≤ (α2 − α1)2

48

[
|ψ′′

(
α1 + α2

2

)
|+ |ψ′′(α2)|

]
;

(2) If |ψ′′| is decreasing, then∣∣∣∣∣ψ
(
α1 + α2

2

)
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣∣ ≤ (α2 − α1)2

48

[
|ψ′′ (α1) |+ |ψ′′

(
α1 + α2

2

)
|
]

;

(3) If |ψ′′| is convex, then∣∣∣∣∣ψ
(
α1 + α2

2

)
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣∣
≤ (α2 − α1)2

48

[
max

{∣∣∣ψ′′(α1 + α2

2

) ∣∣∣, |ψ′′(α1)|
}

+ max
{∣∣∣ψ′′(α1 + α2

2

) ∣∣∣, |ψ′′(α2)|
}]

.

Proof. (1) By using (2.6) we have

ψ

(
α1 + α2

2

)
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

=

∫ α1+α2
2

α1

[
G
(
α1 + α2

2
, µ

)
− 1

α2 − α1

∫ α2

α1

G(x, µ)dx

]
ψ′′(µ)dµ

+

∫ α2

α1+α2
2

[
G
(
α1 + α2

2
, µ

)
− 1

α2 − α1

∫ α2

α1

G(x, µ)dx

]
ψ′′(µ)dµ

=
−1

2(α2 − α1)

[∫ α1+α2
2

α1

(µ− α1)
2
ψ′′(µ)dµ+

∫ α2

α1+α2
2

(α2 − µ)
2
ψ′′(µ)dµ

]
.
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Taking absolute and using triangular inequality we obtain∣∣∣∣∣ψ
(
α1 + α2

2

)
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣∣
≤ 1

2(α2 − α1)

[∫ α1+α2
2

α1

(µ− α1)
2 |ψ′′(µ)|dµ+

∫ α2

α1+α2
2

(α2 − µ)
2 |ψ′′(µ)|dµ

]

≤ 1

2(α2 − α1)

[∣∣∣∣ψ′′(α1 + α2

2

) ∣∣∣∣ ∫ α1+α2
2

α1

(µ− α1)
2
dµ+ |ψ′′(α2)|

∫ α2

α1+α2
2

(α2 − µ)
2
dµ

]

=
1

2(α2 − α1)

[
|ψ′′

(
α1 + α2

2

)
| × 1

24
(α2 − α1)3 + |ψ′′(α2)| × 1

24
(α2 − α1)3

]

(2.14) =
(α2 − α1)2

48

[
|ψ′′

(
α1 + α2

2

)
|+ |ψ′′(α2)|

]
.

Similarly we can prove part (2).
For part (3), using (2.14) and the fact that every convex function ψ defined on

the interval [α1, α2] is bounded above by max{ψ(α1), ψ(α2)}, we obtain∣∣∣∣∣ψ
(
α1 + α2

2

)
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣∣
≤ 1

2(α2 − α1)

[
max

{∣∣∣∣ψ′′(α1 + α2

2

)∣∣∣∣ , |ψ′′(α1)|
}∫ α1+α2

2

α1

(µ− α1)2dµ

+ max

{∣∣∣∣ψ′′(α1 + α2

2

)∣∣∣∣ , |ψ′′(α2)|
}∫ α2

α1+α2
2

(α2 − µ)2dµ

]

=
(α2 − α1)2

48

[
max

{∣∣∣∣ψ′′(α1 + α2

2

)∣∣∣∣ , |ψ′′(α1)|
}

+ max

{∣∣∣∣ψ′′(α1 + α2

2

)∣∣∣∣ , |ψ′′(α2)|
}]

.

�

Theorem 2.4. Let ψ ∈ C2([α1, α2]). Then the following statements are true:
(1) If |ψ′′| is increasing, then∣∣∣∣ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣ ≤ |ψ′′(α2)|(α2 − α1)2

12
;

(2) If |ψ′′| is decreasing, then∣∣∣∣ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣ ≤ |ψ′′(α1)|(α2 − α1)2

12
;

(3) If |ψ′′| is a convex function, then∣∣∣∣ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣ ≤ |max{|ψ′′(α1)|, |ψ′′(α2)|}|(α2 − α1)2

12
.
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Proof. It follows from (2.11) that

ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx =
1

2(α2 − α1)

∫ α2

α1

(µ−α1)(α2−µ)ψ′′(µ)dµ.

Taking absolute and using triangular inequality one has∣∣∣∣∣ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣∣
(2.15) ≤ 1

2(α2 − α1)

∫ α2

α1

((µ− α1)(α2 − µ)) |ψ′′(µ)|dµ.

Since (µ− α1)(α2 − µ) ≥ 0 and |ψ′′| is increasing, therefore∣∣∣∣ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣
≤ |ψ′′(α2)|

2(α2 − α1)

∫ α2

α1

(µ− α1)(α2 − µ)dµ

=
|ψ′′(α2)|(α2 − α1)2

12
.

Similarly we can prove part (2)
For part (3), using (2.15) and the fact that every convex function f defined on

the interval [α1, α2] is bounded above by max{f(α1), f(α2)}, we have∣∣∣∣∣ψ(α1) + ψ(α2)

2
− 1

α2 − α1

∫ α2

α1

ψ(x)dx

∣∣∣∣∣
≤ max{|ψ′′(α1)|, |ψ′′(α2)|}

2(α2 − α1)

∫ α2

α1

((µ− α1)(α2 − µ)) dµ.

�

3. Applications to Means

A bivariate function M : (0,∞) × (0,∞) 7→ (0,∞) is said to be a mean if
min{a, b} ≤M(a, b) ≤ max{a, b}, M(a, b) = M(b, a) and M(λa, λb) = λM(a, b) for
all a, b, λ ∈ (0,∞).

Let a, b > 0 with a 6= b. Then the arithmetic mean A(a, b) [38-43], logarithmic
mean L(a, b) [44-48] and (α, r)-th generalized logarithmic mean L(α,r)(a, b) [49-52]
are defined by

A(a, b) =
a+ b

2
, L(a, b) =

b− a
log b− log a

, L(α,r)(a, b) =

[
α(br+α − ar+α)

(r + α)(bα − aα)

]1/r
,

respectively. Recently, the bivariate means have been the subject of intensive re-
search [53-67] and many remarkable inequalities for the bivariate means and related
special functions can be found in the literature [68-90].

In this section we present several new inequalities the arithmetic, logarithmic
and generalized logarithmic means by using our results.
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Theorem 3.1. Let 0 < α1 < α2. Then the following statements are true:
(1) if r ≥ 2, then

(3.1)
∣∣∣Ar (α1, α2)− Lrr (α1, α2)

∣∣∣ ≤ r(r − 1)(α2 − α1)2

48

[(
α1 + α2

2

)r−2
+ αr−22

]
;

(2) if r < 2 and r 6= 0,−1, then

(3.2)
∣∣∣Ar (α1, α2)− Lrr (α1, α2)

∣∣∣ ≤ r(r − 1)(α2 − α1)2

48

[(
α1 + α2

2

)r−2
+ αr−21

]
.

Proof. Let ψ(x) = xr (x > 0) and r ≥ 2. Then we clearly see that |ψ′′| is increasing
and inequality (3.1) follows easily from Theorem 2.3(1). Similarly, we can prove
inequality (3.2). �

Theorem 3.2. Let 0 < α1 < α2. Then the following statements are true:
(1) if r ≥ 2, then

|A(αr1, α
r
2)− Lrr(α1, α2)| ≤ r(r − 1)(α2 − α1)2αr−22

48
;

(2) if r < 2 and r 6= 0,−1, then

|A(αr1, α
r
2)− Lrr(α1, α2)| ≤ r(r − 1)(α2 − α1)2αr−21

48
.

Proof. By using Theorem 2.4 and the same arguments as given in the proof of
Theorem 3.1, we can obtain the desired results. �

Theorem 3.3. The inequalities∣∣∣A−1 (α1, α2)− L−1 (α1, α2)
∣∣∣ ≤ (α2 − α1)2

24

[
8

(α1 + α2)
3 +

1

α3
1

]
,

∣∣∣A−1 (α1, α2)− L−1 (α1, α2)
∣∣∣

≤ (α2 − α1)2

24

[
max

{
8

(α1 + α2)3
,

1

α3
2

}
+ max

{
8

(α1 + α2)3
,

1

α3
1

}]
hold for all α1, α2 ∈ R+ with α1 < α2.

Proof. Let x > 0 and ψ(x) = 1/x. Then we clearly see that |ψ′′| is decreasing and
convex and Theorem 3.3 follows easily from Theorem 2.3(2) and (3). �

Theorem 3.4. The inequality∣∣∣A (α−11 , α−12

)
− L−1 (α1, α2)

∣∣∣ ≥ (α2 − α1)2

6α3
1

holds for all α1, α2 ∈ R+ with α1 < α2.

Proof. Similar proof as in Theorem 3.3 but use Theorem 2.4 instead of Theorem
2.3 �
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4. Applications to Trapezoidal and Mid-Point Formulae

In this section we provide some new error estimations for the trapezoidal and
mid-point formulae.

Let d be a division a = x0 < x1 < · · · < xn−1 < xn = b of the interval [a, b] and
consider the quadrature formula∫ b

a

ψ(x)dx = T(ψ, d) + E(ψ, d),

where

T(ψ, d) =
n−1∑
i=0

ψ(xi) + ψ(xi+1)

2
(xi+1 − xi)

for the trapezoidal version and

T(ψ, d) =
n−1∑
i=0

ψ
(xi + xi+1

2

)
(xi+1 − xi)

for the midpoint version and E(ψ, d) denotes the associated approximation error.

Theorem 4.1. Let d be a division a = x0 < x1 < · · · < xn−1 < xn = b of the
interval [a, b], ψ ∈ C2([a, b]) and E(ψ, d) be the trapezoidal error. Then one has

(4.1) |E(ψ, d)| ≤
n−1∑
i=0

|ψ′′(xi+1)| (xi+1 − xi)3

12

if |ψ′′| is an increasing function;

|E(ψ, d)| ≤
n−1∑
i=0

max{|ψ′′(xi)|, |ψ′′(xi+1)|} (xi+1 − xi)3

12

if |ψ′′| is a decreasing function;

|E(ψ, d)| ≤
n−1∑
i=0

|ψ′′(xi+1)| (xi+1 − xi)3

12

if |ψ′′| is a convex function.

Proof. Applying Theorem 2.4 on each subinterval [xi, xi+1] (i = 0, 1, 2, · · · , n − 1)
of the division d, we have∣∣∣∣ψ(xi) + ψ(xi+1)

2
− 1

xi+1 − xi

∫ xi+1

xi

ψ(x)dx

∣∣∣∣ ≤ |ψ′′(xi+1)|(xi+1 − xi)2

12
.

Multiplying both sides by xi+1 − xi and taking summation we obtain∣∣∣∣∣
∫ b

a

ψ(x)dx− T(ψ, d)

∣∣∣∣∣ ≤
n−1∑
i=0

{
|ψ′′(xi+1)|

12
(xi+1 − xi)3

}
≤
n−1∑
i=0

∣∣∣∣{ |ψ′′(xi+1)|
12

(xi+1 − xi)3
}∣∣∣∣ ,

which is equivalent to (4.1). Similarly we can prove other parts. �

Theorem 4.2. Let d be a division a = x0 < x1 < · · · < xn−1 < xn = b of the
interval [a, b], ψ ∈ C2([a, b]) and E(ψ, d) be the mid-point error. Then one has

|E(ψ, d)| ≤ 1

48

n−1∑
i=0

(xi+1 − xi)3
[∣∣∣ψ′′(xi+1 + xi

2

)∣∣∣+
∣∣ψ′′(xi+1)

∣∣]
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if |ψ′′| is an increasing function;

|E(ψ, d)| ≤ 1

48

n−1∑
i=0

(xi+1 − xi)3
[∣∣∣ψ′′(xi+1 + xi

2

)∣∣∣+
∣∣ψ′′(xi)∣∣]

if |ψ′′| is a decreasing function;

|E(ψ, d)| ≤ 1

48

n−1∑
i=0

(xi+1 − xi)3
[

max{
∣∣∣ψ′′(xi+1 + xi

2

)∣∣∣, ∣∣ψ′′(xi)∣∣}
+ max{

∣∣∣ψ′′(xi+1 + xi
2

)∣∣∣, ∣∣ψ′′(xi+1)
∣∣}]

if |ψ′′| is convex function.

Proof. The proof is analogous to the proof of Theorem 4.1. �
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Abstract

We present here some applications of Girard-Waring identities. Many
various identities for things like elementary mathematics and other
advanced mathematics come from those identities.
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1 Introduction

In this paper, we are concerned with the applications of the following Girard-
Waring identities:

xn + yn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(x+ y)n−2k(xy)k (1)

and

xn+1 − yn+1

x− y
=

∑
0≤k≤[n/2]

(−1)k
(
n− k
k

)
(x+ y)n−2k(xy)k. (2)

∗This work was completed while on sabbatical leave from University of Nevada, Las
Vegas, and the author would like to thank UNLV for its support.
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Girard-Waring identities 2

Albert Girard published these identities in Amsterdam in 1629 and Edward
Waring published similar material in Cambridge in 1762-1782. These may
be derived from the earlier work of Sir Isaac Newton. It worth noting that
(−1)k n

n−k
(
n−k
k

)
is an integer because

n

n− k

(
n− k
k

)
=

(
n− k
k

)
+

(
n− k − 1

k − 1

)
= 2

(
n− k
k

)
−
(
n− k − 1

k

)
.

The proofs of formulas (1) and (2) can be seen in Comtet [3] (P. 198) and
the survey paper by Gould [6]. Recently, Shapiro and one the authors [8]
gave a different proof of (2) by using Riordan arrays.

There are some alternative forms of formula (1). As an example, we give
the following one. If x+ y + z = 0, then (1) gives

xn + yn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(−z)n−2k(xy)k

= (−1)nzn +
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k,

which implies

xn + yn − (−1)nzn =
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k.

Thus, when n is even, we have formula

xn + yn − zn =
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k, (3)

while for odd n we have

xn + yn + zn =
∑

1≤k≤[n/2]

(−1)n−k
n

n− k

(
n− k
k

)
zn−2k(xy)k, (4)

where x+ y + z = 0. Particularly, if n = 3, then

x3 + y3 + z3 = 3xyz, (5)

which will be shown in Corollary ?? and applied in the following examples.
The formulas (3) and (4) can be considered as analogies of the results for the
case of xy+ yz+ zx = 0 shown in Ma [11]. Draim and Bicknell [4] use sums
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Girard-Waring identities 3

and products of two roots of a quadratic equation to derive a class of Girard-
Waring identities. Using Girard-Waring formulas to derive combinatorial
identities is also an attractive topic. For instance, Filipponi [5] uses Girard-
Waring formula (1) to derive some unusual binomial Fibonacci identities.
Furthermore, some well-known identities can be re-derived by using Girard-
Waring formulas. As an example, we substitute x = u +

√
u2 − 4, y =

u −
√
u2 − 4, and z = −x − y into (1) and obtain the following identity

shown on page 57 of Riordan [13]:

m∑
k=0

(−1)k
n

n− k

(
n− k
k

)
un−2k = 2−n

[
(u+

√
u2 − 4)n + (u−

√
u2 − 4)n

]
(6)

for n = 1, 2, . . ., where m = [n/2]. In particular, if u = 2, above identity (6)
reduces to

m∑
k=0

(−1)k
n

n− k

(
n− k
k

)
2n−2k = 2

for n = 1, 2, . . .. It worth mentioning that Vasil’ev and Zelevinskii [18]
denoted the function shown on the right-hand side of (6) by Qn and obtained
(see (4’) on Page 57 of [18])

Qn(x) = Π1≤k≤n

(
x− 2 cos

(2k − 1)π

2n

)
,

which implies

Π1≤k≤m cos
(2k − 1)π

4m
=

√
2

2m

for m ≥ 1 (see (d) on Page 58 of [18]).
In the next section, we present some applications of Girard-Waring iden-

tities to the trigonometric identities. In section 3, some applications of
Girard-Waring identities to the linear recurrence relations of order 2 will
be given.

2 Girard-Waring identities and trigonometric iden-
tities

Girard-Waring identities can be applied to construct many interesting trigono-
metric identities related to the roots of some quadratic equations.
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Girard-Waring identities 4

Our idea of the first application of Girard-Waring identities can be pre-
sented as follows: In formulas (1) and (2), there are two terms x+y, and xy.
If we consider x and y the two roots r1 and r2 of a given quadratic equation,
ax2 + bx+ c = 0, then we have the sums of, and differences of, n-th powers
of the roots of the quadratic equation. Therefore we have r1 + r2 = − b

a =: p
and r1 r2 = c

a =: q. Thus formula (1) and (2) give:

rn1 + rn2 =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
pn−2kqk (7)

and

rn+1
1 − rn+1

2

r1 − r2
=

∑
0≤k≤[n/2]

(−1)k
(
n− k
k

)
pn−2kqk. (8)

We first consider a simple quadratic equation x2 + c = 0. Then two roots,
r1 and r2, of the equation satisfy

r1 + r2 = 0 and r1r2 = c.

From (7) we have the identity

rn1 + rn2 =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(r1 + r2)

n−2k(r1r2)
k,

which implies

r2`1 + r2`2 = 2(−c)` (9)

and r2`+1
1 + r2`+1

2 = 0. For instance, if c = −3, then r1 = 2 cos(π/6) and
r2 = 2 cos(5π/6). From (9) we obtain

cos2`
(π

6

)
+ cos2`

(
5π

6

)
= 2

(
3

4

)`
.

