
Volume 29, Number 5                                                                      October 2021
ISSN:1521-1398 PRINT,1572-9206 ONLINE

                               Journal of
     
          Computational

          Analysis and 

          Applications

             EUDOXUS PRESS, LLC



               Journal of Computational Analysis and Applications
                 ISSNno.’s:1521-1398 PRINT,1572-9206 ONLINE
                                     SCOPE OF THE JOURNAL
                An international publication of Eudoxus Press, LLC
                (six times annually)
                      Editor in Chief: George Anastassiou
                      Department of Mathematical Sciences, 
                      University of Memphis, Memphis, TN 38152-3240, U.S.A
                         ganastss@memphis.edu

http://www.msci.memphis.edu/~ganastss/jocaaa
                 The main purpose of "J.Computational Analysis and Applications" 
            is to publish high quality research articles from all subareas of 
            Computational Mathematical Analysis and its many potential 
            applications and connections to other areas of Mathematical 
            Sciences. Any paper whose approach and proofs are computational,using 
            methods from Mathematical Analysis in the broadest sense is suitable 
            and welcome for consideration in our journal, except from Applied 
            Numerical Analysis articles. Also plain word articles without formulas and
            proofs are excluded. The list of possibly connected 
            mathematical areas with this publication includes, but is not 
            restricted to: Applied Analysis, Applied Functional Analysis, 
            Approximation Theory, Asymptotic Analysis, Difference Equations, 
            Differential Equations, Partial Differential Equations, Fourier 
            Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, 
            Integral Equations, Measure Theory, Moment Theory, Neural Networks, 
            Numerical Functional Analysis, Potential Theory, Probability Theory, 
            Real and Complex Analysis, Signal Analysis, Special Functions, 
            Splines, Stochastic Analysis, Stochastic Processes, Summability, 
            Tomography, Wavelets, any combination of the above, e.t.c. 
              "J.Computational Analysis and Applications" is a 
            peer-reviewed Journal. See the instructions for preparation and submission
         of articles to JoCAAA. Assistant to the Editor: 
Dr.Razvan Mezei,mezei_razvan@yahoo.com, St.Martin Univ.,Olympia,WA,USA. 
Journal of Computational Analysis and Applications(JoCAAA) is published by 
EUDOXUS PRESS,LLC,1424 Beaver Trail 
Drive,Cordova,TN38016,USA,anastassioug@yahoo.com
http://www.eudoxuspress.com. Annual Subscription Prices:For USA and 
Canada,Institutional:Print $800, Electronic OPEN ACCESS. Individual:Print $400. For 
any other part of the world add $160 more(handling and postages) to the above prices for 
Print. No credit card payments.
Copyright©2021 by Eudoxus Press,LLC,all rights reserved.JoCAAA is printed in USA. 
JoCAAA is reviewed and abstracted by AMS Mathematical                   
Reviews,MATHSCI,and Zentralblaat MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in 
any form and by any means without the written permission of the publisher.It is only 
allowed to educators to Xerox articles for educational purposes.The publisher assumes no
responsibility for the content of published papers.

808

mailto:mezei_razvan@yahoo.com


 
Editorial Board  

Associate Editors of Journal of Computational Analysis and Applications 
 

 
Francesco Altomare 
Dipartimento di Matematica 
Universita' di Bari 
Via E.Orabona, 4 
70125 Bari, ITALY 
Tel+39-080-5442690 office 
   +39-080-3944046 home 
   +39-080-5963612 Fax 
altomare@dm.uniba.it 
Approximation Theory, Functional 
Analysis, Semigroups and Partial 
Differential Equations, Positive 
Operators. 
 
Ravi P. Agarwal 
Department of Mathematics 
Texas A&M University - Kingsville 
700 University Blvd. 
Kingsville, TX 78363-8202 
tel: 361-593-2600 
Agarwal@tamuk.edu 
Differential Equations, Difference 
Equations, Inequalities 
 
George A. Anastassiou 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152,U.S.A 
Tel.901-678-3144 
e-mail: ganastss@memphis.edu 
Approximation Theory, Real 
Analysis, 
Wavelets, Neural Networks, 
Probability, Inequalities. 
 
J. Marshall Ash 
Department of Mathematics 
De Paul University 
2219 North Kenmore Ave. 
Chicago, IL 60614-3504 
773-325-4216 
e-mail: mash@math.depaul.edu 
Real and Harmonic Analysis 
 
Dumitru Baleanu 
Department of Mathematics and 
Computer Sciences,  
Cankaya University, Faculty of Art 
and  Sciences, 
06530 Balgat, Ankara,  

Turkey, dumitru@cankaya.edu.tr  
Fractional Differential Equations 
Nonlinear Analysis, Fractional  
Dynamics 
 
Carlo Bardaro 
Dipartimento di Matematica e  
Informatica 
Universita di Perugia 
Via Vanvitelli 1 
06123 Perugia, ITALY 
TEL+390755853822 
   +390755855034 
FAX+390755855024 
E-mail carlo.bardaro@unipg.it 
Web site:   
http://www.unipg.it/~bardaro/ 
Functional Analysis and 
Approximation Theory, Signal 
Analysis, Measure Theory, Real 
Analysis. 

Martin Bohner 
Department of Mathematics and  
Statistics, Missouri S&T 
Rolla, MO 65409-0020, USA 
bohner@mst.edu  
web.mst.edu/~bohner 
Difference equations, differential  
equations, dynamic equations on 
time scale, applications in 
economics, finance, biology. 
 
Jerry L. Bona 
Department of Mathematics 
The University of Illinois at 
Chicago 
851 S. Morgan St. CS 249 
Chicago, IL 60601 
e-mail:bona@math.uic.edu 
Partial Differential Equations, 
Fluid Dynamics 
    
Luis A. Caffarelli 
Department of Mathematics 
The University of Texas at Austin 
Austin, Texas 78712-1082 
512-471-3160 
e-mail: caffarel@math.utexas.edu 
Partial Differential Equations 

809



George Cybenko 
Thayer School of Engineering 
Dartmouth College 
8000 Cummings Hall, 
Hanover, NH 03755-8000 
603-646-3843 (X 3546 Secr.) 
e-mail:george.cybenko@dartmouth.edu 
Approximation Theory and Neural  
Networks 
 
Sever S. Dragomir 
School of Computer Science and  
Mathematics, Victoria University, 
PO Box 14428, 
Melbourne City, 
MC 8001, AUSTRALIA 
Tel. +61 3 9688 4437 
Fax  +61 3 9688 4050 
sever.dragomir@vu.edu.au 
Inequalities, Functional Analysis, 
Numerical Analysis, Approximations, 
Information Theory, Stochastics. 
 
Oktay Duman 
TOBB University of Economics and  
Technology, 
Department of Mathematics, TR-
06530,  
Ankara, Turkey,  
oduman@etu.edu.tr                  
Classical Approximation Theory, 
Summability Theory, Statistical 
Convergence and its Applications 
  
Saber N. Elaydi 
Department Of Mathematics 
Trinity University 
715 Stadium Dr. 
San Antonio, TX 78212-7200 
210-736-8246 
e-mail: selaydi@trinity.edu 
Ordinary Differential Equations, 
Difference Equations 
  
   
J .A. Goldstein 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152 
901-678-3130 
jgoldste@memphis.edu 
Partial Differential Equations, 
Semigroups of Operators 
   
H. H. Gonska 
Department of Mathematics 
University of Duisburg 

Duisburg, D-47048 
Germany 
011-49-203-379-3542 
e-mail: heiner.gonska@uni-due.de 
Approximation Theory, Computer 
Aided Geometric Design 
  
John R. Graef 
Department of Mathematics 
University of Tennessee at 
Chattanooga 
Chattanooga, TN 37304 USA 
John-Graef@utc.edu 
Ordinary and functional 
differential equations, difference 
equations, impulsive systems, 
differential inclusions, dynamic 
equations on time scales, control 
theory and their applications 
 
Weimin Han 
Department of Mathematics 
University of Iowa 
Iowa City, IA 52242-1419 
319-335-0770 
e-mail: whan@math.uiowa.edu 
Numerical analysis, Finite element  
method, Numerical PDE, Variational  
inequalities, Computational 
mechanics   
 
Tian-Xiao He 
Department of Mathematics and  
Computer Science 
P.O. Box 2900, Illinois Wesleyan 
University 
Bloomington, IL 61702-2900, USA 
Tel (309)556-3089 
Fax (309)556-3864 
the@iwu.edu 
Approximations, Wavelet, 
Integration Theory, Numerical 
Analysis, Analytic Combinatorics 
 
Margareta Heilmann 
Faculty of Mathematics and Natural       
Sciences, University of Wuppertal 
Gaußstraße 20 
D-42119 Wuppertal, Germany,  
heilmann@math.uni-wuppertal.de       
Approximation Theory (Positive 
Linear Operators) 
 
Xing-Biao Hu 
Institute of Computational 
Mathematics 
AMSS, Chinese Academy of Sciences 

810



Beijing, 100190, CHINA 
hxb@lsec.cc.ac.cn 
Computational Mathematics 
 
Jong Kyu Kim 
Department of Mathematics 
Kyungnam University 
Masan Kyungnam,631-701,Korea 
Tel  82-(55)-249-2211 
Fax  82-(55)-243-8609 
jongkyuk@kyungnam.ac.kr 
Nonlinear Functional Analysis, 
Variational Inequalities, Nonlinear 
Ergodic Theory, ODE, PDE, 
Functional Equations. 
 
Robert Kozma 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152, USA 
rkozma@memphis.edu 
Neural Networks, Reproducing Kernel 
Hilbert Spaces, 
Neural Percolation Theory 
  
Mustafa Kulenovic 
Department of Mathematics 
University of Rhode Island 
Kingston, RI 02881,USA 
kulenm@math.uri.edu 
Differential and Difference 
Equations 
 
Irena Lasiecka 
Department of Mathematical Sciences 
University of Memphis 
Memphis, TN 38152 
PDE, Control Theory, Functional    
Analysis, lasiecka@memphis.edu 

Burkhard Lenze 
Fachbereich Informatik 
Fachhochschule Dortmund 
University of Applied Sciences 
Postfach 105018 
D-44047 Dortmund, Germany 
e-mail: lenze@fh-dortmund.de 
Real Networks, Fourier Analysis, 
Approximation Theory 
   
Hrushikesh N. Mhaskar 
Department Of Mathematics 
California State University 
Los Angeles, CA 90032 
626-914-7002 
e-mail: hmhaska@gmail.com 
Orthogonal Polynomials, 

Approximation Theory, Splines, 
Wavelets, Neural Networks 
 
Ram N. Mohapatra 
Department of Mathematics 
University of Central Florida 
Orlando, FL 32816-1364 
tel.407-823-5080  
ram.mohapatra@ucf.edu 
Real and Complex Analysis, 
Approximation Th., Fourier 
Analysis, Fuzzy Sets and Systems 
  
Gaston M. N'Guerekata 
Department of Mathematics 
Morgan State University 
Baltimore, MD 21251, USA 
tel: 1-443-885-4373 
Fax 1-443-885-8216 
Gaston.N'Guerekata@morgan.edu  
nguerekata@aol.com 
Nonlinear Evolution Equations, 
Abstract Harmonic Analysis, 
Fractional Differential Equations, 
Almost Periodicity & Almost 
Automorphy 
 
M.Zuhair Nashed 
Department Of Mathematics 
University of Central Florida 
PO Box 161364 
Orlando, FL  32816-1364 
e-mail: znashed@mail.ucf.edu 
Inverse and Ill-Posed problems, 
Numerical Functional Analysis, 
Integral Equations, Optimization, 
Signal Analysis 
   
Mubenga N. Nkashama 
Department OF Mathematics 
University of Alabama at Birmingham 
Birmingham, AL 35294-1170 
205-934-2154 
e-mail: nkashama@math.uab.edu 
Ordinary Differential Equations, 
Partial Differential Equations 
 
Vassilis Papanicolaou 
Department of Mathematics 
National Technical University of 
Athens 
Zografou campus, 157 80 
Athens, Greece 
tel:: +30(210) 772 1722 
Fax   +30(210) 772 1775 
papanico@math.ntua.gr 
Partial Differential Equations, 

811



Probability 
 
Choonkil Park 
Department of Mathematics 
Hanyang University 
Seoul 133-791 
S. Korea, baak@hanyang.ac.kr 
Functional Equations 
 
Svetlozar (Zari) Rachev,  
Professor of Finance, College of 
Business, and Director of 
Quantitative Finance Program, 
Department of Applied Mathematics & 
Statistics 
Stonybrook University 
312 Harriman Hall, Stony Brook, NY 
11794-3775 
tel: +1-631-632-1998, 
svetlozar.rachev@stonybrook.edu 
 
Alexander G. Ramm 
Mathematics Department  
Kansas State University 
Manhattan, KS 66506-2602 
e-mail: ramm@math.ksu.edu  
Inverse and Ill-posed Problems,  
Scattering Theory, Operator Theory,  
Theoretical Numerical Analysis, 
Wave Propagation, Signal Processing 
and Tomography 
 
Tomasz Rychlik 
Polish Academy of Sciences 
Instytut Matematyczny PAN 
00-956 Warszawa, skr. poczt. 21 
ul. Śniadeckich 8 
Poland  
trychlik@impan.pl 
Mathematical Statistics, 
Probabilistic Inequalities 
 
Boris Shekhtman 
Department of Mathematics 
University of South Florida 
Tampa, FL 33620, USA 
Tel  813-974-9710  
shekhtma@usf.edu 
Approximation Theory, Banach 
spaces, Classical Analysis 
 
T. E. Simos 
Department of Computer 
Science and Technology 
Faculty of Sciences and Technology 
University of Peloponnese 
GR-221 00 Tripolis, Greece 

Postal Address: 
26 Menelaou St. 
Anfithea - Paleon Faliron 
GR-175 64 Athens, Greece 
tsimos@mail.ariadne-t.gr 
Numerical Analysis 
 
H. M. Srivastava 
Department of Mathematics and 
Statistics 
University of Victoria 
Victoria, British Columbia V8W 3R4 
Canada 
tel.250-472-5313; office,250-477-
6960 home, fax 250-721-8962 
harimsri@math.uvic.ca 
Real and Complex Analysis, 
Fractional Calculus and Appl., 
Integral Equations and Transforms, 
Higher Transcendental Functions and 
Appl.,q-Series and q-Polynomials, 
Analytic Number Th. 
 