When ` = 1 and 2, when cos2
(
π
6

)
+cos2

(
5π
6

)
= 1.5 and cos4

(
π
6

)
+cos4

(
5π
6

)
=

9/8, respectively.

Consider a quadratic equation ax2+bx+c = 0, we have x = −b±
√
b2−4ac
2a .

If b2 − 4ac < 0, then

x = A±Bi = ρ(cos θ ± i sin θ),

where θ = tan−1BA .
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Girard-Waring identities 5

Then two roots r1 and r2 are:

r1 = ρ(cos θ + i sin θ) and r2 = ρ(cos θ − i sin θ),

which implies p = r1 + r2 = 2ρ cos θ and q = r1r2 = ρ. Thus, equation (7)
gives

rn1 + rn2 = ρn
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(2 cos θ)n−2k,

which implies

2 cosnθ =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(2 cos θ)n−2k.

Note that

n

n− k

(
n− k
k

)
=
n

k

(
n− k − 1

k − 1

)
, k ≥ 1.

Thus

cosnθ =
1

2

{
(2 cos θ)n − n

1
(2 cos θ)n−2

+
n

2

(
n− 3

1

)
(2 cos θ)n−4 − n

3

(
n− 4

2

)
(2 cos θ)n−6 + · · ·

}
.

Similarly, from (8) we have

sin(n+ 1)θ = sin θ
∑

0≤k≤[n/2]

(−1)k
(
n− k
k

)
(2 cos θ)n−2k.

Example 2.1 On Page 50 of Comtet [3], it can be seen that

sin(n+ 1)θ

sin θ
= Un(cos θ),

where Un(x) are the Chebyshev polynomials of the second kind. Thus,

Un(cos θ) =
∑

0≤k≤[n/2]

(−1)k
(
n− k
k

)
(2 cos θ)n−2k.

On Page 88 of Comtet [3], we also find that

Un(cos θ) =
sin(n+ 1)θ

sin θ
=

∣∣∣∣∣∣∣∣∣∣
2 cos θ 1 0 0 . . .

1 2 cos θ 1 0 . . .
0 1 2 cos θ 1 . . .
0 0 1 2 cos θ . . .
. . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣
.
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Hence, the determinant of the tridiangonal matrix on the rightmost side of
the above equation is equal to∣∣∣∣∣∣∣∣∣∣

2 cos θ 1 0 0 . . .
1 2 cos θ 1 0 . . .
0 1 2 cos θ 1 . . .
0 0 1 2 cos θ . . .
. . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣
=

∑
0≤k≤[n/2]

(−1)k
(
n− k
k

)
(2 cos θ)n−2k.

Recall that the Chebyshev polynomials of the first kind Tn (x) are defined
by Tn (x) = cos (n cos−1 x). Thus,

Tn(x) = cos (n cos−1 x)

=
1

2

{
(2x)n − n

1
(2x)n−2 +

n

2

(
n− 3

1

)
(2x)n−4 − · · ·

}
From Page 88 of [3],

Tn(cos θ) = cosnθ =

∣∣∣∣∣∣∣∣∣∣
cos θ 1 0 0 . . .

1 2 cos θ 1 0 . . .
0 1 2 cos θ 1 . . .
0 0 1 2 cos θ . . .
. . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣
.

Thus,∣∣∣∣∣∣∣∣∣∣
x 1 0 0 . . .
1 2x 1 0 . . .
0 1 2x 1 . . .
0 0 1 2x . . .
. . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣
=

1

2

{
(2x)n − n

1
(2x)n−2 +

n

2

(
n− 3

1

)
(2x)n−4 − · · ·

}
.

From [19] (see Page 696),

Tn(x) = 2n−1Πn
k=1

{
x− cos

(
(2k − 1)π

2n

)}
.

Since Tn(cos θ) = cosnθ, the above formula implies that

cosnθ = 2n−1Πn
k=1

{
cos θ − cos

(
(2k − 1)π

2n

)}
. (10)

Remark 2.1 It is well known (see, for example, [19]) that

Un(x) = 2nΠn
k=1

{
x− cos

(
kπ

n+ 1

)}
.
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Thus,

sin(n+ 1)θ

sin θ
= Un(cos θ) = 2nΠn

k=1

{
cos θ − cos

(
kπ

n+ 1

)}
. (11)

Substituting different values of θ into (11), we may obtain a type of trigono-
metric identities. For instance, let θ = π/2. Then (11) yields

sin(n+ 1)
π

2
= −2nΠn

k=1 cos

(
kπ

n+ 1

)
.

If n = 2m, m = 0, 1, , 2 . . ., because of sin(2m + 1)π/2 = (−1)m, the last
equation implies

(−1)m = 22mΠ2m
k=1 cos

(
kπ

2m+ 1

)
= 4m(−1)mΠm

k=1 cos2
(

kπ

2m+ 1

)
,

where in the last step we use the fact

cos

(
kπ

2m+ 1

)
= − cos

(
π − kπ

2m+ 1

)
= − cos

(
(2m− k + 1)π

2m+ 1

)
for k = m+ 1,m+ 2, . . . , 2m. Thus we obtain the identity

Πm
k=1 cos2

(
kπ

2m+ 1

)
=

1

4m
.

Other identities can be obtained by substituting θ = π/6, π/4, π/3, etc.
Recall also that

coshx =
ex + e−x

2
and sinhx =

ex − e−x

2
.

Let r1 = ex and r2 = e−x. Then (7) gives

cosh(nx) =
1

2

∑
0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(2 coshx)n−2k

and

sinh(nx) = sinhx
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(2 coshx)n−2k .

Other applications of Girard-Waring identities to the product expansions of
trigonometric functions similar to the results shown in [2] will be presented
in the author’s further work.
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3 Girard-Waring Identities and linear recurrence
relations of order 2

Girard-Waring identities can be applied to construct the expressions of the
linear recursive sequences of order 2.

Note that xn + yn = (x+ y)
(
xn−1 + yn−1

)
− xy

(
xn−2 + yn−2

)
(n ≥ 2).

Let wn(x, y) = xn + yn. Then

wn(x, y) = (x+ y)wn−1(x, y)− xywn−2(x, y), n ≥ 2, (12)

with the initial conditions w0(x, y) = 2 and w1(x, y) = x + y. The charac-
teristic equation of the above recurrence relation is t2 − (x + y)t + xy = 0.
Thus t = x, y

Proposition 3.1. Let an(x, y) = p(x, y)an−1(x, y)+q(x, y)an−2(x, y), n ≥ 2,
with given a0(x, y) and a1(x, y). Then

an (x, y)

=
a1(x, y)− β(x, y)a0(x, y)

α(x, y)− β(x, y)
αn(x, y)− a1(xy)− α(x, y)a0(x, y)

α(x, y)− β(x, y0
βn(x, y),

where α(x, y) 6= β(x, y) are the roots of the characteristic equation t2 −
p(x, y)t− q(x, y) = 0.

By using this proposition 3.1, the solution of (12) is wn(x, y) = xn + yn.
Example 3.1 The generalized Lucas polynomials (Lucas 1891, see Swamy
[16]) Vn(x, y) are defined by

Vn(x, y) = xVn−1(x, y) + yVn−2(x, y), V0(x, y) = 2, V1(x, y) = x.

The characteristic equation is t2 − xt− y = 0. Thus

t =
x±

√
x2 + 4y

2
.

By Proposition 3.1 and the Girard-Waring identity (1)

Vn(x, y) = αn(x, y) + βn(x, y) =
∑

0≤k≤[n/2]

n

n− k

(
n− k
k

)
xn−2kyk.

Example 3.2 Dickson polynomials of the first kind of degree n (Dickson
1897, see Lidl, Mullen, and Turnwald [10]) are defined by

Dn(x, a) = xDn−1(x, a)− aDn−2(x, a), D0(x, a) = 2, D1(x, a) = x.
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Thus from Proposition 3.1 and the Girard-Waring identity (1),

Vn(x,−a) = Dn(x, a)

=
∑

0≤k≤[n/2]

n

n− k

(
n− k
k

)
(−a)kxn−2k.

Example 3.3 For the Lucas polynomials (see Bicknell [1]) {Ln(x) = Vn(x, 1)},
i.e., let y = 1 in {Vn(x, y)}, we have

Ln(x) =
∑

0≤k≤[n/2]

n

n− k

(
n− k
k

)
xn−2k.

Note that Dn(x,−1) = Ln(x). For the Lucas numbers Ln = Ln(1), we
have

Ln =
∑

0≤k≤[n/2]

n

n− k

(
n− k
k

)
.

Example 3.4 The Chebysheve polynomials of the first kind (Chehysher
1821-1894, see Rivlin [14] and Zwillinger [19]) are defined by

Tn(x) = 2xTn−1(x)− Tn−2(x) n ≥ 2,

with the initial conditions T0(x) = 1 and T1(x) = x. Thus, from Proposition
3.1 and the Girard-Waring identity (1), we have

Tn(x) =
1

2

∑
0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(2x)n−2k.

Note that from (2), we have

xn+1 − yn+1

x− y
= (x+ y)

xn − yn

x− y
− xyx

n−1 − yn−1

x− y
, n ≥ 2.

Let Wn+1(x, y) = (xn+1 − yn+1)/(x− y). Then

Wn(x, y) = (x+ y)Wn−1(x, y)− xyWn−2(x, y), n ≥ 2, (13)

with the initial conditions W0(x, y) = 0 and W1(x, y) = 1. Thus

Wn(x, y) =
xn − yn

x− y
=

∑
0≤k≤[(n−1)/2]

(−1)k
(
n− 1− k

k

)
(x+y)n−1−k(xy)k.

Remark 3.1 From the expression of Wn(x, y) and noting the initial con-
dition W0(x, y) = 0, we know {Wn(x, y)} is a linear divisibility sequence.
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More precisely, from authors’ recent work [9], if x and y be distinct real
(or complex) numbers, then sequence (Wn(x, y)) is a second order linear
homogenous recursive sequence with W0 = 0 and W1 = 1 and a linear di-
visibility sequence of order 2. For instance, when r 6= 1 and a1 = 1, the
geometric sequence {sn = a1(1 − rn)/(1 − r) = (1 − rn)/(1 − r)}n≥1 is a
linear divisibility sequence because sn = Wn(1, r).
Example 3.5 The Generalized Fibonacci polynomials Fn(x, y) ( see Swammy
[17]) are defined by Fn(x, y) = xFn−1(x, y) + yFn−2(x, y) (n ≥ 2) with the
initial conditions F0(x, y) = 0 and F1(x, y) = 1. From Proposition 3.1 and
the Girard-Waring identity (2), we have

Fn(x, y) =
∑

0≤k≤[(n−1)/2]

(
n− 1− k

k

)
xn−1−kyk.

Thus, for the Fibonacci polynomials

Fn(x) = Fn(x, 1) =
∑

0≤k≤[(n−1)/2]

(
n− 1− k

k

)
xn−1−k.

For Fibonacci sequence {Fn}

Fn = Fn(1) =
∑

0≤k≤[(n−1)/2]

(
n− 1− k

k

)
.

For the Pell sequence {Pn}

Pn = Fn(2) =
∑

0≤k≤[(n−1)/2]

(
n− 1− k

k

)
2n−1−k.
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1 Introduction

In [3], [4] was first introduced the local fractional derivative and presented an

incomplete local fractional Taylor formula, all done by the use of Riemann-

Liouville fractional derivative. Similar work was done in [1], but again with

some gaps. The author is greatly motivated by the pioneering work of [1]-[4]

and presents a local fractional Taylor formula in a complete suitable form and

without any gaps.

2 Main Results

We mention

Definition 1 ([5], pp. 68, 89) Let x, x′ ∈ [a, b], f ∈ C ([a, b]). The Riemann-

Lioville fractional derivative of a function f of order q (0 < q < 1) is defined

as

Dq
xf (x′) =

{
Dq

x+f (x′) , x′ > x,

Dq
x−f (x′) , x′ < x

}
=

1

Γ (1− q)

{
d

dx′

∫ x′

x
(x′ − t)

−q
f (t) dt, x′ > x,

− d
dx′

∫ x

x′ (t− x′)
−q

f (t) dt, x′ < x.
(1)

1
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We need

Definition 2 ([3]) The local fractional derivative of order q (0 < q < 1) of a

function f ∈ C ([a, b]) is defined as

Dqf (x) = lim
x′→x

Dq
x (f (x′)− f (x)) . (2)

More generally we define

Definition 3 (see also [1]) Let N ∈ Z+, 0 < q < 1, the local fractional deriva-

tive of order (N + q) of a function f ∈ CN ([a, b]) is defined by

DN+qf (x) = lim
x′→x

Dq
x

(
f (x′)−

N∑
n=0

f (n) (x)

n!
(x′ − x)

n

)
. (3)

If N = 0, then Definition 3 collapses to Definition 2.

We need

Definition 4 (related to Definition 3) Let f ∈ CN ([a, b]), N ∈ Z+. Set

F (x, x′ − x; q,N) := Dq
x

(
f (x′)−

N∑
n=0

f (n) (x)

n!
(x′ − x)

n

)
. (4)

Let x′ − x := t, then x′ = x + t, and

F (x, t; q,N) = Dq
x

(
f (x + t)−

N∑
n=0

f (n) (x)

n!
tn

)
. (5)

We make

Remark 5 Here x′, x ∈ [a, b], and a ≤ x+ t ≤ b, equivalently a−x ≤ t ≤ b−x.

From a ≤ x ≤ b, we get a− x ≤ 0 ≤ b− x.

We assume here that F (x, ·; q,N) ∈ C1 ([a− x, b− x]). Clearly, then it holds

DN+qf (x) = F (x, 0; q,N) , (6)

and DN+qf (x) exists in R.

We make

Remark 6 We observe that:

I) Let x′ > x (x′ − x > 0) then

f (x′)−
N∑

n=0

f (n) (x)

n!
(x′ − x)

n ([2])
=

2
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D−qx

[
Dq

x

(
f (x′)−

N∑
n=0

f (n) (x)

n!
(x′ − x)

n

)]
=

D−qx (F (x, x′ − x; q,N)) =
1

Γ (q)

∫ x′

x

(x′ − z)
q−1

F (x, z − x; q,N) dz =

1

Γ (q)

∫ x′−x

0

F (x, t; q,N)

(x′ − x− t)
−q+1 dt =

(integration by parts)

1

Γ (q)

[
F (x, t; q,N)

∫
(x′ − x− t)

q−1
dt

]x′−x

0

+ (7)

1

Γ (q)

∫ x′−x

0

dF (x, t; q,N)

dt

(x′ − x− t)
q

q
dt.

Thus,

f (x′)−
N∑

n=0

f (n) (x)

n!
(x′ − x)

n
=
DN+qf (x)

Γ (q + 1)
(x′ − x)

q
+

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q,N)

dt
(x′ − x− t)

q
dt, for x′ > x, (8)

N ∈ Z+.

II) Let x′ < x (x′ − x < 0): We have similarly,

f (x′)−
N∑

n=0

f (n) (x)

n!
(x′ − x)

n ([2])
=

D−qx

[
Dq

x

(
f (x′)−

N∑
n=0

f (n) (x)

n!
(x′ − x)

n

)]
=

D−qx (F (x, x′ − x; q,N)) =
1

Γ (q)

∫ x

x′
(z − x′)

q−1
F (x, z − x; q,N) dz = (9)

1

Γ (q)

∫ 0

x′−x
(x− x′ + t)

q−1
F (x, t; q,N) dt =

(integration by parts)

1

Γ (q)

[
F (x, t; q,N)

∫
(t + x− x′)

q−1
dt

]0
x′−x

−

1

Γ (q)

∫ 0

x′−x

dF (x, t; q,N)

dt

(t + x− x′)
q

q
dt = (10)

3
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1

Γ (q)

[
F (x, 0; q,N)

(x− x′)
q

q

]
+

1

Γ (q)

∫ x′−x

0

dF (x, t; q,N)

dt

(t + x− x′)
q

q
dt =

1

Γ (q + 1)
DN+qf (x) (x− x′)

q
+

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q,N)

dt
(t− x′ + x)

q
dt.

(11)

Conclusion:

We have proved that (N ∈ Z+)

I)

f (x′) =
N∑

n=0

f (n) (x)

n!
(x′ − x)

n
+
DN+qf (x)

Γ (q + 1)
(x′ − x)

q
+

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q,N)

dt
(x′ − x− t)

q
dt, when x′ > x, (12)

and

II)

f (x′) =

N∑
n=0

f (n) (x)

n!
(x′ − x)

n
+
DN+qf (x) (x− x′)

q

Γ (q + 1)
+

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q,N)

dt
(t− x′ + x)

q
dt, when x′ < x. (13)

We have derived

Theorem 7 Let f ∈ CN ([a, b]), N ∈ Z+. Here x, x′ ∈ [a, b], and F (x, ·; q,N) ∈
C1 ([a− x, b− x]). Then

f (x′) =
N∑

n=0

f (n) (x)

n!
(x′ − x)

n
+
DN+qf (x)

Γ (q + 1)
|x′ − x|q + (14)

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q,N)

dt
|(x′ − x)− t|q dt.

In particular we get

Corollary 8 (to Theorem 7, N = 0) Let f ∈ C ([a, b]); x, x′ ∈ [a, b], and

F (x, ·; q, 0) ∈ C1 ([a− x, b− x]). Then

f (x′) = f (x) +
Dqf (x)

Γ (q + 1)
|x′ − x|q + (15)

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q, 0)

dt
|(x′ − x)− t|q dt.