I. P. Stavroulakis 
Department of Mathematics 
University of Ioannina 
451-10 Ioannina, Greece 
ipstav@cc.uoi.gr 
Differential Equations 
Phone  +3-065-109-8283 
 
Manfred Tasche 
Department of Mathematics 
University of Rostock 
D-18051 Rostock, Germany 
manfred.tasche@mathematik.uni-  
rostock.de 
Numerical Fourier Analysis, Fourier  
Analysis, Harmonic Analysis, Signal  
Analysis, Spectral Methods, 
Wavelets, Splines, Approximation 
Theory 
 
Roberto Triggiani 
Department of Mathematical Sciences 
University of Memphis 
Memphis, TN 38152 
PDE, Control Theory, Functional    
Analysis, rtrggani@memphis.edu   
 

Juan J. Trujillo 
University of La Laguna 
Departamento de Analisis Matematico 
C/Astr.Fco.Sanchez s/n 
38271. LaLaguna. Tenerife. 
SPAIN 

812



Tel/Fax 34-922-318209 
Juan.Trujillo@ull.es 
Fractional: Differential Equations-
Operators-Fourier Transforms, 
Special functions, Approximations, 
and Applications 
 
Ram Verma 
International Publications 
1200 Dallas Drive #824 Denton, 
TX 76205, USA 
Verma99@msn.com 
Applied Nonlinear Analysis, 
Numerical Analysis, Variational 
Inequalities, Optimization Theory, 
Computational Mathematics, Operator 
Theory 

Xiang Ming Yu 
Department of Mathematical Sciences 
Southwest Missouri State University 
Springfield, MO 65804-0094 
417-836-5931 
xmy944f@missouristate.edu 
Classical Approximation Theory,  
Wavelets 
  
Xiao-Jun Yang 
State Key Laboratory for Geomechanics 
 and Deep Underground Engineering, 
China University of Mining and Technology, 
 Xuzhou 221116, China 
Local Fractional Calculus and Applications, 
 Fractional Calculus and Applications, 
 General Fractional Calculus and 
Applications, 
 Variable-order Calculus and Applications, 
 Viscoelasticity and Computational methods 
 for Mathematical 
Physics.dyangxiaojun@163.com 
 

 
 
 
Richard A. Zalik 
Department of Mathematics 
Auburn University 
Auburn University, AL 36849-5310 
USA. 
Tel 334-844-6557 office 
      678-642-8703 home 
Fax 334-844-6555 
zalik@auburn.edu 

Approximation Theory, Chebychev 
Systems, Wavelet Theory 
 
Ahmed I. Zayed 
Department of Mathematical Sciences 
DePaul University 
2320 N. Kenmore Ave. 
Chicago, IL 60614-3250 
773-325-7808 
e-mail: azayed@condor.depaul.edu 
Shannon sampling theory, Harmonic  
analysis and wavelets, Special  
functions and orthogonal 
polynomials, Integral transforms 
 
Ding-Xuan Zhou 
Department Of Mathematics 
City University of Hong Kong 
83 Tat Chee Avenue 
Kowloon, Hong Kong 
852-2788 9708,Fax:852-2788 8561 
e-mail: mazhou@cityu.edu.hk 
Approximation Theory, Spline 
functions, Wavelets 
 
Xin-long Zhou 
Fachbereich Mathematik, Fachgebiet  
Informatik 
Gerhard-Mercator-Universitat 
Duisburg 
Lotharstr.65, D-47048 Duisburg, 
Germany 
e-mail:Xzhou@informatik.uni- 
duisburg.de 
Fourier Analysis, Computer-Aided  
Geometric Design, Computational  
Complexity, Multivariate  
Approximation Theory, Approximation 
and Interpolation Theory 

Jessada Tariboon 
Department of Mathematics 
King Mongut’s University of Technology N. 
Bangkok 
1518 Pracharat 1 Rd., Wongsawang, 
Bangsue, Bangkok, Thailand 10800 
jessada.t@sci.kmutnb.ac.th, Time scales 
Differential/Difference Equations, 
Fractional Differential Equations 

813

mailto:Verma99@msn.com
mailto:dyangxiaojun@163.com
mailto:jessada.t@sci.kmutnb.ac.th


 
Instructions to Contributors 

 Journal of Computational Analysis and Applications 
  An international publication of Eudoxus Press, LLC, of TN.  

  
Editor in Chief: George Anastassiou 

Department of Mathematical Sciences  
University of Memphis 

Memphis, TN 38152-3240, U.S.A. 
 
       

 
      1. Manuscripts files in Latex and PDF and in English, should be submitted via 
email to the Editor-in-Chief: 
 
      Prof.George A. Anastassiou  
      Department of Mathematical Sciences  
      The University of Memphis  
      Memphis,TN 38152, USA.  
      Tel. 901.678.3144  
      e-mail: ganastss@memphis.edu  
 
Authors may want to recommend an associate editor the most related to the 
submission to possibly handle it. 
 
      Also authors may want to submit a list of six possible referees, to be used in case we 
cannot find related referees by ourselves. 
 
 
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX 
and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to 
save a copy of the style file.)They should be carefully prepared in all respects. 
Submitted articles should be brightly typed (not dot-matrix), double spaced, in ten 
point type size and in 8(1/2)x11 inch area per page. Manuscripts should have generous 
margins on all sides and should not exceed 24 pages. 
 
3. Submission is a representation that the manuscript has not been published 
previously in this or any other similar form and is not currently under consideration 
for publication elsewhere. A statement transferring from the authors(or their 
employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before 
the manuscript can be accepted for publication.The Editor-in-Chief will supply the 
necessary forms for this transfer.Such a written transfer of copyright,which previously 
was assumed to be implicit in the act of submitting a manuscript,is necessary under the 
U.S.Copyright Law in order for the publisher to carry through the dissemination of 
research results and reviews as widely and effective as possible. 
 

814

mailto:ganastss@memphis.edu?subject=JCAAM%20inquirey
http://www.msci.memphis.edu/%7Eganastss/jcaam/EUDOXStyle.tex


4. The paper starts with the title of the article, author's name(s) (no titles or degrees), 
author's affiliation(s) and e-mail addresses. The affiliation should comprise the 
department, institution (usually university or company), city, state (and/or nation) and 
mail code. 
 
      The following items, 5 and 6, should be on page no. 1 of the paper. 
 
5. An abstract is to be provided, preferably no longer than 150 words. 
 
6. A list of 5 key words is to be provided directly below the abstract. Key words should 
express the precise content of the manuscript, as they are used for indexing purposes. 
 
      The main body of the paper should begin on page no. 1, if possible. 
 
7. All sections should be numbered with Arabic numerals (such as: 1. 
INTRODUCTION) .  
Subsections should be identified with section and subsection numbers (such as 6.1. 
Second-Value Subheading). 
If applicable, an independent single-number system (one for each category) should be 
used to label all theorems, lemmas, propositions, corollaries, definitions, remarks, 
examples, etc. The label (such as Lemma 7) should be typed with paragraph 
indentation, followed by a period and the lemma itself. 
 
8. Mathematical notation must be typeset. Equations should be numbered 
consecutively with Arabic numerals in parentheses placed flush right, and should be 
thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed 
at the top of even numbered pages and the first author's name, et al., must be placed at 
the top of the odd numbed pages. 
 
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in 
one consecutive series of Arabic numerals. The captions for illustrations should be 
typed double space. All illustrations, charts, tables, etc., must be embedded in the body 
of the manuscript in proper, final, print position. In particular, manuscript, source, 
and PDF file version must be at camera ready stage for publication or they cannot be 
considered. 
 
    Tables are to be numbered (with Roman numerals) and referred to by number in 
the text. Center the title above the table, and type explanatory footnotes (indicated by 
superscript lowercase letters) below the table.  
 
10. List references alphabetically at the end of the paper and number them 
consecutively. Each must be cited in the text by the appropriate Arabic numeral in 
square brackets on the baseline.  
      References should include (in the following order):  
     initials of first and middle name, last name of author(s)  
      title of article,  

815



      name of publication, volume number, inclusive pages, and year of publication.  
 
      Authors should follow these examples: 
 
          Journal Article  
 
          1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, 
(journal name in italics) J. Approx. Theory, 62,170-191(1990).  
 
          Book  
 
          2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York,1986.  
 
          Contribution to a Book  
 
          3. M.K.Khan, Approximation properties of beta operators,in(title of book in italics) Progress in 
Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495. 
 
     11. All acknowledgements (including those for a grant and financial support) should 
occur in one paragraph that directly precedes the References section. 
 
     12. Footnotes should be avoided. When their use is absolutely necessary, footnotes 
should be numbered consecutively using Arabic numerals and should be typed at the 
bottom of the page to which they refer. Place a line above the footnote, so that it is set 
off from the text. Use the appropriate superscript numeral for citation in the text. 
 
     13. After each revision is made please again submit via email Latex and PDF files  
of the revised manuscript, including the final one. 
       
    14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in 
Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The 
fee payment will be due one month from the invoice date. The article will proceed to 
publication only after the fee is paid. The charges are to be sent, by money order or 
certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on 
the Eudoxus homepage.  
 
      No galleys will be sent and the contact author will receive one (1) electronic copy of 
the journal issue in which the article appears. 
 
 
     15. This journal will consider for publication only papers that contain proofs for 
their listed results. 

 
       
   
   

 

816

http://www.eudoxuspress.com/


Differential equations and inclusions involving
mixed fractional derivatives with four-point

nonlocal fractional boundary conditions

Bashir Ahmada, Sotiris K. Ntouyasb,a,1, Ahmed Alsaedia

aNonlinear Analysis and Applied Mathematics (NAAM)-Research Group,
Department of Mathematics, Faculty of Science, King Abdulaziz University,

P.O. Box 80203, Jeddah 21589, Saudi Arabia

bDepartment of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

E-mail: bashirahmad−qau@yahoo.com (B. Ahmad), sntouyas@uoi.gr (S.K. Ntouyas),
aalsaedi@hotmail.com (A. Alsaedi)

Abstract

We study a new class of boundary value problems of mixed fractional differ-
ential equations and inclusions involving both left Caputo and right Riemann-
Liouville fractional derivatives, and nonlocal four-point fractional boundary con-
ditions. We apply the standard tools of the fixed-point theory to obtain the
sufficient criteria for the existence and uniqueness of solutions for the problems
at hand. Illustrative examples for the obtained results are also presented.

Keywords: Fractional differential equations; fractional differential inclusions; frac-
tional derivative; boundary value problem; existence; fixed point theorems.
MSC 2000: 34A08, 34B15, 34A60.

1 Introduction

Fractional calculus deals with the study of fractional order integrals and derivatives
and their diverse applications [1, 2, 3]. Riemann-Liouville and Caputo are kinds of
fractional derivatives. They all generalize the ordinary integral and differential opera-
tors. However, the fractional derivatives have fewer properties than the corresponding
classical ones. As a result, it makes these derivatives very useful at describing the
anomalous phenomena, see [4, 5, 6] and references cited therein.

Some solutions of equations containing left and right fractional derivatives were
investigated [7, 8, 9]. The left and the right derivatives found interesting applications
in fractional variational principles, fractional control theory as well as in fractional
Lagrangian and Hamiltonian dynamics. In [10], the existence of an extremal solution
to a nonlinear system with the right-handed Riemann-Liouville fractional derivative

1Corresponding author
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was discussed. In [11, 12], the authors studied the existence of solutions for fractional
boundary value problems involving both the left Riemann-Liouville and the right Ca-
puto fractional derivatives.

In this paper, we investigate the existence and uniqueness of solutions for a mixed
fractional differential equation involving both left Caputo and right Riemann-Liouville
types fractional derivatives associated with nonlocal four-point fractional boundary
conditions. Precisely, we study the following problems:{ cDα

1−D
β
0+y(t) = f(t, y(t)), t ∈ J := [0, 1],

y(0) = 0, Dβ
0+y(ξ) = 0, y(1) = δy(η), 0 < η < 1,

(1.1)

and { cDα
1−D

β
0+y(t) ∈ F (t, y(t)), t ∈ J := [0, 1],

y(0) = 0, Dβ
0+y(ξ) = 0, y(1) = δy(η), 0 < ξ, η < 1,

(1.2)

where cDα
1− and Dβ

0+ denote the left Caputo fractional derivative of order α ∈ (1, 2]
and the right Riemann-Liouville fractional derivative of order β ∈ (0, 1] respectively,
f : J × R→ R is a given function, F : [0, 1]× R→ P(R) is a multivalued map, P(R)
is the family of all nonempty subsets of R and δ ∈ R is an appropriate constant. Here
we remark that the problem (1.1) with y′(0) = 0 in palce of Dβ

0+y(ξ) = 0, was studied
recently in [13].