4
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ON VORONOVSKAJA TYPE ESTIMATES OF BERNSTEIN-STANCU

OPERATORS

RONGRONG XIA AND DANSHENG YU∗

Abstract. In the present paper, we obtain the Voronovaskaja-type results of approximation by

a type of Bernstein-Stancu operators with shifted knots.

1. Introduction and The Main Results

For any f (x) ∈ C[0,1], the corresponding Bernstein operators Bn (f, x) are defined as

follows:

Bn (f ;x) =

n∑
k=0

f

(
k

n

)
pn,k(x),

where pn,k(x) =
(
n
k

)
xk (1− x)n−k , k = 0, 1, · · · , n. The approximation properties of Bern-

stein operators for continuous functions or functions of smoothness have been investigated

extensively. Among them, many authors have studied the Voronovaskaja-type asymptot-

ical estimates (see [5]-[7], [13] ).

Stancu ([11]) generalized the Bernstein operators to the following so called Bernstein-

Stancu operators:

Bn,α,β (f ;x) =

n∑
k=0

f

(
k + α

n+ β

)
pn,k(x). (1.1)

It was showed that Bn,α,β (f ;x) converges to continuous function f(x) uniformly in [0, 1]

for α,β satisfying 0 ≤ α ≤ β.

Recently, Gadjiev and Ghorbanalizadeh ([4]) further generalized Bernstein-Stancu op-

erators by using shifted knots as follows:

Sn,α,β(f ;x) =

(
n+ β2

n

)n n∑
k=0

f

(
k + α1

n+ β1

)
qn,k(x), (1.2)

where x ∈
[

α2

n+β2
, n+α2

n+β2

]
, qn,k(x) =

(
n
k

) (
x− α2

n+β2

)k (
n+α2

n+β2
− x
)n−k

, k = 0, 1, · · · , n, and

αk, βk, k = 1, 2 are positive real numbers satisfying 0 ≤ α1 ≤ β1, 0 ≤ α2 ≤ β2. They

estimated the approximation rate of approxiamtion by Sn,α,β (f, x) for continuous functions

in An. In fact, they established the following:

2010 Mathematics Subject Classification. 41A25, 41A35.
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2 RONGRONG XIA AND DANSHENG YU∗

Theorem 1.1. ([4]) Let f be continuous function on [0, 1] . Then the following inequalities

hold:

|Sn,α,β (f, x)− f (x)| ≤


3
2ω

(
f,

√
4(β2−β1)2

(
n+α2
n+β2

)2

+n

(n+β1)2

)
, if (β2 − β1) ≥ (α2 − α1) ,

3
2ω

(
f,

√
4(α2−α1)2+n

(n+β1)2

)
, if (β2 − β1) ≤ (α2 − α1) .

In Theorem 1.1, the approximation properties of Sn,α,β(f, x) in An :=
[

α2

n+β2
, n+α2

n+β2

]
are

considered. As we know, Sn,α,β is positive and linear in the set An. Although, Sn,α,β is still

definable on [0, 1]\An, but it is not positive in this case. Then, a natural problem is whether

Sn,α,β(f, x) can be used to approximate the continuous functions on the whole interval

[0, 1]. Wang, Yu and Zhou ([14]) give a positive answer by establishing the following:

Theorem 1.2. Let f be a continuous function on [0, 1] , λ ∈ [0, 1] be a fixed positive

number. Then there exists a positive constant C only depending on λ, α1, α2, β1 and β2

such that

|Sn,α,β (f, x)− f (x)| ≤ Cωϕλ
(
f,
δ1−λ
n (x)√

n

)
, (1.3)

where ϕ(x) =
√
x(1− x), δn(x) := ϕ(x) + 1√

n
, and

ωϕλ (f, t) := sup
0<h≤t

sup
x±hφλ(x)

2
∈[0,1]

∣∣∣∣f (x+
hϕλ (x)

2

)
− f

(
x− hϕλ (x)

2

)∣∣∣∣ .
Many authors have generalized Sn,α,β(f, x) in many ways (see [1], [3], [8]-[10], [12]).

Our purpose of the paper is to give the Voronovskaja type estimates of approximation

by Sn,α,β(f, x) on An.

Theorem 1.3. Let f ∈ C2(An), λ ∈ [0, 1] be a fixed positive number. Then there exists a

positive constant C only depending on λ, α1, α2, β1 and β2 such that∣∣∣∣Sn,α,β(f, x)− f (θn(x))− 1

2
f ′′(x)Mn(x)

∣∣∣∣ ≤ C δ2
n(x)

n
ωφλ

(
f ′′,

δ1−λ
n (x)√

n

)
An

, (1.4)

where δn(x) = φ(x) + 1√
n

, φ(x) =

√(
x− α2

n+β2

)(
n+α2

n+β2
− x
)

,

Mn(x) := − 1

n

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

+

(
(n+ β2)(1 + 2α2)

(n+ β1)2
− 2α1

n+ β2

)(
x− α2

n+ β2

)
+

α2
1

(n+ β1)2
− α2

1

(n+ β2)2
,

θn(x) := Sn,α,β(t, x) =

(
n+ β2

n+ β1

)
x−

(
α2 − α1

n+ β1

)
.

When α1 = α2 = β1 = β2 = 0, we get the results of [7] for Bernstein operators. Noting

that |θ(x)− x| ≤
∣∣∣ (β2−β1)x−α2+α1

n+β1

∣∣∣, we have
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Corollary 1. Let f ∈ C2(An), λ ∈ [0, 1] be a fixed positive number. Then there exists a

positive constants C1 and C2 only depending on λ, α1, α2, β1 and β2 such that

∣∣∣∣Sn,α,β(f, x)− f (x)− 1

2
f ′′(x)Mn(x)

∣∣∣∣ ≤ C1

(
δ2
n(x)

n
ωφλ

(
f ′′,

δ1−λ
n (x)√

n

)
An

+ω

(
f,

(β2 − β1)x− α2 + α1

n+ β1

)
An

)
,(1.5)

where ω(f, t)An is the usual modulus of continuity of f on An.

Throughout the paper, C denotes either a positive absolute constant or a positive

constant that may depend on some parameters but not on f , x and n, their values may

be different at different occurrences. The symbol x ∼ y means that there exists a positive

constant C such that C−1 ≤ x ≤ Cy.

2. Auxiliary Lemmas

Lemma 2.1. ([3], Lemma 3) For any given γ ≥ 0, we have

∆n,γ(x) :=

n∑
k=0

∣∣∣∣k + α1

n+ β1
− x
∣∣∣∣γ qn,k(x) ≤ C δ

γ
n(x)

n
γ

2

, x ∈ An. (2.1)

Lemma 2.2. If g ∈ Dλ :=
{
g : g′ ∈ ACloc, ‖φλg′‖ <∞, ‖g′‖ <∞

}
, then for any x ∈

An = [ α2

n+β2
, n+α2

n+β2
], we have

∣∣∣∣Sn,α,β (∫ t

x
(t− u)(g(u)− g(x))du, x

)∣∣∣∣ ≤ C δ2
n(x)

n

(
δ1−λ
n (x)√

n
‖φλg′‖+

(
δ1−λ
n (x)√

n

) 1

1−λ
2 ‖g′‖

)
.

(2.2)

Proof. We need the following inequality:

∫ t

x

1

φλ(u)
du ≤ C |t− x|

φλ(x)
, for any x, t ∈ An. (2.3)
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In fact, when λ = 1, (2.3) is obvious. When 0 < λ ≤ 1, we have (by using Hölder’s

inequality for 0 < λ < 1)∫ t

x

1

φλ(u)
du ≤

∣∣∣∣∫ t

x

1

φ(u)
du

∣∣∣∣λ ∣∣∣∣∫ t

x
du

∣∣∣∣1−λ

≤ C|t− x|1−λ
∣∣∣∣∣∣
∫ t

x

 1√
u− α2

n+β2

+
1√

n+α2

n+β2
− u

 du

∣∣∣∣∣∣
λ

≤ C|t− x|1−λ
(∣∣∣∣√t− α2

n+ β2
−
√
x− α2

n+ β2

∣∣∣∣+

∣∣∣∣√n+ α2

n+ β2
− t−

√
n+ α2

n+ β2
− x
∣∣∣∣)λ

≤ C|t− x|

 1√
t− α2

n+β2
+
√
x− α2

n+β2

+
1√

n+α2

n+β2
− t+

√
n+α2

n+β2
− x

λ

≤ C|t− x|

 1√
x− α2

n+β2

+
1√

n+α2

n+β2
− x

λ

≤ C
|t− x|
φλ(x)

, (2.4)

which proves (2.3).

Now, we prove (2.2) by considering the following two difference cases: x ∈ Bn =[
α2+1
n+β2

, n+α2−1
n+β2

]
and x ∈ Bc

n = [ α2

n+β2
, α2+1
n+β2

] ∪ [n+α2−1
n+β2

, n+α2

n+β2
], respectively.

When x ∈ Bn =
[
α2+1
n+β2

, n+α2−1
n+β2

]
, we have

φ(x) ≥ min

(
φ

(
α2 + 1

n+ β2

)
, φ

(
n+ α2 − 1

n+ β2

))
≥ C√

n
,

which means that

δn(x) ∼ φ(x), x ∈ Bn. (2.5)

Then, by Lemma 2.1, we have∣∣∣∣Sn,α,β (∫ t

x
(t− u)(g(u)− g(x))du, x

)∣∣∣∣
≤

∣∣∣∣Sn,α,β (∫ t

x
(t− u)

(∫ u

x

φλ(s)g′(s)

φλ(s)
ds

)
du, x

)∣∣∣∣
≤ C‖φλg′‖

∣∣∣∣Sn,α,β (∫ t

x
|t− u| |x− u|

φλ(x)
du, x

)∣∣∣∣
≤ C

‖φλg′‖
φλ(x)

∣∣Sn,α,β (|t− x|3, x)∣∣
= C

‖φλg′‖
φλ(x)

(
n+ β2

n

)n n∑
k=0

∣∣∣∣k + α1

n+ β1
− x
∣∣∣∣3 |qn,k(x)|

≤ C
δ2
n(x)

n

δ1−λ
n (x)√

n
‖φλg′‖. (2.6)
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When x ∈ Bc
n = [ α2

n+β2
, α2+1
n+β2

] ∪ [n+α2−1
n+β2

, n+α2

n+β2
], we have δn(x) ∼ 1√

n
. Then,

δ1−λ
n (x)√

n
‖δλng′‖ ≤ C

δ2
n(x)

n

(
δ1−λ
n (x)√

n
‖φλg′‖+

δ1−λ
n (x)√

n

(
1√
n

)λ
‖g′‖

)

≤ C
δ2
n(x)

n

(
δ1−λ
n (x)√

n
‖φλg′‖+

(
δ1−λ
n (x)√

n

) 1

1−λ
2 ‖g′‖

)
. (2.7)

By Lemma 2.1 again, we get

∣∣∣∣Sn,α,β (∫ t

x
(t− u)(g(u)− g(x))du, x

)∣∣∣∣
≤ C‖δλng′‖

∣∣∣∣Sn,α,β (∫ t

x
(t− u)

(∫ u

x

1

δλn(s)
ds

)
du, x

)∣∣∣∣
≤ C‖δλng′‖

∣∣∣∣Sn,α,β (∫ t

x
(t− u)2

(
1

δλn(u)
+

1

δλn(s)

)
du, x

)∣∣∣∣
≤ C‖δλng′‖

∣∣∣∣Sn,α,β (∫ t

x
(t− u)2 1

δλn(u)
du, x

)∣∣∣∣
≤ C‖δλng′‖

n∑
k=0

 1

δλn(x)
+

1

δλn

(
k+α1

n+β1

)
∣∣∣∣x− k + α1

n+ β1

∣∣∣∣3 qn,k(x)

≤ C
‖δλng′‖
δλn(x)

n∑
k=0

∣∣∣∣x− k + α1

n+ β1

∣∣∣∣3 qn,k(x)

≤ C
δ2
n(x)

n

(
δ1−λ
n (x)√

n
‖φλg′‖+

(
δ1−λ
n (x)√

n

) 1

1−λ
2 ‖g′‖

)
. (2.8)

We prove Lemma 2.2 by combining (2.6), (2.7) and (2.8). �

Lemma 2.3. Under the conditions of Lemma 2.2, we have for x ∈ An = [ α2

n+β2
, n+α2

n+β2
] that∣∣∣∣∣

∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)(g(u)− g(x))du

∣∣∣∣∣ ≤ C δ2
n(x)

n

(
δ1−λ
n (x)√

n
‖φλg′‖+

(
δ1−λ
n (x)√

n

) 1

1−λ
2 ‖g′‖

)
.(2.9)

Proof. If x ∈ Bn = [α2+1
n+β2

, n+α2−1
n+β2

], by (2.3) and the fact (see, [4])

Sn,α,β(t, x) =

(
n+ β2

n+ β1

)
x−

(
α2 − α1

n+ β1

)
. (2.10)

we have for any γ ≥ 0 that

|Sn,α,β(t, x)− x|γ ≤ C

nγ
. (2.11)
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By (2.3) and (2.11), we get∣∣∣∣∣
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)(g(u)− g(x))du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)

(∫ u

x
g′(s)ds

)
du

∣∣∣∣∣
≤ C‖φλg′‖

∣∣∣∣∣
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)

(∫ u

x

1

φλ(s)
ds

)
du

∣∣∣∣∣
≤ C

‖φλg′‖
φλ(x)

|Sn,α,β(t, x)− x|3

≤ C
1

n3

‖φλg′‖
φλ(x)

≤ C
δ2
n(x)

n

δ1−λ
n (x)√

n
‖φλg′‖. (2.12)

If x ∈ Bc
n =

[
α2

n+β2
, α2+1
n+β2

]
∪
[
n+α2−1
n+β2

, n+α2

n+β2

]
, we have

Sn,α,β(t, x) =

(
n+ β2

n+ β1

)
x−

(
α2 − α1

n+ β1

)
∈
[

α1

n+ β2
,
α1 + 1

n+ β2

]
∪
[
n+ α1 − 1

n+ β2
,
n+ α1

n+ β2

]
.

It is easy to observe that

δn(Sn,α,β(t, x)) = δn

(
n+ β2

n+ β1
x− α2 − α1

n+ β1

)
=

√[
n+ β2

n+ β1
x− α2 − α1

n+ β1
− α2

n+ β1

] [
n+ α2

n+ β1
− n+ β2

n+ β1
x+

α2 − α1

n+ β1

]
+

1√
n

=

√[
n+ β2

n+ β1
x− 2α2 − α1

n+ β1

] [
n+ 2α2 − α1

n+ β1
− n+ β2

n+ β1
x

]
+

1√
n

∼ δn(x) ∼ 1√
n
.

Therefore, by (2.11) again, we get∣∣∣∣∣
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)(g(u)− g(x))du

∣∣∣∣∣
≤ C‖δλng′‖

∣∣∣∣∣
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)2

(
1

δλn(x)
+

1

δλn(u)

)
du

∣∣∣∣∣
≤ C‖δλng′‖

∣∣∣∣|Sn,α,β(t, x)− x|3 ·
(

1

δλn(x)
+

1

δλn(Sn,α,β(t, x))

)∣∣∣∣
≤ C

δ2
n(x)

n

δ1−λ
n (x)√

n
‖δλng′‖. (2.13)

We get Lemma 2.3 by combining (2.7), (2.12) and (2.13). �
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3. Proof of Results

Define the auxiliary operators Sn,α,β(f, x) as follows:

Sn,α,β(f, x) = Sn,α,β(f, x) + Ln,α,β(f, x), (3.1)

where Ln,α,β(f, x) = f(x)− f(θn(x)), and θn(x) = Sn,α,β(t, x).

It follows from the facts Sn,α,β(1, x) = 1 and (2.10) that

Sn,α,β(1, x) = 1, Sn,α,β((t− x), x) = 0. (3.2)

For any f(x) ∈ C(An), 0 ≤ λ ≤ 1, define the K-functional:

Kϕλ (f, t) := inf
g∈A.Cloc

{
‖f − g‖+ t

∥∥∥φλg′∥∥∥+ t
1

1−λ
2

∥∥g′∥∥} ,
Then ([2])

Kφλ (f, t) ∼ ωφλ (f, t) .

Then, by taking t = δ1−λn (x)√
n

, there is a g ∈ ACloc such that∥∥f ′′ − g∥∥ ≤ Cωφλ (f ′′, δ1−λ
n (x)√

n

)
An

. (3.3)

δ1−λ
n (x)√

n

∥∥∥φλg′∥∥∥ ≤ Cωφλ (f ′′, δ1−λ
n (x)√

n

)
An

. (3.4)

(
δ1−λ
n (x)√

n

) 1

1−λ
2 ‖g′‖ ≤ Cωφλ

(
f ′′,

δ1−λ
n (x)√

n

)
An

. (3.5)

By (3.1), we have∣∣∣∣Sn,α,β(f, x)− f(θn(x))− 1

2
f ′′(x)Mn(x)

∣∣∣∣ =

∣∣∣∣Sn,α,β(f, x)− f(x)− 1

2
f ′′(x)Mn(x)

∣∣∣∣ .
Hence, we only need to prove the following inequality:∣∣∣∣Sn,α,β(f, x)− f(x)− 1

2
f ′′(x)Mn(x)

∣∣∣∣ ≤ C δ2
n(x)

n
ωφλ

(
f ′′,

δ1−λ
n (x)√

n

)
An

. (3.6)

It follows from (3.1) that

Sn,α,β

(∫ t

x
(t− u)du, x

)
= Sn,α,β

(∫ t

x
(t− u)du, x

)
−
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u) du

=
1

2

[
Sn,α,β

(
(t− x)2, x

)
− (Sn,α,β(t, x)− x)2

]
=

1

2

[
Sn,α,β(t2, x)− S2

n,α,β(t, x)
]

It was proved in ([4]) that

Sn,α,β(t2, x) =

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

− 1

n

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

+

(
n+ β2

n+ β1

)
1

n+ β1

(
x− α2

n+ β2

)
+

(
n+ β2

n+ β1

)
2α2

n+ β1

(
x− α2

n+ β2

)
+

α2
1

(n+ β1)2
.
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By (2.10), we can rewrite Sn,α,β(t, x) as follows:

Sn,α,β(t, x) =

(
n+ β2

n+ β1

)
x−

(
α2 − α1

n+ β1

)
=
n+ β2

n+ β1

(
x− α2 − α1

n+ β2

)
=

n+ β2

n+ β1

(
x− α2

n+ β2
+

α1

n+ β2

)
,

which means that

(Sn,α,β(t, x))2 =

(
n+ β2

n+ β1

)2(
x− α2

n+ β2
+

α1

n+ β2

)2

=

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

+

(
α1

n+ β2

)2

+
2α1

n+ β2
·
(
x− α2

n+ β2

)
.

Then

Sn,α,β(t2, x)− S2
n,α,β(t, x) =

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

− 1

n

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

+

(
n+ β2

n+ β1

)
1

n+ β1

(
x− α2

n+ β2

)
+

(
n+ β2

n+ β1

)
2α1

n+ β1

(
x− α2

n+ β2

)
+

α2
1

(n+ β1)2
−
(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

−
(

α1

n+ β2

)2

− 2α1

n+ β2
·
(

α2

n+ β2

)
= − 1

n

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

+

(
n+ β2

n+ β1

)
1

n+ β1

(
x− α2

n+ β2

)
+
n+ β2

n+ β1
· 2α1

n+ β1

(
x− α2

n+ β2

)
+

α2
1

(n+ β1)2

− α2
1

(n+ β2)
− 2α1

n+ β2

(
x− α2

n+ β2

)
= − 1

n

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

+

[
n+ β2

(n+ β1)2
+

2α1(n+ β2)

(n+ β1)2
− 2α1

n+ β2

]
·
(
x− α2

n+ β2

)
+

α2
1

(n+ β1)2
− α2

1

(n+ β2)2

= − 1

n

(
n+ β2

n+ β1

)2(
x− α2

n+ β2

)2

+

(
(n+ β2)(1 + 2α1)

(n+ β1)2
− 2α1

n+ β2

)
×
(
x− α2

n+ β2

)
+

α2
1

(n+ β1)2
− α2

1

(n+ β2)2

=: Mn(x)
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By Taylor’s formula: f(t) = f(x) + f ′(x)(t− x) +
∫ t
x(t− u)f ′′(u)du, we have∣∣∣∣Sn,α,β(f, x)− f(x)− 1

2
f ′′(x)Mn(x)

∣∣∣∣
≤

∣∣∣∣Sn,α,β (f, x)− f(x)− f ′′(x)Sn,α,β

(∫ t

x
(t− u)du, x

)∣∣∣∣
≤

∣∣∣∣Sn,α,β (∫ t

x
(t− u)f ′′(u)du, x

)
− Sn,α,β

(∫ t

x
(t− u)f ′′(x)du, x

)∣∣∣∣
≤

∣∣∣∣Sn,α,β (∫ t

x
(t− u)(f ′′(u)− f ′′(x))du, x

)∣∣∣∣
≤

∣∣∣∣Sn,α,β (∫ t

x
(t− u)|f ′′(u)− g(u)|du, x

)∣∣∣∣+

∣∣∣∣Sn,α,β (∫ t

x
(t− u)|f ′′(x)− g(x)|du, x

)∣∣∣∣
+

∣∣∣∣Sn,α,β (∫ t

x
(t− u)|g(u)− g(x)|du, x

)∣∣∣∣
=: I1 + I2 + I2. (3.7)

For I1, by (2.11), (3.1) and Lemma 2.1, we have

I1 ≤
∣∣∣∣Sn,α,β (∫ t

x
(t− u)(f ′′(u)− g(u))du, x

)∣∣∣∣
+

∣∣∣∣∣
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)|f ′′(u)− g(u)|du

∣∣∣∣∣
≤ C‖f ′′ − g‖

(
δ2
n(x)

n
+

1

n2

)
≤ C

δ2
n(x)

n
‖f ′′ − g‖. (3.8)

Similarly, we also have

I2 ≤ C
δ2
n(x)

n
‖f ′′ − g‖. (3.9)

For I3, by Lemma 2.2 and Lemma 2.3, we have

I3 ≤
∣∣∣∣Sn,α,β (∫ t

x
(t− u)(g(u)− g(x))du, x

)∣∣∣∣
+

∣∣∣∣∣
∫ Sn,α,β(t,x)

x
(Sn,α,β(t, x)− u)(g(u)− g(x))du

∣∣∣∣∣
≤ C

δ2
n(x)

n

(
δ1−λ
n (x)√

n
‖φλg′‖+

(
δ1−λ
n (x)√

n

) 1

1−λ
2 ‖g′‖

)
. (3.10)

We finish the proof of (3.6) by combining (3.3)-(3.5), (3.7)-(3.10) .
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Double-sided Inequalities of Ostrowski’s Type and Some

Applications

Waseem Ghazi Alshanti and Gradimir V. Milovanović

Abstract

We construct a new general Ostrowski type inequality for differentiable mappings whose

first derivatives are bounded in terms of pre-assigned continuous functions. Applications to

composite quadrature rules are also given.

1 Introduction

In 1938, A. Ostrowski [14] introduced the following interesting and useful integral inequality for
differentiable mappings with bounded derivatives:

Theorem 1.1 Let f : [a, b] → R be continuous mapping on [a, b] and differentiable on (a, b),
whose derivative f ′ : (a, b) → R is bounded on (a, b), i.e., ‖f ′‖∞ = sup

t∈[a,b]

|f ′(t)| < ∞, then for all

x ∈ [a, b] ∣∣∣∣∣∣f(x)−
1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
[
1

4
+

(
x− a+b

2

)2
(b− a)

2

]
(b− a) ‖f ′‖

∞
. (1.1)

The constant 1

4
is sharp in the sense that it can not be replaced by a smaller one.

Ostrowski’s inequality is one of the most famous inequalities in the integral calculus. It measures
the deviation of a function from its integral mean. Also, an estimation of approximating area under
the curve of a function by a rectangle can be obtained in this case.

In 1975, Milovanović [10] (see also [12, pp. 26–29]) proposed a generalization of (1.1) for a
function f of several variables as follows:

Theorem 1.2 Let f : Rm → R be a differentiable function defined on D and let
∣∣∣ ∂f∂xi

∣∣∣ ≤ Mi in D,

where Mi > 0 for each i = 1, . . . ,m. Then, for every X = (x1, . . . , xm) ∈ D, we have

∣∣∣∣∣f (x1, . . . , xm) −
1

n∏
i=1

(bi − ai)

b1∫

a1

· · ·

bm∫

am

f (y1, . . . , ym) dy1 · · · dym

∣∣∣∣∣

≤
m∑
i=1

[
1

4
+

(
xi −

ai+bi
2

)2
(bi − ai)

2

]
(bi − ai)Mi.

1
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One year later, in 1976, Milovanović and Pečarić [11] presented the following generalization
when

∣∣f (n)(x)
∣∣ ≤ M (∀x ∈ (a, b)), and n > 1:

Theorem 1.3 Let f : R → R be n (> 1) times differentiable function such that
∣∣f (n)(x)

∣∣ ≤ M(
∀x ∈ (a, b)

)
. Then, for every x ∈ [a, b]

∣∣∣∣∣
1

n

(
f(x) +

n−1∑
k=1

Fk

)
−

1

b− a

b∫

a

f(y)dy

∣∣∣∣∣ ≤
M

n(n+ 1)!
·
(x− a)n+1 + (b− x)n+1

b− a
,

where Fk is defined by

Fk ≡ Fk(f ;n;x; a; b) ≡
n− k

k!
·
f (k−1)(a)(x − a)k − f (k−1)(b)(x− b)k

b− a
.

For n = 2, Theorem 1.3 gives

∣∣∣∣∣
1

2

(
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

)
−

1

b− a

b∫

a

f(y)dy

∣∣∣∣∣

≤
M (b− a)

2

4

[
1

12
+

(
x− a+b

2

)2
(b− a)2

]
.

2 Preliminaries

Associated with differentiable mappings, there has been extensive research in the literature on
related results. Over the past few decades, many studies on obtaining sharp bounds of Ostrowski’s
tpye inequalities have been conducted. Most of the calculations within these sharp bounds depend
mainly on the magnitudes of Lebesgue norms of derivatives of given functions.

In [5]–[8], Dragomir and Wang obtained the following bounds on the deviation of an absolutely
continuous mapping f , defined over the interval [a, b], from its integral mean

∣∣∣∣∣f(x)−
1

b− a

x∫

a

f(t)dt

∣∣∣∣∣ ≤




[(
b−a
2

)2
+
(
x− a+b

2

)2] ‖f ′‖
∞

b−a , f ′ ∈ L∞[a, b];

1

q+1

[
(x− a)q+1 + (b − x)q+1

]1/q ‖f ′‖
p

b−a ,
f ′ ∈ Lp[a, b],
1

p + 1

q = 1, p > 1;

[
b−a
2

+
∣∣x− a+b

2

∣∣] ‖f ′‖
1

b−a , f ′ ∈ L1[a, b].

In [9], Masjed-Jamei and Dragomir provided the following analogues of the Ostrowski’s inequal-
ity for a differentiable function f whose first derivative f ′ is bounded, bounded from below, and
bounded from above in terms of two functions α, β ∈ C[a, b] as follows:

Theorem 2.1 Let f : I → R, where I is an interval, be a function differentiable in the interior
◦

I

of I, and let [a, b] ⊂
◦

I. For any α, β ∈ C[a, b] and x ∈ [a, b], we have the following three cases:

2
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1◦ If α(x) ≤ f ′(x) ≤ β(x), then

1

b− a




x∫

a

(t− a)α(t)dt +

b∫

x

(t− b)β(t)dt


 ≤ f(x)−

1

b− a

b∫

a

f(t)dt

≤
1

b − a




x∫

a

(t− a)β(t)dt +

b∫

x

(t− b)α(t)dt


 ; (2.1)

2◦ If α(x) ≤ f ′(x), then

1

b − a

[ x∫

a

(t− a)α(t)dt+

b∫

x

(t− b)α(t)dt

−max{x− a, b− x}

(
f(b)− f(a)−

b∫

a

α(t)dt

)]

≤ f(x)−
1

b− a

b∫

a

f(t)dt

≤
1

b− a

[ x∫

a

(t− a)α(t)dt+

b∫

x

(t− b)α(t)dt

+max{x− a, b− x}

(
f(b)− f(a)−

b∫

a

α(t)dt

)]
, (2.2)

3◦ If f ′(x) ≤ β(x), then

1

b− a

[ x∫

a

(t− a)β(t)dt+

b∫

x

(t− b)β(t)dt

−max{x− a, b− x}

( b∫

a

β(t)dt − f(b) + f(a)

)]

≤ f(x)−
1

b− a

b∫

a

f(t)dt

≤
1

b− a

[ x∫

a

(t− a)β(t)dt+

b∫

x

(t− b)β(t)dt

+max{x− a, b− x}

( b∫

a

β(t)dt − f(b) + f(a)

)]
, (2.3)

3
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The listed inequalities in Theorem 2.1 are significant as they improve all previous results in
which the Lebesgue norms of f ′ come into play when handling the bounds calculations. In this
case, the required computations in bounds are just in terms of pre-assigned functions. For other
related general results, the reader may be refer to [3], [15], [16], [18], [1], and [2].

In this paper, motivated by [9], new integral inequalities of Ostrowski type are obtained.
Namely, under certain conditions on f ′, we give the lower and upper bounds for the difference

E(f ;h) =
h

2
[f (a) + f (b)] + (1− h) f(x)−

1

b− a

b∫

a

f(t)dt, (2.4)

where h ∈ [0, 1] and x ∈ [a+h b−a
2

, b−h b−a
2

]. Our results provides range of estimates including those
given by [9] and [5]–[8]. Utilizing general Peano kernel, we recapture the three inequalities (2.1)–
(2.3) obtained by [9]. Some special cases of our result and applications to numerical quadrature
rules are also given.

3 Main Results

In order to formulate our main results, we need a kernel K(t; · ) : [a, b] → R defined by

K(t;x) =

{
t−

(
a+ h b−a

2

)
, t ∈ [a, x],

t−
(
b− h b−a

2

)
, t ∈ (x, b],

(3.1)

for all h ∈ [0, 1] and x ∈
[
a+ h b−a

2
, b− h b−a

2

]
. Also, for two functions α, β ∈ C[a, b], such that

α(t) ≤ β(t) for each t ∈ [a, b], we define the functions A(t; · ) : [a, b] → R and B(t; · ) : [a, b] → R

by

A(t;x) =
1

2

{[
1− sgnK(t;x)

]
β(t) +

[
1 + sgnK(t;x)

]
α(t)

}
(3.2)

and

B(t;x) =
1

2

{[
1− sgnK(t;x)

]
α(t) +

[
1 + sgnK(t;x)

]
β(t)

}
, (3.3)

respectively. We note that

sgnK(t;x) =




−1, t ∈
[
a, a+ h b−a

2

)
,

1, t ∈
(
a+ h b−a

2
, x
]
,

−1, t ∈
(
x, b − h b−a

2

)
,

1, t ∈
(
b− h b−a

2
, b
]
,

(3.4)

and equal to zero at t = a+ h b−a
2

and t = b− h b−a
2

.
Obviously, (2.4) provides range of estimates including those introduced by [9] and [5]–[8]. For

4
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instance, when h = 0, h = 1/2, and h = 1, (2.4) can be, respectively, reduced to

E(f ; 0) = f(x)−
1

b− a

b∫

a

f(t)dt (x ∈ [a, b]), (3.5)

E(f ; 1/2) =
1

4
[f(a) + f(b) + 2f(x)]−

1

b− a

b∫

a

f(t)dt

(
x ∈

[
3a+ b

4
,
a+ 3b

4

])
, (3.6)

E(f ; 1) =
1

2
[f (a) + f (b)]−

1

b− a

b∫

a

f(t)dt. (3.7)

Theorem 3.1 Let f : I → R, where I is an interval, be a function differentiable in the interior
◦

I of I, and let [a, b] ⊂
◦

I. Also, let E(f ;h), K(t;x), A(t;x), and B(t;x) be given by (2.4), (3.1),
(3.2), and (3.3), respectively.

For any α, β ∈ C[a, b], h ∈ [0, 1], and x ∈ [a + h b−a
2

, b − h b−a
2

], we have the following three

cases:

1◦ If α(x) ≤ f ′(x) ≤ β(x), then

1

b− a

b∫

a

K(t;x)A(t;x)dt ≤ E(f ;h) ≤
1

b− a

b∫

a

K(t;x)B(t;x)dt; (3.8)

2◦ If α(x) ≤ f ′(x), then

1

b− a

{ b∫

a

K(t;x)α(t)dt− L(x, h)

(
f(b)− f(a)−

b∫

a

α(t)dt

)}
≤ E(f ;h)

≤
1

b− a

{ b∫

a

K(t;x)α(t)dt + L(x, h)

(
f(b)− f(a)−

b∫

a

α(t)dt

)}
, (3.9)

where

L(x, h) = max
t∈[a,b]

∣∣K(t;x)
∣∣ = max

{
x− a− h

b− a

2
, b− x− h

b− a

2
, h

b− a

2

}
; (3.10)

3◦ If f ′(x) ≤ β(x), then

1

b− a

{ b∫

a

K(t;x)β(t)dt − L(x, h)

(∫ b

a

β(t)dt− f(b) + f(a)

)}
≤ E(f ;h)

≤
1

b− a

{ b∫

a

K(t;x)β(t)dt + L(x, h)

(∫ b

a

β(t)dt − f(b) + f(a)

)}
, (3.11)

where L(x, h) is defined by (3.10).

5
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Proof. By considering the kernel K(t;x) in (3.1), we have

b∫

a

K(t;x)

(
f ′(t)−

α(t) + β(t)

2

)
dt =

b∫

a

K(t;x)f ′(t)dt−
1

2

b∫

a

K(t;x)
(
α(t) + β(t)

)
dt

= (b − a)E(f ;h)−
1

2

b∫

a

K(t;x)
(
α(t) + β(t)

)
dt, (3.12)

because of

b∫

a

K(t;x)f ′(t)dt =

x∫

a

[
t−

(
a+ h

b− a

2

)]
f ′(x)dt+

b∫

x

[
t−

(
b− h

b− a

2

)]
f ′(x)dt

=

b∫

a

tf ′(t)dt−

(
a+ h

b− a

2

)
(f(x)− f(a))−

(
b− h

b− a

2

)
(f(b)− f(x))

= (b− a)

[
h

2
[f (a) + f (b)] + (1− h) f(x)

]
−

b∫

a

f(t)dt

= (b− a)E(f ;h).