The rest of the paper is organized as follows. In Section 2, we recall some basic
definitions of fractional calculus and prove a basic result that plays a key role in the
forthcoming analysis. Section 3 contains the existence and uniqueness results for the
problem (1.1), which rely on fixed point theorems due to Banach, Krasnoselskii and
Leray-Schauder nonlinear alternative. In Section 4, we discuss existence results for the
problem (1.2), which rely on nonlineqar alternative for Kakutani maps and Covitz and
Nadler fixed point theorem. Finally in Section 5 we study illustrative examples for the
obtained results.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts [14] that we
need in the sequel.

Definition 2.1 We define the left and right Riemann-Liouville fractional integrals of
order α > 0 of a function g : (0,∞)→ R as

Iα0+g(t) =

∫ t

0

(t− s)α−1

Γ(α)
g(s)ds, (2.1)

Iα1−g(t) =

∫ 1

t

(s− t)α−1

Γ(α)
g(s)ds, (2.2)
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provided the right-hand sides are point-wise defined on (0,∞), where Γ is the Gamma
function.

Definition 2.2 The left Riemann-Liouville fractional derivative and the right Caputo
fractional derivative of order α > 0 of a continuous function g : (0,∞)→ R such that
g ∈ Cn((0,∞),R) are respectively given by

Dα
0+g(t) =

dn

dtn
(In−α0+ g)(t),

cDα
1−g(t) = (−1)nIn−α1− g(n)(t),

where n− 1 < α < n.

The following lemma, dealing with a linear variant of the problem (1.1), plays an
important role in the forthcoming analysis.

Lemma 2.3 Let h ∈ C(J,R) and P = [(1 − δηβ+1) − (β + 1)ξ(1 − δηβ)] 6= 0. The
function y is a solution of the problem{ cDα

1−D
β
0+y(t) = h(t), t ∈ J := [0, 1],

y(0) = 0, Dβ
0+y(ξ) = 0, y(1) = δy(η), 0 < ξ, η < 1,

(2.3)

if and only if

y(t) = Iβ0+I
α
1−h(t) +

[tβ+1(1− δηβ)− tβ(1− δηβ+1)]

PΓ(β + 1)
Iα1−h(t)|t=ξ

+
[tβ+1 − ξ(β + 1)tβ]

P

(
δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1

)
, (2.4)

where Iα1−y(s) is defined by (2.2).

Proof. Applying the right fractional integral Iα1− to both sides of the equation in the
problem (2.3), we get

Dβ
0+y(t) = Iα1−h(t) + c0 + c1t. (2.5)

Using the condition Dβ
0+y(ξ) = 0 in (2.5), we obtain

c0 + c1ξ = −Iα1−h(t)|t=ξ. (2.6)

Next we apply the left fractional integral Iβ0+ to the equation (2.5) to get

y(t) = Iβ0+I
α
1−h(t) + c0

tβ

Γ(β + 1)
+ c1

tβ+1

Γ(β + 2)
+ c2t

β−1. (2.7)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

819 AHMAD 817-837



4 B. Ahmad, S. K. Ntouyas, A. Alsaedi

Making use of the conditions y(0) = 0 and y(1) = δy(η) in (2.7) yields c2 = 0 and

(1− δηβ)

Γ(β + 1)
c0 +

(1− δηβ+1)

Γ(β + 2)
c1 = δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1. (2.8)

Solving (2.7) and (2.8) for c0 and c1, we find that

c0 = −Γ(β + 2)

P

[(1− δηβ+1)

Γ(β + 2)
Iα1−h(t)|t=ξ + ξ

(
δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1

) ]
,

c1 =
Γ(β + 2)

P

[
δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1 +

(1− δηβ)

Γ(β + 1)
Iα1−h(t)|t=ξ

]
.

Substituting the values of c0 and c1 in (2.6), we get the solution (2.4). By direct
computation, we can obtain the converse of this lemma. This completes the proof. 2

Remark 2.4 Let ‖h‖ = supt∈[0,1] |h(t). Then we have the following estimate:

‖y‖ ≤ ‖h‖ max
t∈[0,1]

{
(1− ξ)α

Γ(α + 1)
|µ1(t)|+

[tβ + (1 + δηβ)|µ2(t)|]
Γ(α + 1)Γ(β + 1)

}
, (2.9)

where

µ1(t) =
tβ+1(1− δηβ)− tβ(1− δηβ+1)

PΓ(β + 1)
, µ2(t) =

tβ+1 − ξ(β + 1)tβ

P
. (2.10)

Indeed, we have

|y(t)| ≤ ‖h‖
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|‖h‖

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|‖h‖

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]

= ‖h‖
∫ t

0

(t− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+ |µ1(t)|‖h‖

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|‖h‖

[
δ

∫ η

0

(η − s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+

∫ 1

0

(1− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds

]

≤ ‖h‖ max
t∈[0,1]

{
(1− ξ)α

Γ(α + 1)
|µ1(t)|+

[tβ + (1 + δηβ)|µ2(t)|]
Γ(α + 1)Γ(β + 1)

}
,

where we taken (1− s)α ≤ 1.

For computation convenience, we introduce the notation:

Λ = max
t∈[0,1]

{ (1− ξ)α

Γ(α + 1)
|µ1(t)|+

[tβ + (1 + δηβ)|µ2(t)|]
Γ(α + 1)Γ(β + 1)

}
. (2.11)
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3 Existence and uniqueness results for the problem

(1.1)

Let X = C([0, 1],R) denotes the Banach space of all continuous functions from [0, 1]→
R equipped with the norm ‖y‖ = sup {|y(t)| : t ∈ [0, 1]}.

In view of Lemma 2.3, we transform the problem (1.1) into a fixed point problem
as

y = Gy, (3.1)

where the operator G : X → X is defined by

Gy(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−f(s, y(s))ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
f(s, y(s))ds (3.2)

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−f(s, y(s))ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−f(s, y(s))ds

]
,

where µ1, µ2 are defined by (2.10).

Our first result deals with the existence and uniqueness of solutions for the problem
(1.1).

Theorem 3.1 Let f : [0, 1]× R→ R be a continuous function such that:

(H1) |f(t, y)− f(t, z)| ≤ L|y − z|, for all t ∈ [0, 1], y, z ∈ R, L > 0.

Then the problem (1.1) has a unique solution on [0, 1] if

LΛ < 1, (3.3)

where Λ is defined by (2.11).

Proof. Let us define supt∈[0,1] |f(t, 0)| = M and select r ≥ MΛ

1− LΛ
to establish that

GBr ⊂ Br, where Br = {y ∈ X : ‖y‖ ≤ r} and G is defined by (3.2). Using the
condition (H1), we have

|f(t, y)| = |f(t, y)− f(t, 0) + f(t, 0)| ≤ |f(t, y)− f(t, 0)|+ |f(t, 0)|
≤ L‖y‖+M ≤ Lr +M. (3.4)

Then, for y ∈ Br, by using Remark 2.4, we obtain

‖Gy‖ ≤ (Lr +M)

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds
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+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}

= (Lr +M)

{∫ t

0

(t− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+

∫ 1

0

(1− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds

]}
≤ (Lr +M)Λ < r.

This show that Gy ∈ Br, y ∈ Br. Thus GBr ⊂ Br. Next we show that G is a contraction.
For that, let y, z ∈ X . Then, for each t ∈ [0, 1], we have

‖(Gy)− (Gz)‖

≤
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|f(u, y(u))− f(u, z(u))|duds

+|µ1(t)|
∫ 1

ξ

(s− ξ)α−1

Γ(α)
|f(s, y(s))− f(s, z(s))|ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|f(u, y(u))− f(u, z(u))|duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|f(u, y(u))− f(u, z(u))|duds

]
≤ LΛ‖y − z‖,

which, in view of the given condition LΛ < 1, implies that G is a contraction. In
consequence, it follow by the contraction mapping principle that there exists a unique
solution for the problem (1.1) on [0, 1]. This completes the proof. 2

Our next existence result for the problem (1.1) relies on Krasnoselskii’s fixed point
theorem.

Lemma 3.2 (Krasnoselskii’s fixed point theorem) [15]. Let S be a closed, bounded,
convex and nonempty subset of a Banach space X. Let Y1,Y2 be the operators mapping
S into X such that (a) Y1s1 + Y2s2 ∈ S whenever s1, s2 ∈ S; (b) Y1 is compact and
continuous; (c) Y2 is a contraction mapping. Then there exists s3 ∈ S such that
s3 = Y1s3 + Y2s3.

Theorem 3.3 Let f : [0, 1]×R→ R be a continuous function satisfying the condition
(H1). In addition we assume that:

(H2) |f(t, y)| ≤ m(t), for all (t, y) ∈ [0, 1]× R and m ∈ C([0, 1],R+).
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Then there exists at least one solution for the problem (1.1) on [0, 1] provided that

L sup
t∈[0,1]

{
tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
< 1. (3.5)

Proof. Setting supt∈[0,1] |m(t)| = ‖m‖, we fix

% ≥ ‖m‖Λ, (3.6)

where Λ is defined by (2.11), and consider B% = {y ∈ X : ‖y‖ ≤ %}. Introduce the
operators G1 and G2 on B% as follows:

G1y(t) =

∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
f(u, y(u))duds

+µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
f(s, y(s))ds,

and

G2y(t) = µ2(t)

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
f(u, y(u))duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
f(u, y(u))duds

]
.

Observe that G = G1 +G2. Now we verify the hypotheses of Krasnoselskii’s fixed point
theorem in the following steps.

(i) For y, z ∈ B%, we have

‖G1y + G2z‖ = sup
t∈[0,1]

|(G1y)(t) + (G2z)(t)|

≤ ‖m‖ sup
t∈[0,1]

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
≤ ‖m‖Λ ≤ %,

where we used (3.6). Thus G1y + G2z ∈ B%.
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(ii) We show that G1 is a contraction. Indeed, by using the assumption (H1) together
with (3.5) and the fact that (1− s)α < 1, (1 < α ≤ 2) we have

|G1y(t)− G1z(t)| ≤ L‖y − z‖

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+|µ1(t)|
∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

}

≤ L‖y − z‖

{∫ t

0

(t− s)β−1

Γ(β)Γ(α + 1)
ds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

}

≤ L sup
t∈[0,1]

{
tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
‖y − z‖,

which implies that

‖G1y − G1z‖ ≤ L sup
t∈[0,1]

{
tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
‖y − z‖.

Hence G1 is a contraction by (3.5).

(iii) Using the continuity of f, it is easy to show that the operator G2 is continuous.
Further, G2 is uniformly bounded on B% as

‖G2x‖ = sup
t∈[0,1]

|(G2y)(t)| ≤ ‖m‖M2(δη
β + 1)

Γ(α + 1)Γ(β + 1)
, M2 = sup

t∈[0,1]
|µ2(t)|.

In order to establish that G2 is compact, we define sup(t,y)∈[0,1]×B%
|f(t, y)| = f.

Thus, for 0 < t1 < t2 < 1, we have

|(G2y)(t2)− (G2y)(t1)| ≤ |µ2(t2)− µ2(t1)|f

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]

≤ |µ2(t2)− µ2(t1)|f
δηβ + 1

Γ(α + 1)Γ(β + 1)
→ 0 as t1 → t2,

independent of y. This shows that G2 is relatively compact on B%. As all the conditions
of the Arzelá-Ascoli theorem are satisfied, so G2 is compact on B%. In view of steps
(i)-(iii), the conclusion of Krasnoselskii’s fixed point theorem applies and hence there
exists at least one solution for the problem (1.1) on [0, 1]. The proof is completed. 2
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Remark 3.4 Interchanging the roles of the operators G1 and G2 in the foregoing result,
we can obtain a second result by requiring the condition:

LM1
δηβ + 1

Γ(α + 1)Γ(β + 1)
< 1, M1 = sup

t∈[0,1]
|µ1(t)|,

instead of (3.5).

The following existence result is based on Leray-Schauder nonlinear alternative.

Lemma 3.5 (Nonlinear alternative for single valued maps)[16]. Let E be a Banach
space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U. Suppose that
F : U → C is a continuous, compact (that is, F (U) is a relatively compact subset of
C) map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 3.6 Let f : [0, 1]× R→ R be a continuous function. Assume that

(H3) There exist a function g ∈ C([0, 1],R+), and a nondecreasing function ψ : R+ →
R+ such that |f(t, y)| ≤ g(t)ψ(‖y‖), ∀(t, y) ∈ [0, 1]× R.

(H4) There exists a constant K > 0 such that

K

‖g‖ψ(K)Λ
> 1.

Then the problem (1.1) has at least one solution on [0, 1].

Proof. Consider the operator G : X → X defined by (3.2). We show that G
maps bounded sets into bounded sets in X = C([0, 1],R). For a positive number r, let
Br = {y ∈ C([0, 1],R) : ‖y‖ ≤ r} be a bounded set in C([0, 1],R). Then, by using the
fact that (1− s)α−1 ≤ 1 (1 < α ≤ 2) we have

|Gy(t)| ≤ ‖g‖ψ(r)

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
≤ ‖g‖ψ(r)Λ,
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which, on taking the norm for t ∈ [0, 1], yields

‖Gy‖ ≤ ‖g‖ψ(r)Λ.

Next we show that G maps bounded sets into equicontinuous sets of C([0, 1], R). Let
t1, t2 ∈ [0, 1] with t1 < t2 and y ∈ Br, where Br is a bounded set of C([0, 1],R). Then,
using the fact that (1−s)α−1 ≤ 1 (1 < α ≤ 2) and the computations for G2 in previous
theorem, we obtain

|Gy(t2)− Gy(t1)|

≤ ‖g‖ψ(r)

{∣∣∣∣∣
∫ t1

0

[(t2 − s)β−1 − (t1 − s)β−1]
Γ(β)

ds+

∫ t2

t1

(t2 − s)β−1

Γ(β)
ds

∣∣∣∣∣
+|µ1(t2)− µ1(t1)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds+ |µ2(t2)− µ2(t1)|

δηβ + 1

Γ(α + 1)Γ(β + 1)

}

≤ ‖g‖ψ(r)

{
2(t2 − t1)β + tβ2 − t

β
1

Γ(β + 1)
+ |µ1(t2)− µ1(t1)|

(1− ξ)α

Γ(α + 1)

+|µ2(t2)− µ2(t1)|
δηβ + 1

Γ(α + 1)Γ(β + 1)

}
,

which tends to zero independently of y ∈ Br as t2 − t1 → 0. As G satisfies the above
assumptions, therefore it follows by the Arzelá-Ascoli theorem that G : C([0, 1],R) →
C([0, 1],R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once it is shown
that the set of all solutions to the equation y = λGy is bounded for λ ∈ [0, 1]. For that,
let y be a solution of y = λGy for λ ∈ [0, 1]. Then, for t ∈ [0, 1], we have

|y(t)| = |λGy(t)| ≤

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
|g(t)|ψ(‖y‖)

≤ ‖g‖ψ(‖y‖)Λ,

which implies that
‖y‖

‖g‖ψ(‖y‖)Λ
≤ 1.

In view of (H4), there is no solution y such that ‖y‖ 6= K. Let us set

U = {y ∈ X : ‖y‖ < K}.
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The operator G : U → X is continuous and completely continuous. From the choice of
U , there is no u ∈ ∂U such that u = λG(u) for some λ ∈ (0, 1). Consequently, by the
nonlinear alternative of Leray-Schauder type [16, Theorem 5.2], we deduce that G has
a fixed point u ∈ U which is a solution of the problem (1.1). This completes the proof.

2

4 Existence results for the problem (1.2)

Before presenting the existence results for the problem (1.2), we outline the necessary
concepts on multi-valued maps [17], [18].

For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) =
{Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) =
{Y ∈ P(X) : Y is compact and convex }. A multi-valued map G : X → P(X)
is convex (closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is
bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X)
(i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.)
on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if
for each open set N of X containing G(x0), there exists an open neighborhood N0 of
x0 such that G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively
compact for every B ∈ Pb(X). If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be
denoted by FixG. A multivalued map G : [0, 1] → Pcl(R) is said to be measurable if
for every y ∈ R, the function t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)} is measurable.

For each y ∈ X , define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]}.

Definition 4.1 A function y ∈ C([0, 1],R) is said to be a solution of the boundary
value problem (1.2) if y(0) = 0, Dβ

0+y(ξ) = 0, y(1) = δy(η), 0 < ξ, η < 1, and there
exists a function v ∈ SF,y such that v(t) ∈ F (t, y(t)) and

y(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
, t ∈ [0, 1].

4.1 The upper semicontinuous case

In the case when F has convex values we prove an existence result based on nonlinear
alternative of Leray-Schauder type.
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Definition 4.2 A multivalued map F : [0, 1] × R → P(R) is said to be Carathéodory
if

(i) t 7−→ F (t, y) is measurable for each y ∈ R;

(ii) y 7−→ F (t, y) is upper semicontinuous for almost all t ∈ [0, 1].

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each ρ > 0, there exists ϕρ ∈ L1([0, 1],R+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ ϕρ(t)

for all y ∈ R with ‖y‖ ≤ ρ and for a.e. t ∈ [0, 1].

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y : y ∈ G(x)} and
recall two results for closed graphs and upper-semicontinuity.

Lemma 4.3 ([17, Proposition 1.2]) If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a
closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if
when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G
is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 4.4 ([19]) Let X be a separable Banach space. Let F : [0, 1]×X → Pcp,c(X)
be an L1− Carathéodory multivalued map and let Θ be a linear continuous mapping
from L1([0, 1], X) to C([0, 1], X). Then the operator

Θ ◦ SF,x : C([0, 1], X)→ Pcp,c(C([0, 1], X)), y 7→ (Θ ◦ SF,y)(y) = Θ(SF,y)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

For the forthcoming analysis, we need the following lemma.

Lemma 4.5 (Nonlinear alternative for Kakutani maps)[16]. Let E be a Banach space,
C a closed convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F :
U → Pcp,c(C) is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Theorem 4.6 Assume that:

(B1) F : [0, 1]×R→ P(R) is L1-Carathéodory and has nonempty compact and convex
values;
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(B2) there exist a function φ ∈ C([0, 1],R+), and a nondecreasing function Ω : R+ →
R+ such that

‖F (t, y)‖P := sup{|w| : w ∈ F (t, y)} ≤ φ(t)Ω(‖y‖)

for each (t, y) ∈ [0, 1]× R;

(B3) there exists a constant M > 0 such that

M

‖φ‖ΛΩ(M)
> 1,

where Λ is defined by (2.11).

Then the boundary value problem (1.2) has at least one solution on [0, 1].

Proof. Define an operator ΩF : X → P(X ) by

ΩF (y) = {h ∈ X : h(t) = N(y)(t)}

where

N(y)(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
.

We will show that ΩF satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof consists of several steps. As a first step, we show that ΩF is
convex for each y ∈ X . This step is obvious since SF,y is convex (F has convex values),
and therefore we omit the proof.

In the second step, we show that ΩF maps bounded sets (balls) into bounded sets
in X . For a positive number ρ, let Bρ = {y ∈ X : ‖y‖ ≤ ρ} be a bounded ball in X .
Then, for each h ∈ ΩF (y), y ∈ Bρ, there exists v ∈ SF,y such that

h(t) =

∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
v(u)duds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
v(u)duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
v(u)duds

]
.

Then, by using the fact that (1− s)α−1 ≤ 1 (1 < α ≤ 2) we have

|h(t)| ≤ ‖g‖Ω(r)

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds
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+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
≤ ‖φ‖Ω(r)Λ,

which, on taking the norm for t ∈ [0, 1]. yields

‖h‖ ≤ ‖φ‖Ω(r)Λ.

Now we show that ΩF maps bounded sets into equicontinuous sets of X . Let t1, t2 ∈ [0, 1]
with t1 < t2 and y ∈ Bρ. For each h ∈ ΩF (y), using the fact that (1− s)α−1 ≤ 1 (1 <
α ≤ 2), we obtain

|h(t2)− h(t1)|

≤ ‖φ‖Ω(r)

{∣∣∣∣∣
∫ t1

0

[(t2 − s)β−1 − (t1 − s)β−1]
Γ(β)Γ(α + 1)

ds+

∫ t2

t1

(t2 − s)β−1

Γ(β)Γ(α + 1)
ds

∣∣∣∣∣
+|µ1(t2)− µ1(t1)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds+ |µ2(t2)− µ2(t1)|

δηβ + 1

Γ(α + 1)Γ(β + 1)

}

≤ ‖φ‖Ω(r)

{
2(t2 − t1)β + tβ2 − t

β
1

Γ(β + 1)Γ(α + 1)
+ |µ1(t2)− µ1(t1)|

(1− ξ)α

Γ(α + 1)

+|µ2(t2)− µ2(t1)|
δηβ + 1

Γ(α + 1)Γ(β + 1)

}
,

which tends to zero independently of y ∈ Br as t2 − t1 → 0. As ΩF satisfies the above
assumptions, therefore it follows by the Arzelá-Ascoli theorem that ΩF : C([0, 1],R)→
C([0, 1],R) is completely continuous.

In our next step, we show that ΩF is upper semicontinuous. To this end it is
sufficient to show that ΩF has a closed graph, by Lemma 4.3. Let yn → y∗, hn ∈ ΩF (yn)
and hn → h∗. Then we need to show that h∗ ∈ ΩF (y∗). Associated with hn ∈ ΩF (yn),
there exists vn ∈ SF,yn such that for each t ∈ [0, 1],

hn(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−vn(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
vn(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−vn(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−vn(s)ds

]
.

Thus it suffices to show that there exists v∗ ∈ SF,y∗ such that for each t ∈ [0, 1],

h∗(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v∗(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v∗(s)ds
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+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v∗(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v∗(s)ds

]
.

Let us consider the linear operator Θ : L1([0, 1],R)→ X given by

v 7→ Θ(v)(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
.

Observe that

‖hn(t)− h∗(t)‖

=
∥∥∥∫ t

0

(t− s)β−1

Γ(β)
Iα1−(vn − v∗)(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
(vn − v∗)(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−(vn − v∗)(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−(vn − v∗)(s)ds

]∥∥∥→ 0,

as n → ∞. Thus, it follows by Lemma 4.4 that Θ ◦ SF is a closed graph operator.
Further, we have hn(t) ∈ Θ(SF,yn). Since yn → y∗, therefore, we have

h∗(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v∗(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v∗(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v∗(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v∗(s)ds

]
.

Finally, we show there exists an open set U ⊆ X with y /∈ θΩF (y) for any θ ∈ (0, 1)
and all y ∈ ∂U. Let θ ∈ (0, 1) and y ∈ θΩF (y). Then there exists v ∈ L1([0, 1],R) with
v ∈ SF,y such that, for t ∈ [0, 1], we can obtain

|y(t)| = |θΩF (y)(t)|

≤
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|v(u)|duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
|v(s)|ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|v(u)|duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|v(u)|duds

]
≤ ‖φ‖Ω(‖y‖)Λ,

which implies that
‖y‖

‖φ‖Ω(‖y‖)Λ
≤ 1.
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In view of (B3), there exists M such that ‖y‖ 6= M . Let us set

U = {y ∈ X : ‖y‖ < M}.

Note that the operator ΩF : U → P(X ) is upper semicontinuous and completely
continuous. From the choice of U , there is no y ∈ ∂U such that y ∈ θΩF (y) for some
θ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma
4.5), we deduce that ΩF has a fixed point y ∈ U which is a solution of the problem
(1.2). This completes the proof. 2

4.2 The Lipschitz case

We prove in this subsection the existence of solutions for the problem (1.2) with a
nonconvex valued right-hand side by applying a fixed point theorem for multivalued
maps due to Covitz and Nadler [21].

Let (X, d) be a metric space induced from the normed space (X; ‖·‖). Consider Hd :
P(X)×P(X)→ R∪{∞} defined by Hd(A,B) = max{supa∈A d(a,B), supb∈B d(A, b)},
where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a
metric space and (Pcl(X), Hd) is a generalized metric space (see [20]).

Definition 4.7 A multivalued operator N : X → Pcl(X) is called (a) γ−Lipschitz if
and only if there exists γ > 0 such that Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X
and (b) a contraction if and only if it is γ−Lipschitz with γ < 1.

Lemma 4.8 ([21]) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

Theorem 4.9 Assume that:

(A1) F : [0, 1]× R→ Pcp(R) is such that F (·, y(t)) : [0, 1]→ Pcp(R) is measurable for
each y ∈ R;

(A2) Hd(F (t, y), F (t, ȳ) ≤ q(t)|y − ȳ| for almost all t ∈ [0, 1] and y, ȳ ∈ R with q ∈
C([0, 1],R+) and d(0, F (t, 0)) ≤ q(t) for almost all t ∈ [0, 1].

Then the problem (1.2) has at least one solution on [0, 1] if

‖q‖Λ < 1, (4.1)

where Λ is defined by (2.11).

Proof. Consider the operator ΩF : X → P(X ) defined in the beginning of the proof of
Theorem 4.6. Observe that the set SF,y is nonempty for each y ∈ X by the assumption
(A1), so F has a measurable selection (see Theorem III.6 [22]). Now we show that the
operator ΩF satisfies the assumptions of Lemma 4.8. To show that ΩF (y) ∈ Pcl(X )
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for each y ∈ X , let {un}n≥0 ∈ ΩF (y) be such that un → u (n → ∞) in X . Then
u ∈ C([0, 1],R) and there exists vn ∈ SF,y such that, for each t ∈ [0, 1],

un(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−vn(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
vn(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−vn(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−vn(s)ds

]
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that
vn converges to v in L1([0, 1],R). Thus, v ∈ SF,y and for each t ∈ [0, 1], we have

un(t)→ u(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
.

Hence, u ∈ ΩF (y).
Next we show that there exists θ̂ := ‖q‖Λ < 1 such that

Hd(ΩF (y),ΩF (ȳ)) ≤ θ̂‖y − ȳ‖ for each y, ȳ ∈ X .

Let y, ȳ ∈ X and h1 ∈ ΩF (y). Then there exists v1(t) ∈ F (t, y(t)) such that, for each
t ∈ [0, 1],

h1(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v1(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v1(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v1(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v1(s)ds

]
.

By (A2), we have
Hd(F (t, y), F (t, ȳ) ≤ q(t)|y − ȳ|.

So, there exists w ∈ F (t, ȳ) such that

|v1(t)− w| ≤ q(t)|y(t)− ȳ(t)|, t ∈ [0, 1].

Define U : [0, 1]→ P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ q(t)|y(t)− ȳ(t)|}.