Now, for the first inequality (3.8), the given assumption α(x) ≤ f ′(x) ≤ β(x) yields
∣∣∣∣f ′ (t)−

α (t) + β (t)

2

∣∣∣∣ ≤ β (t)− α (t)

2
. (3.13)

Therefore, from (3.12) and (3.13), we get
∣∣∣∣∣∣(b − a)E(f ;h)−

1

2

b∫

a

K(t;x)
(
α(t) + β(t)

)
dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫

a

K(t;x)

(
f ′(t)−

α(t) + β(t)

2

)
dt

∣∣∣∣∣∣

=
1

2

b∫

a

∣∣K(t;x)
∣∣(β(t)− α(t)

)
dt,

i.e.,

−
1

2

b∫

a

∣∣K(t;x)
∣∣(β(t)− α(t)

)
dt+

1

2

b∫

a

K(t;x)
(
α(t) + β(t)

)
dt ≤ (b− a)E(f ;h)

≤
1

2

b∫

a

∣∣K(t;x)
∣∣(β(t) − α(t)

)
dt+

1

2

b∫

a

K(t;x)
(
α(t) + β(t)

)
dt.

Since
∣∣K(t;x)

∣∣ = K(t;x) sgnK(t;x), and A(t;x) and B(t;x) are defined by (3.2) and (3.3),
respectively, the previous inequalities reduce to (3.8).
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For the second case, when α(x) ≤ f ′(x), we have

b∫

a

K(t;x) (f ′(t)− α(t)) dt =

b∫

a

K(t;x)f ′(t)−

b∫

a

K(t;x)α(t)dt

= (b− a)E(f ;h)−

b∫

a

K(t;x)α(t)dt.

Hence,∣∣∣∣∣∣(b − a)E(f ;h)−

b∫

a

K(t;x)α(t)dt

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
b∫

a

K(x, t) (f ′(t)− α(t)) dt

∣∣∣∣∣∣
≤

∫ x

a

∣∣K(t;x)
∣∣(f ′(t)− α(t)

)
dt

≤

(
max
t∈[a,b]

|K(t;x)|

)∫ b

a

(
f ′(t)− α(t)

)
dt

= L(x, h)

(
f(b)− f(a)−

∫ b

a

α(t)dt

)
, (3.14)

where L(x, h) is defined by (3.10). Then, (3.14) gives (3.9).
Finally, for the third case, when f ′(x) ≤ β(x), we have

b∫

a

K(t;x) (f ′(t)− β(t)) dt =

b∫

a

K(t;x)f ′(t)−

b∫

a

K(t;x)β(t)dt

= (b− a)E(f ;h)−

b∫

a

K(t;x)β(t)dt,

from which, as before, we obtain∣∣∣∣∣∣(b − a)E(f ;h)−

b∫

a

K(t;x)β(t)dt

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
b∫

a

K(x, t) (f ′(t)− β(t)) dt

∣∣∣∣∣∣
≤

∫ x

a

∣∣K(t;x)
∣∣(β(t)− f ′(t)

)
dt

≤

(
max
t∈[a,b]

|K(t;x)|

)∫ b

a

(
β(t)− f ′(t)

)
dt

= L(x, h)

(∫ b

a

β(t)dt− f(b) + f(a)

)
,

i.e., (3.11).
The proof of this theorem is completed. �
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Remark 3.1 According to (3.10) and max{u, v} = 1

2
(u+ v + |u− v|), we can see that

L(x, h) =
b− a

2
(1− h) +

∣∣∣∣x−
a+ b

2

∣∣∣∣ if h ≤
1

2
.

This expression holds also for h > 1

2
, but only when |x| > 2h− 1. However, for |x| ≤ 2h− 1, the

� = �

� = ����

� = ���

� = ����

� = ���

� = �

-��� -��� ��� ��� ���
�

���

���

���

���

�

Figure 1: The function x 7→ L(x, h) for h = 0, 0.25, 0.5, 0.65, 0.8, and 1.

function x 7→ L(x, h) is a constant, i.e.,

L(x, h) =
b − a

2
h.

This function on [a, b] = [−1, 1] for different value of h is presented in Figure 1.

Now, we consider cases with constant functions α and β, i.e., when α(x) = α0 and β(x) = β0

on [a, b].
According to (3.2), (3.3), and (3.4), we get

(
A(t;x), B(t;x)

)
=




(β0, α0), t ∈
[
a, a+ h b−a

2

)
,

(α0, β0), t ∈
(
a+ h b−a

2
, x
]
,

(β0, α0), t ∈
(
x, b− h b−a

2

)
,

(α0, β0), t ∈
(
b− h b−a

2
, b
]
,

8
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so that the corresponding bounds in (3.8) become

B(1) =
1

b− a

b∫

a

K(t;x)A(t;x)dt

= −
1

2(b− a)

[
b2β0 − a2α0 − 2(bβ0 − aα0)x + (β0 − α0)x

2
]

+
1

2

[
aα0 + bβ0 − (α0 + β0)x

]
h−

1

4
(b− a)(β0 − α0)h

2 (3.15)

and

B
(1)

=
1

b− a

b∫

a

K(t;x)B(t;x)dt

=
1

2(b− a)

[
a2β0 − b2α0 + 2(bα0 − aβ0)x + (β0 − α0)x

2
]

+
1

2

[
bα0 + aβ0 − (α0 + β0)x

]
h+

1

4
(b − a)(β0 − α0)h

2. (3.16)

Also,

1

b− a

∫ b

a

K(t;x)dt =
1

b− a

{∫ x

a

[
t−

(
a+ h

b− a

2

)]
dt+

∫ b

x

[
t−

(
b− h

b− a

2

)]
dt

}

=
1

2
(1 − h)(2x− a− b),

so that we can find the corresponding lower and upper bounds in the inequalities (3.9) and (3.11):

B(2) =
α0

2
(1− h)(2x− a− b)− L(x, h)

(
f(b)− f(a)

b− a
− α0

)
, (3.17)

B
(2)

=
α0

2
(1− h)(2x− a− b) + L(x, h)

(
f(b)− f(a)

b− a
− α0

)
, (3.18)

B(3) =
β0

2
(1− h)(2x− a− b)− L(x, h)

(
β0 −

f(b)− f(a)

b− a

)
, (3.19)

B
(3)

=
β0

2
(1− h)(2x− a− b) + L(x, h)

(
β0 −

f(b)− f(a)

b− a

)
, (3.20)

where L(x, h) is defined by (3.10).
Thus, for constant functions α and β on [a, b], we get the following result:

Corollary 3.1 Under the assumptions of Theorem 3.1 with α(x) = α0 and β(x) = β0, we have:

1◦ If α0 ≤ f ′(x) ≤ β0, then B(1) ≤ E(f ;h) ≤ B
(1)

;

2◦ If α0 ≤ f ′(x), then B(2) ≤ E(f ;h) ≤ B
(2)

;

3◦ If f ′(x) ≤ β0, then B(3) ≤ E(f ;h) ≤ B
(3)

,

where the bounds are given in (3.15)–(3.19).
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4 Some Applications in Numerical Integration

Inequalities of Ostrowski’s type have attracted considerable interest over the years. Many authors
have worked on this subject and proved many extensions and generalizations, including applications
in numerical integration (cf. [4]). These inequalities can be considered as error estimates of certain
elementary quadrature rules in some classes of functions.

Beside the bounds of (3.5)–(3.7), in this section we consider also ones for h = 1/3, 1/4, 2/3,
and 3/4, i.e.,

E(f ; 1/3) =
1

6
[f(a) + f(b) + 4f(x)]−

1

b− a

b∫

a

f(t)dt

(
x ∈

[
5a+ b

6
,
a+ 5b

6

])
, (4.1)

E(f ; 1/4) =
1

8
[f(a) + f(b) + 6f(x)]−

1

b− a

b∫

a

f(t)dt

(
x ∈

[
7a+ b

8
,
a+ 7b

8

])
,

E(f ; 2/3) =
1

3
[f(a) + f(b) + f(x)]−

1

b− a

b∫

a

f(t)dt

(
x ∈

[
2a+ b

3
,
a+ 2b

3

])
,

E(f ; 3/4) =
1

8
[3f(a) + 3f(b) + 2f(x)]−

1

b− a

b∫

a

f(t)dt

(
x ∈

[
5a+ 3b

8
,
3a+ 5b

8

])
,

respectively.
For x = (a + b)/2, E(f ; 1/3), given before by (4.1), represents the error in the well-known

Simpson formula (cf. [13, pp. 343–350]).
In order to get the corresponding estimates of (2.4), i.e.,

E(f ;h) =
h

2

[
f(a) + f(b)

]
+ (1 − h)f (x) −

1

b− a

b∫

a

f(t)dt

(
x ∈

[
a+ h

b− a

2
, b− h

b− a

2

])
,

for different values of h, we use here Corollary 3.1 (Case 1◦).

Case h = 0. Here, the value of x can be arbitrary in [a, b]. Then, B(1) and B
(1)

reduce to

B(1) = −
1

2(b− a)

[
b2β0 − a2α0 − 2(bβ0 − aα0)x+ (β0 − α0)x

2
]

and

B
(1)

=
1

2(b− a)

[
a2β0 − b2α0 + 2(bα0 − aβ0)x+ (β0 − α0)x

2
]
,

so that, under the condition α0 ≤ f ′(x) ≤ β0, for each x ∈ [a, b], we have

B(1) ≤ f(x)−
1

b − a

b∫

a

f(t)dt ≤ B
(1)

. (4.2)

10
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For the symmetric bounds of the first derivative f ′ (|f ′(x)| ≤ β0), i.e., if α0 = −β0, (4.2) reduces
to ∣∣∣∣∣∣f(x)−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b − a)β0,

which is, in fact, the original Ostrowski inequality (1.1).
Otherwise, (4.2) for x = (a+ b)/2 gives the error estimate for the midpoint rule,∣∣∣∣∣∣f

(
a+ b

2

)
−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
1

8
(b − a)(β0 − α0),

while for x = b it gives the error estimate for the so-called endpoint rule

1

2
(b− a)α0 ≤ f(b)−

1

b− a

b∫

a

f(t)dt ≤
1

2
(b− a)β0.

Case h = 1. Here x must be (b − a)/2! Taking h = 1 in (3.15) and (3.15), for the trapezoidal
rule (3.7), we obtain the same bound as for the midpoint rule,∣∣∣∣∣∣

1

2

[
f(a) + f(b)

]
−

1

b − a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
1

8
(b − a)(β0 − α0).

Case 0 < h < 1. Now we take x = (a+ b)/2 in (3.15) and (3.15). Since, in that case,

−B(1) = B
(1)

=
1

8
(b− a)

(
1− 2h+ 2h2

)
(β0 − α0),

we get∣∣∣∣∣∣
h

2

[
f(a) + f(b)

]
+ (1 − h)f

(
a+ b

2

)
−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
b− a

4

(1
2
− h+ h2

)
(β0 − α0), (4.3)

provided that α0 ≤ f ′(x) ≤ β0 for x ∈ [a, b].
For h = 1/2, 1/3, 1/4, 2/3, and 3/4, the inequality (4.3) reduces to∣∣∣∣∣∣

1

4

[
f(a) + 2f

(
a+ b

2

)
+ f(b)

]
−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
b− a

16
(β0 − α0),

∣∣∣∣∣∣
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
5(b− a)

72
(β0 − α0),

∣∣∣∣∣∣
1

8

[
f(a) + 6f

(
a+ b

2

)
+ f(b)

]
−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
5(b− a)

64
(β0 − α0),

∣∣∣∣∣∣
1

3

[
f(a) + f

(
a+ b

2

)
+ f(b)

]
−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
13(b− a)

144
(β0 − α0),
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and ∣∣∣∣∣∣
1

8

[
3f(a) + 2f

(
a+ b

2

)
+ 3f(b)

]
−

1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣ ≤
5(b− a)

64
(β0 − α0),

respectively.

5 Conclusion

Inspired and motivated by the work of Masjed-Jamei and Dragomir [9], new integral inequalities of
Ostrowski type are obtained with bounds are just in terms of pre-assigned functions. Our results
provides a generalization of error bounds that is independent of Lebesgue norms including those
given by [9] and [5]–[8]. We utilize general Peano kernel to recapture the three inequalities (3.8),
(3.9), and (3.11), obtained in [9]. Some special cases and applications to numerical quadrature
rules are also proposed.
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ITERATES OF CHENEY-SHARMA TYPE OPERATORS ON A

TRIANGLE WITH CURVED SIDE

TEODORA CĂTINAŞ∗, DIANA OTROCOL∗∗

Abstract. We consider some Cheney–Sharma type operators as well as their

product and Boolean sum for a function defined on a triangle with one curved
side. Using the weakly Picard operators technique and the contraction princi-

ple, we study the convergence of the iterates of these operators.

Keywords: Triangle with curved side, Cheney-Sharma operators, contrac-
tion principle, weakly Picard operators.

MSC 2010 Subject Classification: 41A36, 41A25, 39B12, 47H10.

1. Cheney-Sharma type operators

We recall some results regarding Cheney-Sharma type operators on a triangle
with one curved side, introduced in [6]. Similar operators were introduced and
studied in [3], [4], [5] and [9].

We consider the standard triangle T̃h with vertices V1 = (0, h), V2 = (h, 0) and
V3 = (0, 0), with two straight sides Γ1, Γ2, along the coordinate axes, and with
the third side Γ3 (opposite to the vertex V3) defined by the one-to-one functions f
and g, where g is the inverse of the function f, i.e., y = f(x) and x = g(y), with
f(0) = g(0) = h, for h > 0. Also, we have f(x) ≤ h and g(y) ≤ h, for x, y ∈ [0, h] .

Let F be a real-valued function defined on T̃h and (0, y), (g(y), y), respectively,
(x, 0), (x, f(x)) be the points in which the parallel lines to the coordinate axes,

passing through the point (x, y) ∈ T̃h, intersect the sides Γi, i = 1, 2, 3. (See Figure
1.)

In [6], we have obtained the following extensions of Cheney-Sharma operator of

second kind, to the case of functions defined on T̃h:

(QxmF )(x, y) =
m∑
i=0

qm,i(x, y)F
(
i g(y)
m , y

)
,(1.1)

(QynF )(x, y) =
n∑
j=0

qn,j(x, y)F
(
x, j f(x)

n

)
,

with

qm,i (x, y) =
(
m
i

)
1

(1+mβ)m−1
x
g(y) ( x

g(y) + iβ)i−1(1− x
g(y) )[1− x

g(y) + (m− i)β]m−i−1,

qn,j (x, y) =
(
n
j

)
1

(1+nb)n−1
y

f(x) ( y
f(x) + jb)j−1(1− y

f(x) )[1− y
f(x) + (n− j)b]n−j−1,
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Figure 1. Triangle T̃h.

where

∆x
m =

{
i g(y)
m

∣∣∣ i = 0,m
}

and ∆y
n =

{
j f(x)

n

∣∣∣ j = 0, n
}

are uniform partitions of the intervals [0, g(y)] and [0, f(x)] and m,n ∈ N, β, b ∈ R+.

Remark 1.1. As the Cheney-Sharma operator of second kind interpolates a given
function at the endpoints of the interval, we may use the operators Qxm and Qyn as

interpolation operators on T̃h.

Theorem 1.2. [6] If F is a real-valued function defined on T̃h then the following
properties hold:

(i) QxmF = F on Γ1 ∪ Γ3;
(ii) QynF = F on Γ2 ∪ Γ3;
(iii) (Qxmeij) (x, y) = xiyj , i = 0, 1; j ∈ N;
(iv) (Qyneij) (x, y) = xiyj , i ∈ N; j = 0, 1, where eij (x, y) = xiyj , i, j ∈ N.
Let P 1

mn = QxmQ
y
n, respectively, P 2

nm = QynQ
x
m be the products of the operators

Qxm and Qyn. We have

(1.2)
(
P 1
mnF

)
(x, y)=

m∑
i=0

n∑
j=0

qm,i (x, y) qn,j

(
i g(y)
m , y

)
F
(
i g(y)
m , j

f(i
g(y)
m )

n

)
,

respectively,(
P 2
nmF

)
(x, y)=

m∑
i=0

n∑
j=0

qm,i

(
x, j f(x)

n

)
qn,j (x, y)F

(
i
g(j

f(x)
n )

m , j f(x)
n

)
.

Theorem 1.3. If F is a real-valued function defined on T̃h then

(i) (P 1
mnF )(Vi) = F (Vi), i = 1, ..., 3;
(P 1
mnF )(Γ3) = F (Γ3),

(ii) (P 2
nmF )(Vi) = F (Vi), i = 1, ..., 3;
(P 2
nmF )(Γ3) = F (Γ3).

We consider the Boolean sums of the operators Qxm and Qyn,

S1
mn := Qxm ⊕Qyn = Qxm +Qyn −QxmQyn,(1.3)

S2
nm := Qyn ⊕Qxm = Qyn +Qxm −QynQxm.
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Theorem 1.4. If F is a real-valued function defined on T̃h, then

S1
mnF

∣∣∣∂T̃h = F
∣∣∣
∂T̃h

,

S2
mnF

∣∣∣∂T̃h = F
∣∣∣
∂T̃h

.

2. Weakly Picard operators

We recall some results regarding weakly Picard operators that will be used in
the sequel (see, e.g., [21]).