Since the multivalued operator U(t) ∩ F (t, ȳ) is measurable (Proposition III.4 [22]),
there exists a function v2(t) which is a measurable selection for U(t) ∩ F (t, ȳ). So
v2(t) ∈ F (t, ȳ) and for each t ∈ [0, 1], we have |v1(t) − v2(t)| ≤ q(t)|y(t) − ȳ(t)|. For
each t ∈ [0, 1], let us define

h2(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v2(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v2(s)ds

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

833 AHMAD 817-837



18 B. Ahmad, S. K. Ntouyas, A. Alsaedi

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v2(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v2(s)ds

]
.

Thus

|h1(t)− h2(t)|

≤
∫ t

0

(t− s)β−1

Γ(β)
Iα1−|v1 − v2|(s)ds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
|v1 − v2|(s)ds

+|µ2(t)|
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−|v1 − v2|(s)ds+

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−|v1 − v2|(s)ds

]
≤ ‖q‖Λ‖y − ȳ‖,

which yields ‖h1 − h2‖ ≤ ‖q‖Λ‖y − ȳ‖.
Analogously, interchanging the roles of y and y, we can obtain

Hd(ΩF (y),ΩF (ȳ)) ≤ ‖q‖Λ‖y − ȳ‖.

By the condition (4.1), it follows that ΩF is a contraction and hence it has a fixed point
y by Lemma 4.8, which is a solution of the problem (1.2). This completes the proof.2

5 Examples

(a) We construct examples for the illustration of the results obtained in Section 3. For
that, we consider the following problem: D

7/4
1−D

3/4
0+ y(t) = f(t, y(t)), t ∈ J := [0, 1],

y(0) = 0, D
3/4
0+ y(ξ) = 0, y(1) = (5/2)y(2/3),

(5.1)

Here α = 7/4, β = 3/4, ξ = 1/3, η = 2/3, δ = 5/2, and

f(t, y) =
1

2
√
t2 + 81

(
cos y +

|y|
1 + |y|

)
+

e−2t

t+ 4
. (5.2)

With the given data, it is found that

P = [(1− δηβ+1)− (β + 1)ξ(1− δηβ)] ≈ 0.262961 6= 0,

sup
t∈[0,1]

{ tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
≈ 1.454491,

and Λ ≈ 4.503584 (Λ is given by (2.11)). Furthermore, |f(t, y1)− f(t, y2)| ≤ L|y1− y2|
with L = 1/9 so that LΛ ≈ 0.0.500398 < 1. Clearly the hypothesis of Theorem 3.1
is satisfied and hence the problem (5.1) has a unique solution by the conclusion of
Theorem 3.1.
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In order to illustrate Theorem 3.3, we notice that (3.5) is satisfied as

L
{ tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
≈ 0.161610 < 1,

and

|f(t, y)| ≤ m(t) =
1√

t2 + 81
+

e−2t

t+ 4
.

As all the assumptions of Theorem 3.3 hold true, we deduce from the conclusion of
Theorem 3.3 that the problem (5.1) has at least one solution on [0, 1].

Now we demonstrate the application of Theorem 3.6 by considering the nonlinear
function

f(t, y) =
e−t√
t+ 36

(
y +

2

π
tan−1 y +

1

10

)
. (5.3)

Clearly |f(t, y)| ≤ g(t)ψ(‖y‖), where g(t) = e−t
√
t+36

, ψ(‖y‖ = (11
10

+ ‖y‖). By the con-

dition (H4), we find that K > 3.310535. Thus all the conditions of Theorem 3.6 are
satisfied and consequently, the problem (5.1) with f(t, y) given by (5.3) has has at least
one solution on [0, 1].

(b) Here we illustrate the results obtained in Section 4. Let us consider the following
fractional differential inclusion involving both left Caputo and right Riemann-Liouville
types fractional derivatives equipped with fractional boundary conditions: D

7/4
1−D

3/4
0+ y(t) ∈ F (t, y(t)), t ∈ J := [0, 1],

y(0) = 0, D
3/4
0+ y(ξ) = 0, y(1) = (5/2)y(2/3),

(5.4)

In order to illustrate Theorem 4.6, we take

F (t, y(t)) =

[
√
t2 + 49

( |y(t)|
2(1 + |y(t)|)

+ |y(t)|+ 1

2

)
,
e−t

9 + t

(
sin y(t) +

1

80

)]
. (5.5)

Clearly |F (t, y(t))| ≤ φ(t)Ω(‖y‖), where φ(t) = 1√
t2+49

and Ω(‖y‖) = ‖y‖ + 1. Using

the condition (B3), we find that M > 1.804018. As the hypothesis of Theorem 4.6 is
satisfied, the problem (5.4) with F (t, y(t)) given by (5.5) has at least one solution on
[0, 1].

Now we illustrate Theorem 4.9 by considering

F (t, x(t)) =

[
1√

100 + t2
,

sinx(t)

(6 + t)
+

1

50

]
. (5.6)

Obviously q(t) = 1(6+t) with ‖q‖ = 1/6 and d(0, F (t, 0)) ≤ q(t) for almost all t ∈ [0, 1].
Moreover, ‖q‖Λ ≈ 0.750597. Thus all the assumptions of Theorem 4.9 hold true and
consequently its conclusion applies to the problem (5.4) with F (t, y(t)) given by (5.6).
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1 Introduction

In this paper, we study the existence of solutions and L2-primitive process for the fol-
lowing retarded stochastic neutral functional differential equations in Hilbert spaces:{

d[x(t) + g(t, xt)] = [Ax(t) +
∫ 0

−h a1(s)A1x(t+ s)ds+ k(t)]dt+ f(t, xt)dW (t),

x(0) = φ0 ∈ L2(Ω, H), x(s) = φ1(s), s ∈ [−h, 0).

(1.1)

where t > 0, h > 0, a1(·) is Hölder continuous, k is a forcing term, W (t) stands for
K-valued Brownian motion or Winner process with a finite trace nuclear covariance
operator Q, and g, f , are given functions satisfying some assumptions. Moreover,
A : D(A) ⊂ H → H is unbounded and A1 ∈ B(H), where B(X, Y ) is the collection
of all bounded linear operators from X into Y , and B(X,X) is simply written as
B(X).

This kind of systems arises in many practical mathematical models, such as,
population dynamics, physical, biological and engineering problems, etc. (see [6, 11,
23]).

Many authors have studied for the theory of stochastic differential equations in
a variety of ways (see [4] [7] and reference therein), impulsive stochastic neutral
differential equations [14, 21], approximate controllability of stochastic equations
[5, 27, 26].

As for the retarded differential equations, Jeong et al [17, 18], Wang [32], and
Sukavanam et al. [28] have discussed the regularity of solutions and controllability
of the semilinear retarded systems, and see [8, 15, 16, 24] and references therein for
the linear retarded systems.

In [10, 12, 13], the authors have discussed the existence of solutions for mild
solutions for the neutral differential systems with state-dependence delay. Most
studies about the neutral initial value problems governed by retarded semilinear
parabolic equation have been devoted to the control problems.

Recently, second order neutral impulsive integrodifferential systems have been
studied in [2, 25], and Stochastic differential systems with impulsive conditions in
[1, 3, 29]. Further, as for impulsive neutral stochastic differential inclusions with
nonlocal initial conditions have been studied for the existence results by Lin and Hu
[22], and controllability results by [19].

Let (Ω,F , P ) be a complete probability space furnished with complete family
of right continuous increasing sub σ-algebras {Ft, t ∈ I} satisfying Ft ⊂ F . An H
valued random variables is an F -measurable function x(t) : Ω → H. Usually we
suppress the dependence on w ∈ Ω in the stochastic process S = {x(t, w) : Ω→ H :
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t ∈ [0, T ]}and write x(t) instead of x(t, w) and x(t) : [0, T ] → H in the space of S.
Then we have to study on results in connection with solutions of random differential
and integral equations in Hilbert spaces. It should be ensured that x(t, w) is a
H-valued random variable with finite second moments and L2-primitive process of
(1.1) for all t ∈ T in order to study stationary random function, Brownian motion,
Markov process, and etc. But the papers treating the regularity for second moments
of the systems and L2-primitive process for retarded stochastic neutral functional
differential equations in Hilbert spaces are not many.

In this paper, we propose a different approach of the earlier works used Azera-
Ascoli theorem to prove the existence of the mild solutions of functional differential
systems in the Banach space of all continuous functions. Our approach is that regu-
larity results of general differential equations results of the linear cases of Di Blasio
et al. [8] and semilinear cases of [17] remain valid under the above formulation of
the stochastic neutral differential system (1.1) even though the system (1.1) con-
tains unbounded principal operators, delay term and local Lipschitz continuity of
the nonlinear term.

The paper is organized as follows. In Section 2, we construct the strict solution
of the semilinear functional differential equations and introduce basic properties. In
Section 3, by using properties of the strict solutions in dealt in Section 2, we will
obtain the L2-primitive process of (1.1), and a variation of constant formula of L2-
primitive process of (1.1) on the solution space. Finally, we give a simple example
to which our main result can be applied.

2 Preliminaries and Lemmas

The inner product and norm in H are denoted by (·, ·) and | · |, respectively. V is
another Hilbert space densely and continuously embedded in H. The notations || · ||
and || · ||∗ denote the norms of V and V ∗ as usual, respectively. For brevity we may
regard that

||u||∗ ≤ |u| ≤ ||u||, u ∈ V. (2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V ×V and satisfying G̊arding’s
inequality

Re a(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0. (2.2)

Let A be the operator associated with the sesquilinear form −a(·, ·):

((c1 − A)u, v) = −a(u, v), u, v ∈ V.

It follows from (2.2) that for every u ∈ V

Re (Au, u) ≥ c0||u||2.
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Then A is a bounded linear operator from V to V ∗ according to the Lax-Milgram
theorem, and its realization in H which is the restriction of A to

D(A) = {u ∈ V ;Au ∈ H}

is also denoted by A. Then A generates an analytic semigroup S(t) = etA in both
H and V ∗ as in Theorem 3.6.1 of [30]. Moreover, there exists a constant C0 such
that

||u|| ≤ C0||u||1/2D(A)|u|
1/2, (2.3)

for every u ∈ D(A), where

||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A). Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗,

where each space is dense in the next one and continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section
1.3.3 of [31]).

If X is a Banach space and 1 < p <∞, Lp(0, T ;X) is the collection of all strongly
measurable functions from (0, T ) into X the p-th powers of norms are integrable.

For the sake of simplicity we assume that the semigroup S(t) generated by A is
uniformly bounded, that is, There exists a constant M0 such that

||S(t)||B(H) ≤M0, ||AS(t)||B(H) ≤
M0

t
. (2.4)

The following lemma is from [30, Lemma 3.6.2].

Lemma 2.2. There exists a constant M0 such that the following inequalities hold:

||S(t)||B(H,V ) ≤ t−1/2M0, (2.5)

||S(t)||B(V ∗,V ) ≤ t−1M0, (2.6)

||AS(t)||B(H,V ) ≤ t−3/2M0. (2.7)
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First, consider the following initial value problem for the abstract linear parabolic
equation {

dx(t)
dt

= Ax(t) +
∫ 0

−h a1(s)A1x(t+ s)ds+ k(t), 0 < t ≤ T,

x(0) = φ0, x(s) = φ1(s) s ∈ [−h, 0).
(2.8)

By virtue of Theorem 2.1 of [15] or [8], we have the following result on the
corresponding linear equation of (2.8).

Lemma 2.3. 1) For (φ0, φ1) ∈ V × L2(−h, 0;D(A)) and k ∈ L2(0, T ;H), T > 0,
there exists a unique solution x of (2.8) belonging to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

and satisfying

||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||φ0||+ ||φ1||L2(−h,0;D(A)) + ||k||L2(0,T ;H)), (2.9)

where C1 is a constant depending on T and

||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) = max{||x||L2(0,T ;D(A)), ||x||W 1,2(0,T ;H)}

(2) Let (φ0, φ1) ∈ H × L2(−h, 0;V ) and k ∈ L2(0, T ;V ∗), T > 0. Then there
exists a unique solution x of (2.8) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|φ0|+ ||φ1||L2(−h,0;V ) + ||k||L2(0,T ;V ∗)), (2.10)

where C1 is a constant depending on T .

Let the solution spaces W0(T ) and W1(T ) of strong solutions be defined by

W0(T ) = L2(0, T ;D(A)) ∩W 1,2(0, T ;H),

W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, we have

W0(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

Thus, there exists a constant c1 > 0 such that

||x||C([0,T ];V ) ≤ c1||x||W0(T ), ||x||C([0,T ];H) ≤ c1||x||W1(T ). (2.11)
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Lemma 2.4. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t

0
S(t − s)k(s)ds for 0 ≤

t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H),

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H), (2.12)

and
||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.13)

Proof. The first assertion is immediately obtained by (2.9). Since

||x||2L2(0,T ;H) =

∫ T

0

|
∫ t

0

S(t− s)k(s)ds|2dt

≤M0

∫ T

0

(

∫ t

0

|k(s)|ds)2dt

≤M0

∫ T

0

t

∫ t

0

|k(s)|2dsdt

≤M0
T 2

2

∫ T

0

|k(s)|2ds,

it follows that
||x||L2(0,T ;H) ≤ T

√
M0/2||k||L2(0,T ;H). (2.14)

From (2.3), (2.12), and (2.14) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M0/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M0/2, C0

√
C1(M0/2)1/4},

the proof is complete.

In what follows in this section, we assume c1 = 0 in (2.2) without any loss of
generality. So we have that 0 ∈ ρ(A) and the closed half plane {λ : Reλ ≥ 0} is
contained in the resolvent set of A. In this case, it is possible to define the fractional
power Aα for α > 0. The subspace D(Aα) is dense in H and the expression

||x||α = ||Aαx||, x ∈ D(Aα)

defines a norm on D(Aα). It is also well known that Aα is a closed operator with
its domain dense and D(Aα) ⊃ D(Aβ) for 0 < α < β. Due to the well known fact
that A−α is a bounded operator, we can assume that there is a constant C−α > 0
such that

||A−α||L(H) ≤ C−α, ||A−α||L(V ∗,V ) ≤ C−α. (2.15)
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Lemma 2.5. For any T > 0, there exists a positive constant Cα such that the
following inequalities hold for all t > 0:

||AαS(t)||L(H) ≤
Cα
tα
, ||AαS(t)||L(H,V ) ≤

Cα
t3α/2

. (2.16)

Proof. The relation is from the inequalities (2.6) and (2.7) by properties of fractional
power of A and the definition of S(t).

3 Existence of solutions

In this paper (H, | · |) and (K, | · |K) denote real separable Hilbert spaces. Consider
the following retarded semilinear impulsive neutral differential system in Hilbert
space H:{

d[x(t) + g(t, xt)] = [Ax(t) +
∫ 0

−h a1(s)A1x(t+ s)ds+ k(t)]dt+ f(t, xt)dW (t),

x(0) = φ0 ∈ L2(Ω, H), x(s) = φ1(s), s ∈ [−h, 0).

(3.1)

Let (Ω,F , P ) be a complete probability space furnished with complete family of
right continuous increasing sub σ-algebras {Ft, t ∈ I} satisfying Ft ⊂ F .

An H valued random variables is an F -measurable function x(t) : Ω → H and
the collection of random variables S = {x(t, w) : Ω → H : t ∈ [0, T ], w ∈ Ω}
is a stochastic process. Generally, we just write x(t) instead of x(t, w) and x(t) :
[0, T ]→ H in the space of S

Let {en}∞n=1 be a complete orthonormal basis of K, and let Q ∈ B(K,K) be
an operator defined by Qen = λnen with finite Tr(Q) =

∑∞
n=1

√
λn = λ < ∞ (Tr

denotes the trace of the operator), where λn ≥ 0(n = 1, 2, · · · ), and B(K,K) denotes
the space of all bounded linea operators from K into K.

{W (t) : t ≥ 0} be a cylindrical K-valued Wiener process with a finite trace
nuclear covariance operator Q over (Ω,F , P ), which satisfies that

W (t) =
∞∑
n=1

√
λnwi(t)en, t ≥ 0,

where {wi(t)}∞i=1 be mutually independent one dimensional standard Wiener pro-
cesses over (Ω,F , P ). Then the above K-valued stochastic process W (t) is called a
Q-Wiener process.
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We assume that Ft = σ{W (s) : 0 ≤ s ≤ t} is the σ-algebra generated by w and
FT = F . Let ψ ∈ B(K,H) and define

|ψ|2Q = Tr(ψQψ∗) =
∞∑
n=1

|
√
λnψen|2.

If |ψ|2Q < ∞, then ψ is called a Q-Hilbert-Schmidt operator. BQ(K,H) stands for
the space of all Q-Hilbert-Schmidt operators. The completion BQ(K,H) of B(K,H)
with respect to the topology induced by the norm |ψ|Q, where |ψ|2Q = (ψ, ψ) is a
Hilbert space with the above norm topology.

Let V be a dense subspace of H as mentioned in Section 2. For T > 0 we define

M2(−h, T ;V ) = {x : [−h, T ]→ V : E(

∫ T

−h
||x(s)||2ds) <∞}

with norm defined by

||x||M2(0,T ;V ) =
[
E(

∫ T

−h
||x(s)||2ds)

]1/2
.

The spaces M2(−h, 0;V ), M2(0, T ;V ), and M2(0, T ;V ∗) are also defined as the
same way and the basic theory of the class of all nonanticipative functions can be
founded in [9]. For h > 0, we assume that φ1 : [−h, 0) → V is a given initial value
satisfying

E(

∫ 0

−h
||φ1(s)||2ds) <∞,

that is, φ1 ∈ M2(−h, 0;V ). In this note, a random variable x(t) : Ω → H will be
called an L2-primitive process if x ∈M2(−h, T ;V ).

For each s ∈ [0, T ], we define xs : [−h, 0]→ H as

xs(r) = x(s+ r), −h ≤ r ≤ 0.

We will set
Π = M2(−h, 0;V ).

Definition 3.1. A stochastic process x : [−h, T ] × Ω → H is called a solution of
(3.1) if

(i) x(t) is measurable and Ft-adapted for each t ≥ 0.
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(ii) x(t) ∈ H has cádlág paths on t ∈ (0, T ) such that

x(t) =S(t)[φ0 + g(0, x0)]− g(t, xt) +

∫ t

0

AS(t− s)g(s, xs)ds (3.2)

+

∫ t

0

S(t− s)
{∫ 0

−h
a1(τ)A1x(s+ τ)dτds+ f(s, xs)dW (s)}

+

∫ t

0

S(t− s)k(s)ds,

x(0) =φ0, x(s) = φ1(s), s ∈ [−h, 0).

(iii) x ∈M2(0, T ;V ) i.e., E(
∫ T

0
||x(s)||2ds) <∞ and C([0, T ];H).

To establish our results, we introduce the following assumptions on system (3.1).
Assumption (A). We assume that a1(·) is Hölder continuous of order ρ:

|a1(0)| ≤ H1, |a1(s)− a1(τ)| ≤ H1(s− τ)ρ.

Assumption (G). Let g : [0, T ] × Π → H be a nonlinear mapping satisfying
the following conditions hold:

(i) For any x ∈ Π, the mapping g(·, x) is strongly measurable.

(ii) There exist positive constants Lg and β > 2/3 such that

E|Aβg(t, x)|2 ≤ Lg(||x||Π + 1)2,

E|Aβg(t, x)− Aβg(t, x̂)|2 ≤ Lg||x− x̂||2Π,

for all t ∈ [0, T ], and x, x̂ ∈ Π.

Assumption (F). Let f : R×Π→ B(K,H) be a nonlinear mapping satisfying
the following:

(i) For any x ∈ Π, the mapping f(·, x) is strongly measurable.

(ii) There exists a function Lf : R+ → R such that

E|f(t, x)− f(t, y)|2 ≤ Lf (r)||x− y||2Π, t ∈ [0, T ]

hold for ||x||Π ≤ r and ||y||Π ≤ r.
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(iii) The inequality
E|f(t, x)|2 ≤ Lf (r)(||x||Π + 1)2

holds for every t ∈ [0, T ] and ||x||Π ≤ r.

Lemma 3.1. Let x ∈M2(−h, T ;V ). Then the mapping s 7→ xs belongs to C([0, T ]; Π),
and for each 0 < t ≤ T

||xt||Π ≤ ||x||M2(−h,t;V ) = ||φ1||Π + ||x||M2(0,t;V ), (3.3)

E(||x||2L2(0,t;V )) = ||x||2M2(0,t;V ),

||x·||L2(0,t;Π) ≤
√
t||x||M2(−h,t;V ).

Proof. The first paragraph is easy to verify. In fact, it is from the following inequal-
ity;

||xt||2Π = E
( ∫ 0

−h
||x(t+ τ)||2dτ

)
≤ E

[ ∫ t

−h
||x(τ)||2dτ

]
≤ ||x||2M2(−h,t;V ), t > 0.

The second paragraph is immediately obtained by definition. From the inequality
(3.3), we have∫ t

0

||xs||2Πds =

∫ t

0

[
E
( ∫ 0

−h
||x(s+ τ)||2dτ

)]2
ds

=

∫ t

0

[
E
( ∫ s

s−h
||x(τ)||2dτ

)]2
ds ≤ t||x||2M2(−h,t;V ),

which completes the last paragraph.

One of the main useful tools in the proof of existence theorems for nonlinear
functional equations is the following Sadvoskii’s fixed point theorem.

Lemma 3.2. (Krasnoselski [20]) Suppose that Σ is a closed convex subset of a
Banach space X. Assume that K1 and K2 are mappings from Σ into X such that
the following conditions are satisfied:

(i) (K1 +K2)(Σ) ⊂ Σ,

(ii) K1 is a completely continuous mapping,

(iii) K2 is a contraction mapping.

Then the operator K1 +K2 has a fixed point in Σ.
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From now on, we establish the following results on the solvability of the equation
(3.1).

Theorem 3.1. Let Assumptions (A), (G) and (F) be satisfied. Assume that (φ0, φ1) ∈
L2(Ω, H) × Π and k ∈ M2(0, T ;V ∗) for T > 0. Then, there exists a solution x of
the system (3.1) such that

x ∈M2(0, T ;V ) ∩ C([0, T ];H).

Moreover, there is a constant C3 independent of the initial data (φ0, φ1) and the
forcing term k such that

||x||M2(−h,T ;V ) ≤ C3(1 + E(|φ0|2) + ||φ1||Π + ||k||M2(0,T ;V ∗)). (3.4)

Proof. Let

r := 2
[
C1C−α

√
Lg(||φ1||Π + 1) +

√
3C1

(
E(|φ0|2) + ||φ1||2Π + ||k||2M2(0,T1;V ∗)

)1/2]
,

and

N :=
√

3C−α
√
Lg
(
||φ1||Π + r + 1

)
+ (3β − 2)−1/2(3β)−1/2C1−β

√
Lg(||φ1||Π + r + 1)

+ C2Tr(Q)
√
Lf (r)(||φ1||Π + r + 1),

where β > 2/3, C1 and C2 is constants in Lemma 2.3 and Lemma 2.4, respectively.
Let

T γ1 := max{T 1/2
1 , T

3β/2
1 }

and choose 0 < T1 < T such that

T γ1 N ≤
r

2
= C1C−α

√
Lg(||φ1||Π + 1) +

√
3C1

(√
E(|φ0|2) + ||φ1||Π + ||k||M2(0,T1;V ∗),

(3.5)

and

N̂ :=T γ1
{√

3C−α
√
Lg + (3β − 1)−1/2(3β)−1/2C1−β

√
Lg + C2Tr(Q)

√
Lf (r)

}
< 1.

(3.6)
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Let J be the operator on M2(0, T1;V ) defined by

(Jx)(t) =S(t)[φ0 + g(0, φ1)]− g(t, xt) +

∫ t

0

AS(t− s)g(s, xs)ds

+

∫ t

0

S(t− s)
{∫ 0

−h
a1(τ)A1x(s+ τ)dτds+ f(s, xs)dW (s)

}
+

∫ t

0

S(t− s)k(s)ds.

It is easily seen that J is continuous from C([0, T1];H) into itself. Let

Σ = {x ∈M2(−h, T ;V ) : x(0) = φ0, and x(s) = φ1(s)(s ∈ [−h, 0))}.

and
Σr = {x ∈ Σ : ||x||M2(0,T1;V ) ≤ r},

which is a bounded closed subset of M2(0, T1;V ). Now, we give the proof of Theorem
3.1 in the following several steps:

Now, in order to show that the operator J has a fixed point in Σr ⊂M2(0, T1;V ),
we take the following steps.

Step 1. J maps Σr into Σr.
By (2.10), (2.15) and Assumption (G), and noting x0 = φ1, we know

E
[ ∫ T1

0

‖S(t)g(0, x0)‖2dt
]

= E
[
C2

1 |g(0, φ1)|2
]

(3.7)

= E
[
C2

1

(
||A−β||B(H)|Aβg(0, φ1)|

)2]
≤ (C1C−α)2Lg(||φ1||Π + 1)2.

From (2.10) of Lemma 2.3 it follows

E
[ ∫ T1

0

∥∥S(t)φ0 +

∫ t

0

S(t− s)
{∫ 0

−h
a1(τ)A1x(s+ τ)dτ + k(s)

}
ds
∥∥2
dt
]

(3.8)

≤ E
[
C2

1{|φ0|+ ||φ1||L2(−h,0;V ) + ||k||L2(0,T1;V ∗)}2
]

≤ 3C2
1

(
E[|φ0|2] + ||φ1||2Π + ||k||2M2(0,T1;V ∗)

)
.

By using Assumption (G) and Lemma 3.1, we have

||g(·, x·)||2M2(0,T1;V ) = E
( ∫ T1

0

∥∥A−βAβg(t, xt)
∥∥2
dt
)

(3.9)

≤ C2
−αE

( ∫ T1

0

∣∣Aβg(t, xt)
∣∣2dt) ≤ C2

−αLgT1

(
||xt||Π + 1

)2

≤ 3C2
−αLgT1

(
||φ1||2Π + ||x||M2(0,T1;V ) + 1

)
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Define H1 : M2(0, T1;V )→M2(0, T1;V ) by

(H1x)(t) =

∫ t

0

AS(t− s)g(s, xs)ds.

Then from Lemma 2.5 and Assumption (G) we have

||AS(t− s)g(s, xs)|| = ||A1−βS(t− s)||B(H,V )|Aβg(s, xs)|

≤ C1−β

(t− s)3(1−β)/2
|Aβg(s, xs)|,

and hence, by using Hólder inequality and Assumption (G),

||H1x||2M2(0,T1;V ) = E
[ ∫ T1

0

∥∥∫ t

0

AS(t− s)g(s, xs)ds
∥∥2
dt
]

(3.10)

≤ E
[ ∫ T1

0

( ∫ t

0

C1−β

(t− s)3(1−β)/2
|Aβg(s, xs)|ds

)2
dt
]

≤ E
[ ∫ T1

0

C2
1−β(3β − 2)−1t3β−2

∫ t

0

|Aβg(s, xs)|2dsdt
]

≤ (3β − 2)−1C2
1−βLg(||xs||Π + 1)2

∫ T1

0

t3β−1dt

≤ (3β − 2)−1(3β)−1C2
1−βLgT

3β
1 (||x||M2(−h,T1;V ) + 1)2

= (3β − 2)−1(3β)−1C2
1−βLgT

3β
1 (||φ1||Π + ||x||M2(0,T1;V ) + 1)2

Let

(H2x)(t) =

∫ t

0

S(t− s)f(s, xs)dW (s).