Let (X, d) be a metric space and A : X → X an operator. We denote by

FA := {x ∈ X | A(x) = x}-the fixed points set of A;

I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅}-the family of the nonempty invariant

subsets of A;

A0 := 1X , A
1 := A, ..., An+1 := A ◦An, n ∈ N.

Definition 2.1. The operator A : X → X is a Picard operator if there exists
x∗ ∈ X such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 2.2. The operator A is a weakly Picard operator if the sequence (An(x))n∈N
converges, for all x ∈ X, and the limit (which may depend on x) is a fixed point of
A.

Definition 2.3. If A is a weakly Picard operator then we consider the operator
A∞, A∞ : X → X, defined by

A∞(x) := lim
n→∞

An(x).

Theorem 2.4. An operator A is a weakly Picard operator if and only if there exists
a partition of X, X =

⋃
λ∈Λ

Xλ, such that

(a) Xλ ∈ I(A), ∀λ ∈ Λ;
(b) A|Xλ : Xλ → Xλ is a Picard operator, ∀λ ∈ Λ.

3. Iterates of Cheney-Sharma type operators

We study the convergence of the iterates of the Cheney-Sharma type operators
(1.1) and of their product and Boolean sum operators, using the weakly Picard
operators technique and the contraction principle. The same approach for some
other linear and positive operators lead to similar results in [1], [2], [7], [8], [22]-
[24].

The limit behavior for the iterates of some classes of positive linear operators
were also studied, for example, in [10]-[20]. In the papers [10]-[12] were introduced
new methods for the study of the asymptotic behavior of the iterates of positive
linear operators. These techniques enlarge the class of operators for which the limit
of the iterates can be calculated.

Let F be a real-valued function defined on T̃h, h ∈ R+. First we study the
convergence of the iterates of the Cheney–Sharma type operators given in (1.1).
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Theorem 3.1. The operators Qxm and Qyn are weakly Picard operators and

(Qx,∞m F ) (x, y) =
F (g(y), y)− F (0, y)

g(y)
x+ F (0, y) ,(3.1)

(Qy,∞n F ) (x, y) =
F (x, f(x))− F (x, 0)

f(x)
y + F (x, 0) .(3.2)

Proof. Taking into account the interpolation properties of Qxm and Qyn (from The-
orem 1.2), let us consider the following sets:

X
(1)
ϕ|Γ1

, ϕ|Γ3

= {F ∈ C(T̃h) | F (0, y) = ϕ|Γ1
, F (g(y), y) = ϕ|Γ3

}, for y ∈ [0, h],

(3.3)

X
(2)
ψ|Γ2

, ψ|Γ3

= {F ∈ C(T̃h) | F (x, 0) = ψ|Γ2
, F (x, f(x)) = ψ|Γ3

}, for x ∈ [0, h],

and for ϕ,ψ ∈ C(T̃h) we denote by

F
(1)
ϕ|Γ1

, ϕ|Γ3

(x, y) =
ϕ|Γ3

− ϕ|Γ1

g(y)
x+ ϕ|Γ1

,

F
(2)
ψ|Γ2

, ψ|Γ3

(x, y) =
ψ|Γ3

− ψ|Γ2

f(x)
y + ψ|Γ2

.

We have the following properties:

(i) X
(1)
ϕ|Γ1

, ϕ|Γ3

and X
(2)
ψ|Γ2

, ψ|Γ3

are closed subsets of C(T̃h);

(ii) X
(1)
ϕ|Γ1

, ϕ|Γ3

is an invariant subset of Qxm and X
(2)
ψ|Γ2

, ψ|Γ3

is an invariant

subset of Qyn, for ϕ,ψ ∈ C(T̃h) and n,m ∈ N∗;
(iii) C(T̃h) = ∪

ϕ∈C(T̃h)
X

(1)
ϕ|Γ1

, ϕ|Γ3

and C(T̃h) = ∪
ψ∈C(T̃h)

X
(2)
ψ|Γ2

, ψ|Γ3

are partitions

of C(T̃h);

(iv) F
(1)
ϕ|Γ1

, ϕ|Γ3

∈ X(1)
ϕ|Γ1

, ϕ|Γ3

∩ FQxm and F
(2)
ψ|Γ2

, ψ|Γ3

∈ X(2)
ψ|Γ2

, ψ|Γ3

∩ FQyn , where

FQxm and FQyn denote the fixed points sets of Qxm and Qyn.

The statements (i) and (iii) are obvious.
(ii) By linearity of Cheney-Sharma operators and Theorem 1.2, it follows that

∀F (1)
ϕ|Γ1

, ϕ|Γ3

∈ X(1)
ϕ|Γ1

, ϕ|Γ3

and ∀F (2)
ψ|Γ2

, ψ|Γ3

∈ X(2)
ψ|Γ2

, ψ|Γ3

we have

QxmF
(1)
ϕ|Γ1

, ϕ|Γ3

(x, y) = F
(1)
ϕ|Γ1

, ϕ|Γ3

(x, y),

QynF
(2)
ψ|Γ2

, ψ|Γ3

(x, y) = F
(2)
ψ|Γ2

, ψ|Γ3

(x, y).

So, X
(1)
ϕ|Γ1

, ϕ|Γ3

and X
(2)
ψ|Γ2

, ψ|Γ3

are invariant subsets of Qxm and, respectively, of

Qyn, for ϕ,ψ ∈ C(T̃h) and n,m ∈ N∗;
(iv) We prove that

Qxm|X(1)

ϕ|Γ1
, ϕ|Γ3

:X
(1)
ϕ|Γ1

, ϕ|Γ3

→ X
(1)
ϕ|Γ1

, ϕ|Γ3

and Qyn|X(2)

ψ|Γ2
, ψ|Γ3

:X
(2)
ψ|Γ2

, ψ|Γ3

→ X
(2)
ψ|Γ2

, ψ|Γ3

are contractions for ϕ,ψ ∈ C(T̃h) and n,m ∈ N∗.
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Let F,G ∈ X(1)
ϕ|Γ1

, ϕ|Γ3

. From (1.1) and (3.3) we get

|Qxm(F )(x, y)−Qxm(G)(x, y)| =
= |Qxm(F −G)(x, y)| ≤
≤ |qm,0 (x; y) [F (0, 0)−G(0, 0)]|

+

∣∣∣∣∣
m∑
i=1

qm,i (x; y)
[
F
(
ig(y)
m , y

)
−G

(
x, jf(x)

n

)]∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

qm,i (x; y)
[
F
(
ig(y)
m , y

)
−G

(
x, jf(x)

n

)]∣∣∣∣∣
≤

m∑
i=1

qm,i (x; y) ‖F −G‖∞

=

[
m∑
i=0

qm,i (x; y)− qm,0 (x; y)

]
‖F −G‖∞

=

{
1−

(
1− x

g(y)

) [
1− x

g(y)(1+mβ)

]m−1
}
‖F −G‖∞

≤
[
1−

(
1− 1

1+mβ

)m−1
]
‖F −G‖∞ ,

where ‖·‖∞ denotes the Chebyshev norm.
Hence,

‖Qxm(F )(x, y)−Qxm(G)(x, y)‖∞ ≤(3.4)

≤
[
1−

(
1− 1

1+mβ

)m−1
]
‖F −G‖∞ , ∀F,G ∈ X(1)

ϕ|Γ1
, ϕ|Γ3

,

i.e., Qxm|X(1)

ϕ|Γ1
, ϕ|Γ3

is a contraction for ϕ ∈ C(T̃h).

Analogously, we prove that Qyn|X(2)

ψ|Γ2
, ψ|Γ3

is a contraction for ψ ∈ C(T̃h).

On the other hand,
ϕ|Γ3

−ϕ|Γ1

g(y) (·) + ϕ|Γ1
∈ X(1)

ϕ|Γ1
, ϕ|Γ3

and
ψ|Γ3

−ψ|Γ2

f(x) (·) + ψ|Γ2
∈

X
(2)
ψ|Γ2

, ψ|Γ3

are fixed points of Qxm and Qyn, i.e.,

Qxm

(
ϕ|Γ3

−ϕ|Γ1

g(y) (·) + ϕ|Γ1

)
=

ϕ|Γ3
−ϕ|Γ1

g(y) (·) + ϕ|Γ1
,

Qyn

(
ψ|Γ3

−ψ|Γ2

f(x) (·) + ψ|Γ2

)
=

ψ|Γ3
−ψ|Γ2

f(x) (·) + ψ|Γ2
.

From the contraction principle, F
(1)
ϕ|Γ1

, ϕ|Γ3

(x, y) :=
ϕ|Γ3

−ϕ|Γ1

g(y) x + ϕ|Γ1
is the

unique fixed point of Qxm in X
(1)
ϕ|Γ1

, ϕ|Γ3

and Qxm|X(1)

ϕ|Γ1
, ϕ|Γ3

is a Picard operator,

with

(Qx,∞m F ) (x, y) = F (g(y),y)−F (0,y)
g(y) x+ F (0, y) ,
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and, similarly, F
(2)
ψ|Γ2

, ψ|Γ3

(x, y) :=
ψ|Γ3

−ψ|Γ2

f(x) y + ψ|Γ2
is the unique fixed point of

Qyn in X
(2)
ψ|Γ2

, ψ|Γ3

and Qyn|X(2)

ψ|Γ2
, ψ|Γ3

is a Picard operator, with

(Qy,∞n F ) (x, y) = F (x,f(x))−F (x,0)
f(x) y + F (x, 0) .

Consequently, taking into account (ii), by Theorem 2.4, it follows that the operators
Qxm and Qyn are weakly Picard operators. �

Further we study the convergence of the product and Boolean sum operators
given in (1.2) and (1.3).

Theorem 3.2. The operator P 1
mn is a weakly Picard operator and

(3.5)
(
P 1,∞
mn F

)
(x, y) =

F (g(y), y)

g(y)
x.

Proof. Let

Xα = {F ∈ C(T̃h) | F (g(y), y) = α}, α ∈ R
and denote by

Fα(x, y) :=
α

g(y)
x.

We remark that:

(i) Xα is a closed subset of C(T̃h);
(ii) Xα is an invariant subset of P 1

mn, for α ∈ R and n,m ∈ N∗;
(iii) C(T̃h) = ∪

α
Xα is a partition of C(T̃h);

(iv) Fα ∈ Xα ∩ FP 1
mn
, where FP 1

mn
denote the fixed points sets of P 1

mn.

The statements (i) and (iii) are obvious.
(ii) Similarly with the proof of Theorem 3.1, by linearity of Cheney-Sharma

operators and Theorem 1.3, it follows that Xα is an invariant subset of P 1
mn, for

α ∈ R and n,m ∈ N∗;
(iv) We prove that

P 1
mn

∣∣
Xα

: Xα → Xα

is a contraction for α ∈ R and n,m ∈ N∗. Let F,G ∈ Xα. From [2, Lemma 8] and
(3.4), it follows that∣∣P 1

mn(F )(x, y)− P 1
mn(G)(x, y)

∣∣ =
∣∣P 1
mn(F −G)(x, y)

∣∣
≤
[
1−

(
mβ

1+mβ

)m−1 (
nb

1+nb

)n−1
]
‖F −G‖∞ ,

so, P 1
mn

∣∣
Xα

is a contraction for α ∈ R.
From the contraction principle we have that Fα is the unique fixed point of P 1

mn

in Xα and P 1
mn

∣∣
Xα

is a Picard operator, so (3.5) holds. Consequently, taking into

account (ii), by Theorem 2.4, it follows that the operators P 1
mn is a weakly Picard

operator. �

Remark 3.3. Similar results can be obtained for the operator P 2
mn.

Theorem 3.4. The operator S1
mn is a weakly Picard operator and(

S1,∞
mn F

)
(x, y) = −F (0,y)

g(y) x+ F (x,f(x))−F (x,0)
f(x) y + F (x, 0) + F (0, y) .
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Proof. The proof follows the same steps as the proof of Theorem 3.2, using the
following inequality

‖Smn(F )(x, y)− Smn(G)(x, y)‖∞

≤
{

1−
[(

mβ
1+mβ

)m−1

+
(

nb
1+nb

)n−1

−
(

mβ
1+mβ

)m−1 (
nb

1+nb

)n−1
]}
‖F −G‖∞ ,

for proving that S1
mn is a contraction. �

Remark 3.5. We have a similar result for the operator S2
nm.
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[3] Blaga, P., Cătinaş, T., Coman, G., Bernstein-type operators on triangle with one curved side,

Mediterr. J. Math. 9 (2012), No. 4, 833-845.
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Studia Univ. Babeş–Bolyai Math. 55 (2010), No. 4, 243-248.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.4, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

744 CATINAS-OTROCOL 737-744



Contemporary Concepts of Neutrosophic Fuzzy Soft

BCK -submodules

R. S. Alghamdi1 and Noura Omair Alshehri2

1Department of Mathematics, Faculty of Science, King Abdulaziz University,

Jeddah, Saudi Arabia; ralgamdi0068@stu.kau.edu.sa, rsaalghamdi@uj.edu.sa

2Department of Mathematics, Faculty of Science, University of Jeddah,

P.O. Box 80327, Jeddah 21589, Saudi Arabia; noal-shehri@uj.edu.sa

Abstract

In this paper, we introduce the concept of neutrosophic fuzzy soft translations and neutrosophic

fuzzy soft extensions of neutrosophic fuzzy soft BCK-submodules and discusse the relation between

them. Also, we define the notion of neutrosophic fuzzy soft multiplications of neutrosophic fuzzy

soft BCK-submodules. Finally, we investigate some resultes.

Keywords: BCK -algebras, BCK -modules, soft sets, fuzzy soft sets, neutrosophic sets, neu-

trosophic soft sets, neutrosophic fuzzy soft BCK-submodules, neutrosophic fuzzy soft translations,

neutrosophic fuzzy soft multiplications and neutrosophic fuzzy soft extensions.

1 Introduction

Fuzzy set theory which was developed by Zadeh [23] is an appropriate theory for dealing with vague-

ness. It is consedered as the one of theories can be handled with uncertainties. Combining fuzzy set

models with other mathematical models has attracted the attention of many researchers. Interval-

valued fuzzy sets [24], hesitant fuzzy sets [21] , intuitionistic fuzzy sets [3, 4], Intutionistic Fuzzy

BCK-submodules [5] and (ε, ε ∨ q)-fuzzy BCK-submodules [2] are some of the researches that have

dealt this subject.

Neutrosophic algebraic structure is a very recent study. It was applied in many fields in order

to solve problems related to uncertainties and indeterminacy where they happens to be one of the

major factors in almost all real-world problems. Neutrosophic set is a generalizations of the fuzzy set

especially of intuitionistic fuzzy set. The intuitionistic fuzzy set has the degree of non-membership

1
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as introduced by K. Atanassov [3]. Smarandache in 1998 [19] has introduced the degree of indeter-

minacy as an independent component and defined the neutrosophic set on three components: truth,

indeterminacy and falsity.

The concept of BCK-algebra was first initiated by Imai and Iseki [8]. In 1994, the notion of BCK-

modules was introduced by H. Abujable, M. Aslam and A. Thaheem as an action of BCK-algebras

on abelian group [1]. BCK-modules theory then was developed by Z. perveen, M. Aslam and A.

Thaheem [18]. Bakhshi [6] presented the concept of fuzzy BCK-submodules and investigated their

properties. Recently, H. Bashir and Z. Zahid applied the theory of soft sets on BCK-modules in [12].

Translations, multiplications and extensions are very interested mathematical tools. They are

types of operations that researchers like to apply with fuzzy set theory. In this paper, we introduce the

concept of neutrosophic fuzzy soft translations and neutrosophic fuzzy soft extensions of neutrosophic

fuzzy soft BCK-submodules and discusse the relation between them. Also, we define the notion

of neutrosophic fuzzy soft multiplications of neutrosophic fuzzy soft BCK-submodules. Finally, we

investigate some resultes.

2 Preliminaries

In this section, some preliminaries from the soft set theory, neutrosophic soft sets, BCK-algebras and

BCK-modules are induced.

Definition 2.1.[17] Let U be an initial universe and E be a set of parameters. Let P (U) denote

the power set of U and let A be a nonempty subset of E. A pair FA = (F,A) is called a soft set over

U , where A ⊆ E and F : A→ P (U) is a set-valued mapping, called the approximate function of the

soft set (F,A). It is easy to represent a soft set (F,A) by a set of ordered pairs as follows:

(F,A) = {(x, F (x)) : x ∈ A}

Definition 2.2.[20] A neutrosophic set A on the universe of discourse U is defined as A =

{(x, TA (x) , IA (x) , FA (x)) , x ∈ U} where TA : X → ]−0, 1+[ is a truth membership function, IA :

U → ]−0, 1+[ is an indeterminate membership function, and FA : X → ]−0, 1+[ is a false membership

function and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

From philosophical point of view, the neutrosophic set takes the value from real standard or non-

standard subsets of ]−0, 1+[. But in real life application in scientific and engineering problems it is

difficult to use neutrosophic set with value from real standard or non-standard subset of ]−0, 1+[.

Hence we consider the neutrosophic set which takes the value from the subset of [0, 1].

Definition 2.3.[13] Let U be an initial universe set and E be a set of parameters. Consider

A ⊂ E. Let P (U) denotes the set of all neutrosophic sets of U . The collection (F,A) is termed to be

the neutrosophic soft set (NSS) over U , where F is a mapping given by F : A→ P (U) .

2
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Definition 2.4.[8, 9] An algebra (X, ∗, 0) of type (2, 0) is called BCK-algebra if it satisfying the

following axioms:

(BCK -1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCK -2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCK -3) x ∗ x = 0,

(BCK -4) 0 ∗ x = 0,

(BCK -5) x ∗ y = 0 and y ∗ x = 0 imply x = y, for all x, y, z ∈ X.