For (2.13) of Lemma 2.4 it follows

||H2x||2M2(0,T1;V ) = E
[ ∫ T1

0

∣∣ ∫ t

0

S(t− s)f(s, xs)dW (s)
∣∣2dt] (3.11)

≤ E[C2
2Tr(Q)2T1||f(s, xs)||2L2(0,T ;V ∗)]

≤ C2
2Tr(Q)2T1||f(s, xs)||2M2(0,T ;V ∗)

≤ C2
2Tr(Q)2T1Lf (r)(||xs||Π + 1)2

≤ C2
2Tr(Q)2T1Lf (r)(||φ1||Π + ||x||M2(0,T1;V ) + 1)2
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Therefore, from (3.7)-(3.11) it follows that

||Jx||M2(0,T1;V ) ≤C1C−α
√
Lg(||φ1||Π + 1)

+
√

3C1

(
E[|φ0|2] + ||φ1||2Π + ||k||2M2(0,T1;V ∗)

)1/2

+
√

3C−α
√
T1Lg

(
||φ1||Π + ||x||M2(0,T1;V ) + 1

)
+ (3β − 2)−1/2(3β)−1/2C1−β

√
LgT

3β/2
1 (||φ1||Π + ||x||M2(0,T1;V ) + 1)

+ C2Tr(Q)
√
T1Lf (r)(||φ1||Π + ||x||M2(0,T1;V ) + 1)

≤C1C−α
√
Lg(||φ1||Π + 1)

+
√

3C1

(
E[|φ0|2] + ||φ1||2Π + ||k||2M2(0,T1;V ∗)

)1/2
+ T γ1 N ≤ r,

and so, J maps Σr into Σr.
Define mapping K1 +K2 on L2(0, T1;V ) by the formula

(Jx)(t) = (K1x)(t) + (K2x)(t),

(K1x)(t) =

∫ t

0

S(t− s)
∫ s

0

a1(τ − s)A1x(τ)dτds,

and

(K2x)(t) =S(t)[φ0 + g(0, x0)]− g(t, xt) +

∫ t

0

AS(t− s)g(s, xs)ds

+

∫ t

0

S(t− s)
{∫ 0

s−h
a1(τ − s)A1φ

1(τ)dτds+ f(s, xs)dW (s)}

+

∫ t

0

S(t− s)k(s)ds.

Step 2. K1 is a completely continuous mapping.
We can now employ Lemma 3.2 with Σr. Assume that a sequence {xn} of

M2(0, T1;V ) converges weakly to an element x∞ ∈M2(0, T1;V ), i.e., w−limn→∞ xn =
x∞. Then we will show that

lim
n→∞

||K1xn −K1x∞||M2(0,T1;V ) = 0, (3.12)

which is equivalent to the completely continuity of K1 since M2(0, T1;V ) is reflexive.
For a fixed t ∈ [0, T1], let x∗t (x) = (K1x)(t) for every x ∈ M2(0, T1;V ). Then
x∗t ∈M2(0, T1;V ∗) and we have limn→∞ x

∗
t (xn) = x∗t (x∞) since w−limn→∞ xn = x∞.

Hence,
lim
n→∞

(K1xn)(t) = (K1x∞)(t), t ∈ [0, T1].

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

851 Yong Han Kang 838-861



15

Set

h(s) =

∫ s

0

a1(τ − s)A1x(τ)dτ.

Then by using Hólder inequality we obtain the following inequality

|h(s)| ≤
∣∣ ∫ s

0

(a1(τ − s)− a1(0))A1x(τ)dτ
∣∣ (3.13)

+
∣∣ ∫ s

0

a1(0)A1x(τ)dτ
∣∣

≤
{(

(2ρ+ 1)−1s2ρ+1
)1/2

+
√
s
}
H1||A1||B(H)

( ∫ s

0

||x(τ)||2dτ
)1/2

.

Thus, by (2.5) and (3.13) it holds

||(K1x)(t)||2 =
∥∥∫ t

0

S(t− s)h(s)ds
∥∥2

≤ (H1||A1||B(H))
2
( ∫ t

0

||x(τ)||2dτ
)∥∥ ∫ t

0

1

(t− s)1/2

{
((2ρ+ 1)−1s(2ρ+1)/2 +

√
s
}
ds
∥∥2

≤ (H1||A1||B(H))
2||x||2L2(0,t;V )

{
(2ρ+ 1)−1B(1/2, (2ρ+ 3)/2)tρ+1 +B(1/2, 3/2)t

}2
.

:= c2||x||2L2(0,t;V ),

where c2 is a constant and B(·, ·) is the Beta function. Here we used

B(1/2, (2ρ+ 3)/2)tρ+1 =

∫ t

0

(t− s)−1/2s(2ρ+1)/2ds.

And we know

sup
0≤t≤T1

||E[(K1x)(t)]2|| ≤ c2||x||2M2(0,T1;V ) ≤ ∞.

Therefore, by Lebesgue’s dominated convergence theorem it holds

lim
n→∞

E
( ∫ T1

0

||(K1xn)(t)||2dt
)

= E
( ∫ T1

0

||(K1x∞)(t)||2dt
)
,

i.e., limn→∞ ||K1xn||M2(0,T1;V ) = ||K1x∞||M2(0,T1;V ). Since M2(0, T1;V ) is a reflexive
space, it holds (3.12).

Step 3. K2 is a contraction mapping.
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For every x1 and x2 ∈ Σr, we have

(K2x1)(t)− (K2x2)(t) =g(t, x2t)− g(t, x1t)

+

∫ t

0

AS(t− s)
(
g(t, x1s)− g(t, x2s)

)
ds

+

∫ t

0

S(t− s){f(s, x1(s))− f(s, x2(s))}dW (s).

In a similar way to (3.9)-(3.11) and Proposition 2.3, we have

||K2x1 −K2x2||M2(0,T1;V ) ≤
{
C−α

√
T1Lg + (3β − 2)−1/2(3β)−1/2C1−βT

3β/2
1

√
Lg

+ C2

√
T1Lf (r)Tr(Q)

}
||x1 − x2||M2(0,T1;V )

≤N̂ ||x1 − x2||M2(0,T1;V ).

So by virtue of the condition (3.6) the contraction mapping principle gives that the
solution of (3.1) exists uniquely in M2(0, T1;V ). This has proved the local existence
and uniqueness of the solution of (3.1).

Step 4. We drive a priori estimate of the solution.
To prove the global existence, we establish a variation of constant formula (3.4)

of solution of (3.1). Let x be a solution of (3.1) and φ0 ∈ H. Then we have that
from (3.7)-(3.11) it follows that

||x||M2(0,T1;V ) ≤C1C−α
√
Lg(||φ1||Π + 1)

+
√

3C1

(
E[|φ0|2] + ||φ1||2Π + ||k||2M2(0,T1;V ∗)

)1/2

+
√

3C−α
√
T1Lg

(
||φ1||Π + ||x||M2(0,T1;V ) + 1

)
+ (3β − 2)−1/2(3β)−1/2C1−β

√
LgT

3β/2
1 (||φ1||Π + ||x||M2(0,T1;V ) + 1)

+ C2Tr(Q)T1

√
T1Lf (r)(||φ1||Π + ||x||M2(0,T1;V ) + 1)

≤N̂ ||x||L2(0,T1;V ) + N̂1,

where

N̂1 =C1C−α
√
Lg(||φ1||Π + 1)

+
√

3C1

(
E[|φ0|2] + ||φ1||2Π + ||k||2M2(0,T1;V ∗)

)1/2

+
√

3C−α
√
T1Lg

(
||φ1||Π + 1

)
+ (3β − 2)−1/2(3β)−1/2C1−β

√
LgT

3β/2
1 (||φ1||Π + 1)

+ C2Tr(Q)
√
T1Lf (r)(||φ1||Π + 1).
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Taking into account (3.6) there exists a constant C3 such that

||x||L2(0,T1;V ) ≤(1− N̂)−1N̂1

≤C3(1 + E(|φ0|2) + ||φ1||Π + ||k||M2(0,T1;V ∗)),

which obtain the inequality (3.4).
Now we will prove that E[x(T1)2] <∞ in order that the solution can be extended

to the interval [T1, 2T1].
Define a mapping H3 : L2(0, T1;V )→ L2(0, T1;V ) as

(H3x)(t) = S(t)[φ0 + g(0, x0)] +

∫ t

0

S(t− s)
{∫ 0

−h
a1(τ)A1x(s+ τ)dτ + k(s)

}
ds

The from (2.11) and Lemma 2.3 it follows that

E|(H3x)(T1)|2 ≤ c1E||H3x||2W1
(3.14)

≤ 3c1C1E
{
|φ0 + g(0, φ1)|+ ||φ1||L2(−h,0;V ) + ||k||L2(0,T1;V ∗)

}2

≤ c1C1

{
E|φ0 + g(0, φ1)|2 + ||φ1||2M2(−h,0;V ) + ||k||2M2(0,T1;V ∗)

}
:= I,

and from (2.4) and Assumption (F),

E|(H2x)(T1)|2 =E
∣∣ ∫ T1

0

S(T1 − s)f(s, xs)dW (s)
∣∣2 (3.15)

≤M2
0 Tr(Q)2T1Lf (r)(||xs||Π + 1)2

≤M2
0 Tr(Q)2T1Lf (r)(||φ1||Π + ||x||M2(0,T1;V ) + 1)2 := II.

Moreover, by using Assumption (G) we have

E|g(T1, xT1)|2 ≤ E
∥∥A−βAβg(t, xT1)

∥∥2
, (3.16)

≤ C−ALPHA
2Lg
(
||xT1||Π + 1

)2

≤ C−ALPHA
2Lg
(
||φ1||Π + ||x||M2(0,T1;V ) + 1

)2
:= III,

and

E|(H1x)(T1)|2 = E|
∫ T1

0

AS(T1 − s)g(s, xs)ds|2 (3.17)

= E|
∫ T1

0

A1−βW (T1 − s)Aβg(s, xs)ds|2

≤ E
[ ∫ T1

0

C1−β

(t− s)3(1−β)/2
|Aβ(g(s, xs)|ds

]2
≤ E

[
C2

1−β(3β − 2)−1T 3β−2
1

∫ t

0

|Aβ(g(s, xs)|2ds
]2

= C2
1−β(3β − 2)−1T 3β−1

1 Lg(||x||M2(0,T1;V ) + ||φ1||M2(−h,0;V ) + 1)2 := IV.
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Thus,by (3.14)-(3.17) we have

E|x(T1)|2 = E
∣∣(H3x)(T1)− g(T1, xT1) +

∫ T1

0

AS(T1 − s)g(s, xs)ds

+

∫ T1

0

S(T1 − s)f(s, xs)dW (s)
∣∣

≤ I + II + III + IV <∞.

Hence we can solve the equation in [T1, 2T1] with the initial (x(T1), xT1) and an
analogous estimate to (3.4). Since the condition (3.6) is independent of initial values,
the solution can be extended to the interval [0, nT1] for any natural number n, and
so the proof is complete.

Remark 3.1. Thanks for Lemma 2.3, we note that the solution of (3.1) with the
conditions of Theorem 3.1 satisfies also that

E(

∫ T

−h
||x′(s)||2∗ds) <∞.

Here we note that by a simple calculation using the properties of analytic semigroup,
it is immediately seen that x ∈M2(−h, T ;H).

Now, we obtain that the solution mapping is continuous in the following re-
sult, which is useful for the control problem and physical applications of the given
equation.

Theorem 3.2. Let Assumptions (A), (G) and (F) be satisfied. Assuming that the
initial data (φ0, φ1) ∈ L2(Ω, H) × Π and the forcing term k ∈ M2(0, T ;V ∗). Then
the solution x of the equation (3.1) belongs to x ∈M2(0, T ;V ) and the mapping

L2(Ω, H)× Π×M2(0, T ;V ∗) 3 (φ0, φ1, k) 7→ x ∈M2(0, T ;V ) (3.18)

is continuous.

Proof. From Theorem 3.1, it follows that if (φ0, φ1, k) ∈ L2(Ω, H)×Π×M2(0, T ;V ∗)
then x belongs to M2(0, T ;V ). Let (φ0

i , φ
1
i , ki) and xi be the solution of (3.1) with
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(φ0
i , φ

1
i , ki) in place of (φ0, φ1, k) for i = 1, 2. Let xi(i = 1, 2) ∈ Σr. Then it holds

x1(t)− x2(t) = S(t)[(φ0
1 − φ0

2) + (g(0, x1
0)− g(0, x2

0))]

− (g(t, x1
t )− g(t, x2

t )) +

∫ t

0

AS(t− s)(g(s, x1
s)− g(t, x2

s))ds

+

∫ t

0

S(t− s)
{∫ 0

−h
a1(τ)A1(x1(s+ τ)− x2(s+ τ))dτds

+

∫ t

0

S(t− s){((Fx1)(s)− (Fx2)(s)) + (k1(s)− k2(s))}ds.