A partial ordering “≤ ” is defined on X by x ≤ y ⇔ x ∗ y = 0. A BCK -algebra X is said to be

bounded if there is an element 1 ∈ X such that x ≤ 1, for all x ∈ X, commutative if it satisfies the

identity x ∧ y = y ∧ x, where x ∧ y = y ∗ (y ∗ x), for all x, y ∈ X and implicative if x ∗ (y ∗ x) = x, for

all x, y ∈ X.

Definition 2.5.[1] Let X be a BCK -algebra. Then by a left X-module (abbreviated X-module),

we mean an abelian group M with an operation X × M → M with (x,m) 7−→ xm satisfies the

following axioms for all x, y ∈ X and m,n ∈M :

(i) (x ∧ y)m = x(ym),

(ii) x(m+ n) = xm+ xn,

(iii) 0m = 0.

If X is bounded and M satisfies 1m = m, for all m ∈M, then M is said to be unitary.

A mapping µ : X → [0, 1] is called a fuzzy set in a BCK -algebra X. For any fuzzy set µ in X and

any t ∈ [0, 1], we define set U(µ; t) = µt = {x ∈ X|µ(x) ≥ t}, which is called upper t-level cut of µ.

Definition 2.6.[6] A fuzzy subset µ of M is said to be a fuzzy BCK -submodule if for all m,m1,

m2 ∈ M and x ∈ X, the following axioms hold:

(FBCKM1) µ(m1 +m2) ≥ min{µ(m1), µ(m2)},

(FBCKM2) µ(−m) = µ(m),

(FBCKM3) µ(xm) ≥ µ(m).

Definition 2.7.[6] Let M , N be modules over a BCK-algebra X. A mapping f : M → N is

called BCK-module homomorphism if

(1) f (m1 +m2) = f (m1) + f (m2) ,

(2) f (xm) = xf (m) for all m,m1,m2 ∈M and x ∈ X.

A BCK-module homomorphism is said to be monomorphism (epimorphism) if it is one to one

(onto). If it is both one to one and onto, then we say that it is an isomorphism.

Definition 2.8.[12] Let (F,A) and (G,B) be two soft modules over M and N respectively,

f : M → N , g : A → B be two functions. Then we say that (f, g) is a soft BCK-homomorphism if

the following conditions are satisfied:

(1) f is a homomorphism from M onto N ,

3
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(2) g is a mapping from A onto B, and

(3) f(F (x)) = G(g(x)) for all x ∈ A.

3 Neutrosophic fuzzy soft BCK-submodules

Definition 3.1. A neutrosophic fuzzy soft set (F,A) over a BCK-module M is said to be a neutro-

sophic fuzzy soft BCK-submodule over M if for all m,m1,m2 ∈ M , x ∈ X and ε ∈ A the following

axioms hold :

(NFSS1) TF (ε)(m1 +m2) ≥ min{TF (ε)(m1), TF (ε)(m2)},

IF (ε)(m1 +m2) ≥ min{IF (ε)(m1), IF (ε)(m2)},

FF (ε)(m1 +m2) ≤ max{FF (ε)(m1), FF (ε)(m2)},

(NFSS2) TF (ε)(−m) = TF (ε)(m),

IF (ε)(−m) = IF (ε)(m),

FF (ε)(−m) = FF (ε)(m),

(NFSS3) TF (ε)(xm) ≥ TF (ε)(m),

IF (ε)(xm) ≥ IF (ε)(m),

FF (ε)(xm) ≤ FF (ε)(m).

Example 3.2. Let X = {0, a, b, c, d} be a set along with a binary operation ∗ defined in Table 1,

then (X, ∗, 0) forms a commutative BCK-algebra which is not bounded (see [16]). Let M = {0, a, b, c}

be a subset of X along with an operation + defined by Table 2. Then (M,+) forms a commutative

group. Table 3 explains the action of X on M under the operation xm = x ∧m for all x ∈ X and

m ∈M . Consequently, M forms an X-module (see [11]).

∗ 0 a b c d

0 0 0 0 0 0

a a 0 a 0 a

b b b 0 0 b

c c b a 0 d

d d d d d 0

Table 1

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

Table 2

∧ 0 a b c

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

c 0 a b c

d 0 0 0 0

Table 3

Let A = {0, a}. Define a neutrosophic fuzzy soft set (F,A) over M as shown in Table 4

Consequently, a routine exercise of calculations show that (F,A) forms a neutrosophic fuzzy soft

BCK-submodule over M.

4
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(F,A) 0 a b c

TF (0) 0.9 0.7 0.8 0.7

IF (0) 0.8 0.5 0.6 0.5

FF (0) 0.1 0.1 0.1 0.1

TF (a) 0.5 0.2 0.3 0.2

IF (a) 0.3 0.1 0.3 0.1

FF (a) 0.1 0.5 0.4 0.5

Table 4

For the sake of simplicity, we shall use the symbols NFS(M) and NFSS(M) for the set of all

neutrosophic fuzzy soft sets over M and the set of all neutrosophic fuzzy soft BCK-submodules over

M , respectively.

Theorem 3.3. A neutrosophic fuzzy soft set (F,A) ∈ NFSS(M) if and only if

(i) TF (ε)(xm) ≥ TF (ε)(m), IF (ε)(xm) ≥ IF (ε)(m), FF (ε)(xm) ≤ FF (ε)(m),

(ii) TF (ε)(m1 −m2) ≥ min{TF (ε)(m1), TF (ε)(m2)},

IF (ε)(m1 −m2) ≥ min{IF (ε)(m1), IF (ε)(m2)},

FF (ε)(m1 −m2) ≤ max{FF (ε)(m1), FF (ε)(m2)}.

for all m,m1,m2 ∈M , x ∈ X and ε ∈ A.

Proof. Let (F,A) be a neutrosophic fuzzy soft BCK-submodule over M then by the definition(3.1)

condition (i) is hold.

(ii) TF (ε)(m1 −m2) = TF (ε)(m1 + (−m2)) ≥ min{TF (ε)(m1), TF (ε)(−m2)} = min{TF (ε)(m1), TF (ε)(m2)},

IF (ε)(m1 −m2) = IF (ε)(m1 + (−m2)) ≥ min{IF (ε)(m1), IF (ε)(−m2)} = min{IF (ε)(m1), IF (ε)(m2)},

FF (ε)(m1 −m2) = FF (ε)(m1 + (−m2)) ≤ max{FF (ε)(m1), FF (ε)(−m2)} = max{FF (ε)(m1), FF (ε)(m2)}.

Conversely suppose (F,A) satisfies the conditions (i),(ii). Then we have by (i)

TF (ε)(−m) = TF (ε)((−1)m) ≥ TF (ε)(m),

and

TF (ε)(m) = TF (ε)((−1)(−1)m) ≥ TF (ε)(−m).

Thus, TF (ε)(m) = TF (ε)(−m). Similarly for IF (ε)(−m) = IF (ε)(m) and FF (ε)(−m) = FF (ε)(m).

TF (ε)(m1 +m2) = TF (ε)(m1 − (−m2)) ≥ min{TF (ε)(m1), TF (ε)(−m2)} = min{TF (ε)(m1), TF (ε)(m2)},

IF (ε)(m1 +m2) = IF (ε)(m1 − (−m2)) ≥ min{IF (ε)(m1), IF (ε)(−m2)} = min{IF (ε)(m1), IF (ε)(m2)},

FF (ε)(m1 +m2) = FF (ε)(m1 − (−m2)) ≤ max{FF (ε)(m1), FF (ε)(−m2){= max{FF (ε)(m1), FF (ε)(m2)}.

5
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Hence (F,A) is a neutrosophic fuzzy soft BCK-submodule over M.

Theorem 3.4. A neutrosophic fuzzy soft set (F,A) ∈ NFSS(M) if and only if for all m,m1,m2 ∈

M , x, y ∈ X and ε ∈ A the following statements hold:

(i) TF (ε)(0) ≥ TF (ε)(m), IF (ε)(0) ≥ IF (ε)(m), FF (ε)(0) ≤ FF (ε)(m),

(ii) TF (ε)(xm1 − ym2) ≥ min{TF (ε)(m1), TF (ε)(m2)},

IF (ε)(xm1 − ym2) ≥ min{IF (ε)(m1), IF (ε)(m2)},

FF (ε)(xm1 − ym2) ≤ max{FF (ε)(m1), FF (ε)(m2)}.

Proof. Let (F,A) ∈ NFSS(M) then by theorem (3.3) and since 0m = 0 for all m ∈M,we have

(i) TF (ε)(0) = TF (ε)(0m) ≥ TF (ε)(m),

IF (ε)(0) = IF (ε)(0m) ≥ IF (ε)(m), and

FF (ε)(0) = FF (ε)(0m) ≤ FF (ε)(m).

(ii) TF (ε)(xm1 − ym2) ≥ min{TF (ε)(xm1), TF (ε)(ym2)}

≥ min{TF (ε)(m1), TF (ε)(m2)}.

Similarly for

IF (ε)(xm1 − ym2) ≥ min{IF (ε)(m1), IF (ε)(m2)},

and

FF (ε)(xm1 − ym2) ≤ max{FF (ε)(m1), FF (ε)(m2)}.

Conversely suppose (F,A) satisfies (i),(ii), then we have

TF (ε)(0) ≥ TF (ε)(m), IF (ε)(0) ≥ IF (ε)(m)and FF (ε)(0) ≤ FF (ε)(m).

Then

TF (ε)(xm) = TF (ε)(x(m− 0)) ≥ min{TF (ε)(m), TF (ε)(0)} = TF (ε)(m).

Similarly for

IF (ε)(xm) ≥ IF (ε)(m) and FF (ε)(xm) ≤ FF (ε)(m).

Also,

TF (ε)(m1 −m2) = TF (ε)(1m1 − 1m2) ≥ min{TF (ε)(m1), TF (ε)(m2)}.

Similarly for

IF (ε)(m1 −m2) ≥ min{IF (ε)(m1), IF (ε)(m2)} and FF (ε)(m1 −m2) ≤ max{FF (ε)(m1), FF (ε)(m2)}.

Hence (F,A) is a neutrosophic fuzzy soft BCK-submodule over M.

6
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Definition 3.5. Let (F,A) be a neutrosophic fuzzy soft set over a BCK-module M and α ∈ [0,⊥]

such that ⊥= 1− sup
{
FF (ε) (m) : m ∈M, ε ∈ A

}
.Then T̃α [(F,A)] = (G,ATα) is called a neutrosophic

fuzzy soft α-translation of (F,A) if it satisfies:

G (ε) =
((
TF (ε)

)T
α

(m) ,
(
IF (ε)

)T
α

(m) ,
(
FF (ε)

)T
α

(m)
)
,

for all ε ∈ A,m ∈M where: (
TF (ε)

)T
α

(m) = TF (ε) (m) + α,(
IF (ε)

)T
α

(m) = IF (ε) (m) ,(
FF (ε)

)T
α

(m) = FF (ε) (m)− α.

Theorem 3.6. A neutrosophic fuzzy soft set (F,A) is said to be a neutrosophic fuzzy soft BCK-

submodule over M if and only if the α-translation neutrosophic fuzzy soft set T̃α [(F,A)] is a neutro-

sophic fuzzy soft BCK-submodule over M for all α ∈ [0,⊥].

Proof. Let (F,A) be a neutrosophic fuzzy soft BCK-submodule over M and α ∈ [0,⊥] , then by

Theorem (3.3) (
TF (ε)

)T
α

(xm) = TF (ε) (xm) + α ≥ TF (ε) (m) + α =
(
TF (ε)

)T
α

(m) ,(
FF (ε)

)T
α

(xm) = FF (ε) (xm)− α ≤ FF (ε) (m)− α =
(
FF (ε)

)T
α

(m) ,

for all m ∈M, x ∈ X. Also, for all m1,m2 ∈M we have(
TF (ε)

)T
α

(m1 −m2) = TF (ε) (m1 −m2) + α

≥ min
{
TF (ε) (m1) , TF (ε) (m2)

}
+ α

= min
{
TF (ε) (m1) + α, TF (ε) (m2) + α

}
= min

{(
TF (ε)

)T
α

(m1) ,
(
TF (ε)

)T
α

(m2)
}
,

and (
FF (ε)

)T
α

(m1 −m2) = FF (ε) (m1 −m2)− α

≤ max
{
FF (ε) (m1) , FF (ε) (m2)

}
− α

= max
{
FF (ε) (m1)− α, FF (ε) (m2)− α

}
= max

{(
FF (ε)

)T
α

(m1) ,
(
FF (ε)

)T
α

(m2)
}
.

Hence T̃α [(F,A)] is a neutrosophic fuzzy soft BCK-submodule over M.

Conversely, assume that T̃α [(F,A)] is a neutrosophic fuzzy soft BCK-submodule over M for some

α ∈ [0,⊥] . Then for all m ∈M, x ∈ X

TF (ε) (xm) + α =
(
TF (ε)

)T
α

(xm) ≥
(
TF (ε)

)T
α

(m) = TF (ε) (m) + α

=⇒ TF (ε) (xm) ≥ TF (ε) (m) .

7
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Also,

FF (ε) (xm)− α =
(
FF (ε)

)T
α

(xm) ≤
(
FF (ε)

)T
α

(m) = FF (ε) (m)− α

=⇒ FF (ε) (xm) ≤ FF (ε) (m) .

Now let m1,m2 ∈M , then

TF (ε) (m1 −m2) + α =
(
TF (ε)

)T
α

(m1 −m2)

≥ min
{(
TF (ε)

)T
α

(m1) ,
(
TF (ε)

)T
α

(m2)
}

= min
{
TF (ε) (m1) + α, TF (ε) (m2) + α

}
= min

{
TF (ε) (m1) , TF (ε) (m2)

}
+ α

=⇒ TF (ε) (m1 −m2) ≥ min
{
TF (ε) (m1) , TF (ε) (m2)

}
,

and

FF (ε) (m1 −m2)− α =
(
FF (ε)

)T
α

(m1 −m2)

≤ max
{(
FF (ε)

)T
α

(m1) ,
(
FF (ε)

)T
α

(m2)
}

= max
{
FF (ε) (m1)− α, FF (ε) (m2)− α

}
= max

{
FF (ε) (m1) , FF (ε) (m2)

}
− α

=⇒ FF (ε) (m1 −m2) ≤ max
{
FF (ε) (m1) , FF (ε) (m2)

}
.

Hence by Theorem (3.3), (F,A) is a neutrosophic fuzzy soft BCK-submodule over M.

Definition 3.7. Let (F,A) and (G,B) be two neutrosophic fuzzy soft sets over a BCK-module

M. If A ⊂ B and TF (ε) (m) ≤ TG(ε) (m), IF (ε) (m) ≤ IG(ε) (m), FF (ε) (m) ≥ FG(ε) (m), ∀ε ∈ A and

m ∈M . Then we say that (G,B) is a neutrosophic fuzzy soft extinsion of (F,A).

Definition 3.8. Let (F,A) and (G,B) be two neutrosophic fuzzy soft sets over a BCK-module

M. Then (G,B) is a neutrosophic fuzzy soft s-extinsion of (F,A) if the following assertions hold:

(i) (G,B) is a neutrosophic fuzzy soft extinsion of (F,A).

(ii) If (F,A) is a neutrosophic fuzzy soft BCK-submodule over M, then so (G,B) .

Theorem 3.9. Let (F,A) be a neutrosophic fuzzy soft BCK-submodule over M and α ∈ [0,⊥] .

Then the neutrosophic fuzzy soft α-translation T̃α [(F,A)] is a neutrosophic fuzzy soft s-extinsion of

(F,A).

Proof. Since T̃α [(F,A)] is an α-translation, we know that
(
TF (ε)

)T
α

(m) ≥ TF (ε) (m),(
IF (ε)

)T
α

(m) = IF (ε) (m) and
(
FF (ε)

)T
α

(m) ≤ FF (ε) (m) for all m ∈ M, ε ∈ A. Hence T̃α [(F,A)] is

a neutrosophic fuzzy soft extinsion of (F,A) . According to Theorem (3.6), T̃α [(F,A)] is a neutro-

sophic fuzzy soft s-extinsion of (F,A).

8
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The converse of Theorem (3.9) is not true in general as seen in the following example:

Example 3.10. Let X = {0, a, b, c} along with a binary operation ∗ defined in Table 5, then

(X, ∗, 0) forms a bounded implicative BCK-algebra (see [16]). Let M = {0, a} be a subset of X with

a binary operation + defined by x+ y = (x ∗ y) ∨ (y ∗ x). Then M is a commutative group as shown

in table 6. Define scalar multiplication (X,M) → M by xm = x ∧m for all x ∈ X and m ∈ M that

is given in Table 7. Consequently, M forms an X-module (see [11]).

∗ 0 a b c

0 0 0 0 0

a a 0 a 0

b b b 0 0

c c b a 0

Table 5

+ 0 a

0 0 a

a a 0

Table 6

∧ 0 a

0 0 0

a 0 a

b 0 0

c 0 a

Table 7

Let A = M. Define a neutrosophic fuzzy soft set (F,A) over M as shown in Table 8.

(F,A) 0 a

TF (0) 0.9 0.5

IF (0) 0.8 0.6

FF (0) 0.1 0.3

TF (a) 0.3 0.3

IF (a) 0.2 0.2

FF (a) 0.3 0.5

Table 8

Then (F,A) is a neutrosophic fuzzy soft BCK-submodule over M. Let (G,B) be a neutrosophic fuzzy

soft set over M given by Table 9.

Then (G,B) is also a neutrosophic fuzzy soft BCK-submodule over M. Since TF (ε) (m) ≥ TG(ε) (m) ,

IF (ε) (m) ≥ IG(ε) (m) and FF (ε) (m) ≤ FG(ε) (m) for all m ∈ M and ε ∈ A ⊂ B, hence (F,A) is a

neutrosophic fuzzy soft s-extension of (G,B), but since IF (0) (0) = 0.8 6= IG(0) (0) = 0.7 then (F,A) is

not a neutrosophic fuzzy soft α-translation of (G,B) for all α ∈ [0,⊥] .

9
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(G,B) 0 a

TG(0) 0.5 0.3

IG(0) 0.7 0.6

FG(0) 0.1 0.4

TG(a) 0.2 0.2

IG(a) 0.1 0.1

FG(a) 0.4 0.5

Table 9

Definition 3.11. Let (F,A) be a neutrosophic fuzzy soft set over a BCK-moduleM and υ ∈ [0, 1] .

A neutrosophic fuzzy soft υ-multiplication of (F,A) denoted by M̃υ [(F,A)] = (G,mυ (A)) is defined

as:

G (ε) =
(
mυ

(
TF (ε)

)
(m) ,mυ

(
IF (ε)

)
(m) ,mυ

(
FF (ε)

)
(m)

)
,

where

mυ

(
TF (ε)

)
(m) = TF (ε) (m) .υ,

mυ

(
IF (ε)

)
(m) = IF (ε) (m) ,

mυ

(
FF (ε)

)
(m) = FF (ε) (m) .υ,

for all ε ∈ A and m ∈M .

Theorem.3.12. If (F,A) ∈ NFSS(M), then the neutrosophic fuzzy soft υ-multiplication

M̃υ [(F,A)] ∈ NFSS(M) for all υ ∈ [0, 1] .

Proof. Assume that (F,A) is a neutrosophic fuzzy soft BCK-submodule over M and let

m,m1,m2 ∈M , x ∈ X and ε ∈ A. Then

mυ

(
TF (ε)

)
(xm) = TF (ε) (xm) .υ ≥ TF (ε) (m) .υ = mυ

(
TF (ε)

)
(m) ,

mυ

(
IF (ε)

)
(xm) = IF (ε) (xm) ≥ IF (ε) (m) = mυ

(
IF (ε)

)
(m) ,

mυ

(
FF (ε)

)
(xm) = FF (ε) (xm) .υ ≤ FF (ε) (m) .υ = mυ

(
FF (ε)

)
(m) .

Moreover,

mυ

(
TF (ε)

)
(m1 −m2) = TF (ε) (m1 −m2) .υ

≥ min
{
TF (ε) (m1) , TF (ε) (m2)

}
.υ

= min
{
TF (ε) (m1) .υ, TF (ε) (m2) .υ

}
= min

{
mυ

(
TF (ε)

)
(m1) ,mυ

(
TF (ε)

)
(m2)

}
,

10
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mυ

(
IF (ε)

)
(m1 −m2) = IF (ε) (m1 −m2)

≥ min
{
IF (ε) (m1) , IF (ε) (m2)

}
= min

{
mυ

(
IF (ε)

)
(m1) ,mυ

(
IF (ε)

)
(m2)

}
,

mυ

(
FF (ε)

)
(m1 −m2) = FF (ε) (m1 −m2) .υ

≤ max
{
FF (ε) (m1) , FF (ε) (m2)

}
.υ

= max
{
FF (ε) (m1) .υ, FF (ε) (m2) .υ

}
= max

{
mυ

(
FF (ε)

)
(m1) ,mυ

(
FF (ε)

)
(m2)

}
.

Therefore by Theorem (3.3), M̃υ [(F,A)] is a neutrosophic fuzzy soft BCK-submodule over M.

The converse of Theorem (3.12) is not true in general as seen in the following example:

Example 3.13. Consider a BCK-algebra X = {0, a, b, c} and X-module M = {0, a} that are

defined in Example 3.10. Table 10 defines a neutrosophic fuzzy soft set (F,A) over M

(F,A) 0 a

TF (0) 0.3 0.4

IF (0) 0.7 0.5

FF (0) 0.1 0.5

TF (a) 0.1 0.1

IF (a) 0.1 0.1

FF (a) 0.5 0.6

Table 10

If we take υ = 0, then the υ-multiplication is a neutrosophic fuzzy soft BCK-submodule over M since

m0

(
TF (ε)

)
(xm) = 0 = m0

(
TF (ε)

)
(m) ,

m0

(
IF (ε)

)
(xm) ≥ m0

(
IF (ε)

)
(m) ,

m0

(
FF (ε)

)
(xm) = 0 = m0

(
FF (ε)

)
(m) ,

and

m0

(
TF (ε)

)
(m1 −m2) = 0 = min

{
m0

(
TF (ε)

)
(m1) ,m0

(
TF (ε)

)
(m2)

}
,

m0

(
IF (ε)

)
(m1 −m2) ≥ min

{
m0

(
IF (ε)

)
(m1) ,m0

(
IF (ε)

)
(m2)

}
,

m0

(
FF (ε)

)
(m1 −m2) = 0 = min

{
m0

(
FF (ε)

)
(m1) ,m0

(
FF (ε)

)
(m2)

}
,
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for all m,m1,m2 ∈M and x ∈ X. But if we take m1 = 0,m2 = a and ε = 0 then

TF (0) (0 + a) = TF (0) (a) = 0.4 � min
{
TF (0) (0) , TF (0) (a)

}
= 0.3.

Hence (F,A) is not a neutrosophic fuzzy soft BCK-submodule over M.

Theorem.3.14. A neutrosophic fuzzy soft set (F,A) is said to be a neutrosophic fuzzy soft

BCK-submodule over M if and only if the υ-multiplication neutrosophic fuzzy set M̃υ [(F,A)] is a

neutrosophic fuzzy soft BCK-submodule over M for all υ ∈ (0, 1] .

Proof. Let (F,A) be a neutrosophic fuzzy soft BCK-submodule over M then by Theorem (3.12)

M̃υ [(F,A)] is a neutrosophic fuzzy soft BCK-submodule over M for all υ ∈ (0, 1] .

Now let υ ∈ (0, 1] be such that M̃υ [(F,A)] is a neutrosophic fuzzy soft BCK-submodule over M

and let m,m1,m2 ∈M , x ∈ X and ε ∈ A. Then

TF (ε) (xm) .υ = mυ

(
TF (ε)

)
(xm) ≥ mυ

(
TF (ε)

)
(m) = TF (ε) (m) .υ,

IF (ε) (xm) = mυ

(
IF (ε)

)
(xm) ≥ mυ

(
IF (ε)

)
(m) = IF (ε) (m) ,

FF (ε) (xm) .υ = mυ

(
FF (ε)

)
(xm) ≤ mυ

(
FF (ε)

)
(m) = FF (ε) (m) .υ,

and since υ 6= 0, then TF (ε) (xm) ≥ TF (ε) (m) and FF (ε) (xm) ≤ FF (ε) (m) . Now

TF (ε) (m1 −m2) .υ = mυ

(
TF (ε)

)
(m1 −m2)

≥ min
{
mυ

(
TF (ε)

)
(m1) ,mυ

(
TF (ε)

)
(m2)

}
= min

{
TF (ε) (m1) .υ, TF (ε) (m2) .υ

}
= min

{
TF (ε) (m1) , TF (ε) (m2)

}
.υ,

which means that

TF (ε) (m1 −m2) ≥ min
{
TF (ε) (m1) , TF (ε) (m2)

}
.

Similarly,

FF (ε) (m1 −m2) ≤ max
{
FF (ε) (m1) , FF (ε) (m2)

}
.

Hence (F,A) is a neutrosophic fuzzy soft BCK-submodule over M.

4 Ismorphism Theorem Of Neutrosophic Fuzzy Soft BCK-

submodules

Definition 4.1. Let M and N be two BCK-modules over a BCK-algebra X. Let f : M −→ N

be a BCK-submodule homomorphism and let (F,A) , (G,B) be two neutrosophic fuzzy soft BCK-

submodule over M and N respectively. Then the image of (F,A) is a neutrosophic fuzzy soft set over

N defined as follows for all x ∈M, y ∈ N and ε ∈ A.

f (F (ε)) (x) =
(
Tf(F )(y), If(F )(y), Ff(F )(y)

)
= (f (TF ) (y) , f (IF ) (y) , f (FF ) (y)) ,
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where

f (TF ) (y) =

{
supTF (x) if x ∈ f−1 (y)

0 otherwise
,

f (IF ) (y) =

{
sup IF (x) if x ∈ f−1 (y)

0 otherwise
,

f (FF ) (y) =

{
inf FF (x) if x ∈ f−1 (y)

0 otherwise
,

and the preimage of (G,B) is a neutrosophic fuzzy soft set over M defined as

f−1 (G (δ)) (y) =
(
Tf−1(G)(x), If−1(G)(x), Ff−1(G)(x)

)
= (TG (f (x)) , IG (f (x)) , FG (f (x))) ,

where δ ∈ B.

Theorem 4.2. Let (X, ∗, 0) be a BCK-algebra, M and N are modules of X. A mapping f :

M −→ N is a BCK-submodule homomorphism and (F,A) ∈ NFSS(N), then the inverse image(
f−1 (F ) , A

)
∈ NFSS(M).

Proof. Since (F,A) is a neutrosophic fuzzy soft BCK-submodule over N. Let m ∈M, ε ∈ A then

by Theorem (3.4)

Tf−1(F )(0) = TF (ε)(f (0)) = TF (ε)(0) ≥ TF (ε)(f (m)) = Tf−1(F )(m),

If−1(F )(0) = IF (ε)(f (0)) = IF (ε)(0) ≥ IF (ε)(f (m)) = If−1(F )(m),

Ff−1(F )(0) = FF (ε)(f (0)) = FF (ε)(0) ≤ FF (ε)(f (m)) = Ff−1(F )(m).

Now let m1,m2 ∈M, x, y ∈ X, and ε ∈ A, then

Tf−1(F )(xm1 − ym2) = TF (ε)(f (xm− ym2))

= TF (ε)(xf (m1)− yf (m2))

≥ min
{
TF (ε)(f (m1)), TF (ε)(f (m2))

}
= min

{
Tf−1(F )(m1), Tf−1(F )(m2)

}
.

Similarly for

If−1(F )(xm1 − ym2) ≥ min
{
If−1(F )(m1), If−1(F )(m2)

}
,

and

Ff−1(F )(xm1 − ym2) ≤ max
{
Ff−1(F )(m1), Ff−1(F )(m2)

}
.

Hence
(
f−1 (F ) , A

)
is a neutrosophic fuzzy soft BCK-submodule over M.

Theorem.4.3. Let (X, ∗, 0) be a BCK-algebra, M and N are modules of X. A mapping f :

M −→ N is a BCK-submodule epimorphism. If (F,A) is a neutrosophic fuzzy soft set over N such

that
(
f−1 (F ) , A

)
∈ NFSS(M), then (F,A) ∈ NFSS(N).
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Proof. Assume that
(
f−1 (F ) , A

)
is a neutrosophic fuzzy soft BCK-submodule over M. Let

n ∈ N then there exist m ∈M such that f (m) = n. Then for all ε ∈ A

TF (ε) (n) = TF (ε) (f (m)) = Tf−1(F )(m) ≤ Tf−1(F )(0) = TF (ε) (f (0)) = TF (ε) (0) ,

IF (ε) (n) = IF (ε) (f (m)) = If−1(F )(m) ≤ If−1(F )(0) = IF (ε) (f (0)) = IF (ε) (0) ,

FF (ε) (n) = FF (ε) (f (m)) = Ff−1(F )(m) ≥ Ff−1(F )(0) = FF (ε) (f (0)) = FF (ε) (0) .

Let m, m̀ ∈M, n, ǹ ∈ N such that f (m) = n and f (m̀) = ǹ and x, y ∈ X then

TF (ε) (xn− yǹ) = TF (ε) (xf (m)− yf (m̀))

= TF (ε) (f (xm− ym̀))

= Tf−1(F )(xm− ym̀)

≥ min
{
Tf−1(F )(m), Tf−1(F )(m̀)

}
= min

{
TF (ε) (f (m)) , TF (ε) (f (m̀))

}
= min

{
TF (ε) (n) , TF (ε) (ǹ)

}
.

Similarly for

IF (ε) (xn− yǹ) ≥ min
{
IF (ε) (n) , IF (ε) (ǹ)

}
,

and

FF (ε) (xn− yǹ) ≤ max
{
FF (ε) (n) , FF (ε) (ǹ)

}
.

Hence according to Theorem (3.4), (F,A) is a neutrosophic fuzzy soft BCK-submodule over N.

Theorem.4.4. Let (X, ∗, 0) be a BCK-algebra, M and N are modules of X. A mapping f : M −→

N is a BCK-submodule epimorphism and let (F,A) be a neutrosophic fuzzy soft BCK-submodule

over M. Then the homomorphic image (f (F ) , A) is a neutrosophic fuzzy soft BCK-submodule over

N.

Proof. Assume that (F,A) is a neutrosophic fuzzy soft BCK-submodule over M. Let n ∈ N then

there exist m ∈M such that f (m) = n. Then

Tf(F )(n) = f (TF ) (n) = supTF (m) ≤ supT (0) = f (TF ) (0) = Tf(F )(0),

If(F )(n) = f (IF ) (n) = sup IF (m) ≤ sup I(0) = f (IF ) (0) = If(F )(0),

Ff(F )(n) = f (FF ) (n) = inf FF (m) ≥ inf F (0) = f (FF ) (0) = Ff(F )(0).

14
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Let m1,m2 ∈M, n1, n2 ∈ N such that f (m1) = n1 and f (m2) = n2 and x, y ∈ X then

Tf(F ) (xn1 − yn2) = f(TF ) (xn1 − yn2)

= supTF (xm1 − ym2)

≥ sup{min {TF (m1), TF (m2)}}

= min {supTF (m1), supTF (m2)}

= min {f(TF ) (n1) , f(TF ) (n2)}

= min{Tf(F ) (n1) , Tf(F ) (n2)}.

Similarly for

If(F ) (xn1 − yn2) ≥ min{If(F ) (n1) , If(F ) (n2)},

and

Ff(F ) (xn1 − yn2) ≤ max{Ff(F ) (n1) , Ff(F ) (n2)}.

Hence by Theorem (3.4), (f(F ), A) is a neutrosophic fuzzy soft BCK-submodule over N.

Corollary 4.5. Let f : M −→ N be a homomorphism of BCK-submodules and (F,A) is a

neutrosophic fuzzy soft set over N. If (F,A) is a neutrosophic fuzzy soft BCK-submodule, then so is(
f−1 (F ) , ATα

)
for any α-translation T̃α [(F,A)] of (F,A) with α ∈ [0,⊥].

Proof. Directly by Theorem(3.6) and Theorem(4.2).

Joining Theorems (3.6), (4.3) and (4.4) we have the following corollaries:

Corollary 4.6. Let f : M −→ N be an epimorphism of BCK-submodules and (F,A) is a

neutrosophic fuzzy soft set over N. If the inverse image of a neutrosophic fuzzy soft α-translation of

(F,A) is a neutrosophic fuzzy soft BCK-submodule for some α ∈ [0,⊥] , then so is (F,A) .

Corollary 4.7. Let f : M −→ N be an epimorphism of BCK-submodules and (F,A) is a

neutrosophic fuzzy soft BCK-submodule over M, then the homomorphic image of a neutrosophic fuzzy

soft α-translation of (F,A) is a neutrosophic fuzzy soft BCK-submodule over N for any α ∈ [0,⊥] .

Using Theorems (3,14), (4.2), (4.3) and (4.4), we deduce the following results:

Corollary 4.8. Let f : M −→ N be a homomorphism of BCK-submodules and (F,A) is a

neutrosophic fuzzy soft BCK-submodule over N, then the inverse image of a neutrosophic fuzzy soft

υ-multiplication of (F,A) is a neutrosophic fuzzy soft BCK-submodule overM for any υ-multiplication

of (F,A) with υ ∈ [0, 1] .

Corollary 4.9. Let f : M −→ N be an epimorphism of BCK-submodules. If the inverse image

of a neutrosophic fuzzy soft υ-multiplication of (F,A) is a neutrosophic fuzzy soft BCK-submodule

over M for some υ ∈ (0, 1] , then (F,A) is a neutrosophic fuzzy soft BCK-submodule over N.

Corollary 4.10. Let f : M −→ N be an epimorphism of BCK-submodules and (F,A) is a

neutrosophic fuzzy soft BCK-submodule over M, then the homomorphic image of a neutrosophic

15
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fuzzy soft υ-multiplication of (F,A) is a neutrosophic fuzzy soft BCK-submodule over N for any

υ ∈ (0, 1] .

5 Conclusion

Translations, multiplications and extensions are very interested mathematical tools. They are types

of operations that researchers like to apply with fuzzy set theory. In this paper, the concept of

neutrosophic fuzzy soft translations and neutrosophic fuzzy soft extensions of neutrosophic fuzzy soft

BCK-submodules were introduced and the relation between them were discussed. Also, the notion

of neutrosophic fuzzy soft multiplications of neutrosophic fuzzy soft BCK-submodules was defined.

Finally, some results were investigated.
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