+

∫ t

0

S(t− s)(k1(s)− k2(s))ds

Hence, by applying the same argument as in the proof of Theorem 3.1, we have

||x1 − x2||M2(0,T1;V ) ≤N̂ ||x1 − x2||L2(0,T1;V ) + N̂2,

where

N̂2 =C1C−ALPHA
√
Lg(||φ1

1 − φ1
2||Π)

+
√

3C1

(
E[|φ0

1 − φ0
1|2] + ||φ1

1 − φ1
2||2Π + ||k1 − k2||2M2(0,T1;V ∗)

)1/2

+
√

3C−ALPHA
√
T1Lg

(
||φ1

1 − φ1
2||Π)

+ (3β − 2)−1/2(3β)−1/2C1−β
√
LgT

(3β+1)/2
1 (||φ1

1 − φ1
2||Π)

+ C2Tr(Q)
√
T1Lf (r)(||φ1

1 − φ1
2||Π),

which implies

||x||M2(0,T1;V ) ≤N̂2(1− N̂)−1.

Therefore, it implies the inequality (3.18).

4 Example

Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π).
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Consider the following retarded neutral stochastic differential system in Hilbert
space H:

d[x(t, y) + g(t, xt(t, y))] = [Ax(t, y) +
∫ 0

−h a1(s)A1x(t+ s, y)ds+ k(t, y)]dt

+F (t, x(t, y))dW (t), (t, y) ∈ [0, T ]× [0, π],

x(0, y) = φ0(y) ∈ L2(Ω, H), x(s, y) = φ1(s, y), (s, y) ∈ [−h, 0)× [0, π],

(3.19)

where h > 0, a1(·) is Hölder continuous, A1 ∈ B(H), and W (t) stands for a standard
cylindrical Winner process in H defined on a stochastic basis (Ω,F , P ). Let

a(u, v) =

∫ π

0

du(y)

dy

dv(y)

dy
dy.

Then
A = ∂2/∂y2 with D(A) = {x ∈ H2(0, π) : x(0) = x(π) = 0}.

The eigenvalue and the eigenfunction of A are λn = −n2 and zn(y) = (2/π)1/2 sinny,
respectively. Moreover,

(a1) {zn : n ∈ N} is an orthogonal basis of H and

S(t)x =
∞∑
n=1

en
2t(x, zn)zn, ∀x ∈ H, t > 0.

Moreover, there exists a constant M0 such that ||S(t)||B(H) ≤M0.

(a2) Let 0 < α < 1. Then the fractional power Aα : D(Aα) ⊂ H → H of A is
given by

Aαx =
∞∑
n=1

n2α(x, zn)zn, D(Aα) := {x : Aαx ∈ H}.

In particular,

A−1/2x =
∞∑
n=1

1

n
(x, zn)zn, and ||A−1/2|| = 1.

The nonlinear mapping f is a real valued function belong to C2([0,∞)) which sat-
isfies the conditions

(f1) f(0) = 0, f(r) ≥ 0 for r > 0,
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(f2) |f ′(r) ≤ c(r + 1) and |f ′′(r)| ≤ c for r ≥ 0 and c > 0.

If we present
F (t, x(t, y)) = f

′
(|x(t, y)|2)x(t, y),

Then it is well known that F is a locally Lipschitz continuous mapping from the
whole V into H by Sobolev’s imbedding theorem (see [30, Theorem 6.1.6]). As an
example of q in the above, we can choose q(r) = µ2r+η2r2/2 (µ and η is constants).

Define g : [0, T ]× Π→ H as

g(t, xt) =
∞∑
n=1

∫ t

0

en
2t(

∫ 0

−h
a2(s)x(t+ s)ds, zn)zn, , t > 0.

Then it can be checked that Assumption (G) is satisfied. Indeed, for x ∈ Π, we
know

Ag(t, xt) = (S(t)− I)

∫ 0

−h
a2(s)x(t+ s)ds,

where I is the identity operator form H to itself and

|a2(0)| ≤ H2, |a2(s)− a2(τ)| ≤ H2(s− τ)κ, s, τ ∈ [−h, 0]

for a constant κ > 0. Hence we have

E|Ag(t, xt)|2 ≤(M0 + 1)2
{∣∣ ∫ 0

−h
(a2(s)− a2(0))x(t+ s)dτ

∣∣2
+
∣∣ ∫ 0

−h
a2(0)x(t+ s)dτ

∣∣2}
≤(M0 + 1)2H2

2

{
(2κ+ 1)−1h2ρ+1 + h

}
||xt||2Π.

It is immediately seen that Assumption (G) has been satisfied. Thus, all the condi-
tions stated in Theorem 3.1 have been satisfied for the equation (3.19), and so there
exists a solution x of the equation (3.19) such that

E(

∫ T

−h
||x(s)||2ds) <∞, and E(

∫ T

−h
||x′(s)||2∗ds) <∞.
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FUZZY STABILITY OF CUBIC FUNCTIONAL EQUATIONS

WITH EXTRA TERMS

CHANG IL KIM AND GILJUN HAN∗

Abstract. In this paper, we consider the generalized Hyers-Ulam stability

for the following cubic functional equation

f(x+ 2y) − 3f(x+ y) + 3f(x) − f(x− y) − 6f(y) +Gf (x, y) = 0.

with an extra term Gf which is a functional operator of f .

1. Introduction and preliminaries

In 1940, Ulam proposed the following stability problem (cf. [20]):

“Let G1 be a group and G2 a metric group with the metric d. Given a constant
δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→
G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists an unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

In the next year, Hyers [8] gave a partial solution of Ulam,s problem for the case of
approximate additive mappings. Subsequently, his result was generalized by Aoki
([1]) for additive mappings and by Rassias [18] for linear mappings to consider the
stability problem with unbounded Cauchy differences. During the last decades, the
stability problem of functional equations have been extensively investigated by a
number of mathematicians ([3], [4], [5], [7], and [16]).

Katsaras [11] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Later, some mathematicians have defined fuzzy
norms on a vector space in different points of view. In particular, Bag and Samanta
[2] gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric
is of Kramosil and Michalek type [13]. In this paper, we use the definition of fuzzy
normed spaces given in [2],[14], [15].

Definition 1.1. Let X be a real vector space. A function N : X × R −→ [0, 1] is
called a fuzzy norm on X if for any x, y ∈ X and any s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1;
(N6) for any x 6= 0, N(x, ·) is continuous on R.

In this case, the pair (X,N) is called a fuzzy normed space.

2010 Mathematics Subject Classification. 39B52, 46S40.
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2 CHANG IL KIM AND GILJUN HAN

Let (X,N) be a fuzzy normed space. (i) A sequence {xn} in X is said to be
convergent in (X,N) if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} in X and
one denotes it by N − limn→∞ xn = x. (ii) A sequence {xn} in X is said to be
Cauchy in (X,N) if for any ε > 0 and any t > 0, there exists an m ∈ N such that
N(xn+p − xn, t) > 1− ε for all n ≥ m and all positive integer p.

It is well known that every convergent sequence in a fuzzy normed space is
Cauchy. A fuzzy normed space is said to be complete if each Cauchy sequence in it
is convergent and a complete fuzzy normed space is called a fuzzy Banach space.

For example, it is well known that for any normed space (X, || · ||), the mapping
NX : X × R −→ [0, 1], defined by

NX(x, t) =

{
0, if t ≤ 0

t
t+||x|| , if t > 0

is a fuzzy norm on X.

In 1996, Isac and Rassias [9] were the first to provide applications of stabil-
ity theory of functional equations for the proof of new fixed point theorems with
applications.

Theorem 1.2. [6] Let (X, d) be a complete generalized metric space and let J :
X −→ X be a strictly contractive mapping with some Lipschitz constant L with
0 < L < 1. Then for each given element x ∈ X, either d(Jnx, Jn+1x) =∞ for all
nonnegative integer n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞} and

(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

In 2001, Rassias [19] introduced the following cubic functional equation

(1.1) f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) = 0

and the following cubic functional equations were investigated

(1.2) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

in ([10]). Every solution of a cubic functional equation is called a cubic mapping
and Kim and Han [12] investigated the following cubic functional equation

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y)

+ k[f(mx+ y) + f(mx− y)−m[f(x+ y) + f(x− y)]− 2(m3 −m)f(x)] = 0

for some rational number m and some real number k and proved the stability for
it in fuzzy normed spaces.

In this paper, we investigate the following functional equation which is added a
term by Gf to (1.1)

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) +Gf (x, y) = 0,

where Gf is a functional operator depending on functions f . The definition of Gf

is given in section 2 and prove the stability for it in fuzzy normed spaces.
Throughout this paper, we assume that X is a linear space, (Y,N) is a fuzzy

Banach space, and (Z,N ′) is a fuzzy normed space.
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FUZZY STABILITY OF CUBIC FUNCTIONAL EQUATIONS WITH EXTRA TERMS 3

2. Cubic functional equations with extra terms

For given l ∈ N and any i ∈ {1, 2, · · ·, l}, let σi : X × X −→ X be a binary
operation such that

σi(rx, ry) = rσi(x, y)

for all x, y ∈ X and all r ∈ R. It is clear that σi(0, 0) = 0.
Also let F : Y l −→ Y be a linear, continuous function. For a map f : X −→ Y ,

define
Gf (x, y) = F (f(σ1(x, y)), f(σ2(x, y)), · · ·, f(σl(x, y))).

Now consider the functional equation

(2.1) f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) +Gf (x, y) = 0

with the functional operator Gf .

Theorem 2.1. Suppose that the mapping f : X −→ Y is a solution of (2.1) with
f(0) = 0. Then f is cubic if and only if f(2x) = 8f(x) and Gf (y, x) = Gf (y,−x)
for all x, y ∈ X.

Proof. Suppose that f(2x) = 8f(x) and Gf (y, x) = Gf (y,−x) for all x, y ∈ X.
Interchanging x and y in (2.1) , we have

(2.2) f(2x+ y)− 3f(x+ y) + 3f(y)− f(y − x)− 6f(x) +Gf (y, x) = 0.

for all x, y ∈ X and letting x = −x in (2.2) , we have

(2.3) f(−2x+ y)− 3f(−x+ y) + 3f(y)− f(x+ y)− 6f(−x) +Gf (y,−x) = 0.

for all x, y ∈ X. By (2.2) and (2.3), we have

(2.4) f(2x+ y)− f(−2x+ y)− 2f(x+ y) + 2f(y − x)− 6f(x) + 6f(−x) = 0.

for all x, y ∈ X, because Gf (y, x) = Gf (y,−x). Letting y = x in (2.4), we have

(2.5) f(3x)− 22f(x) + 5f(−x) = 0.

for all x ∈ X and letting y = 2x in (2.4), by (2.5), we have

f(4x)− 2f(3x)− 4f(x) + 6(−x) = 16f(x) + 16f(−x) = 0.

for all x ∈ X, because f(2x) = 8f(x). Hence f is odd and by (2.2) and (2.3), f
satisfies (1.2). Thus f is a cubic mapping. The converse is trivial. �

3. The Generalized Hyers-Ulam stability for (2.1)

In this section, we prove the generalized Hyers-Ulam stability of (2.1) in fuzzy
normed spaces. For any mapping f : X −→ Y , we define the difference operator
Df : X2 −→ Y by

Df(x, y) = f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) +Gf (x, y)

for all x, y ∈ X.

Theorem 3.1. Let φ : X2 −→ Z be a function such that there is a real number L
satisfying 0 < L < 1 and

(3.1) N ′(φ(2x, 2y), t) ≥ N ′(8Lφ(x, y), t)

for all x, y ∈ X and all t > 0. Let f : X −→ Y be a mapping such that f(0) = 0
and

(3.2) N(Df(x, y), t) ≥ N ′(φ(x, y), t)
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for all x, y ∈ X and all t > 0 and

(3.3) N(f(2x)− 8f(x), t) ≥ min{N ′(aφ(x, 0), t), N ′(bφ(0, x), t), N ′(cφ(x,−x), t)}

for all x ∈ X, all t > 0 and some nonnegative real numbers a, b, c. Further, assume
that if g satisfies (2.1), then g is a cubic mapping. Then there exists an unique
cubic mapping C : X −→ Y such that

N
(
f(x)− C(x),

1

8(1− L)
t
)

≥ min{N ′(aφ(x, 0), t), N ′(bφ(0, x), t), N ′(cφ(x,−x), t)}
(3.4)

for all x ∈ X and all t > 0.

Proof. Let ψ(x, t) = min{N ′(aφ(x, 0), t), N ′(bφ(0, x), t), N ′(cφ(x,−x), t)}. Con-
sider the set S = {g | g : X −→ Y } and the generalized metric d on S defined
by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ ψ(x, t), ∀x ∈ X, ∀t > 0}.

Then (S, d) is a complete metric space(see [17]). Define a mapping J : S −→ S by
Jg(x) = 2−3g(2x) for all x ∈ X and all g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for
some c ∈ [0,∞). Then by (3.1), we have

N(Jg(x)− Jh(x), cLt) ≥ N(2−3(g(2x)− h(2x)), cLt) ≥ ψ(x, t)

for all x ∈ X and all t > 0. Hence we have d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S
and so J is a strictly contractive mapping. By (3.3), d(f, Jf) ≤ 1

8 < ∞ and by
Theorem 1.2, there exists a mapping C : X −→ Y which is a fixed point of J such
that d(Jnf, C)→ 0 as n→∞. Moreover, C(x) = N − limn→∞ 2−3nf(2nx) for all
x ∈ X and d(f, C) ≤ 1

8(1−L) and hence we have (3.4).

Replacing x, y, and t by 2nx, 2ny, and 23nt in (3.2), respectively, we have

N(Df (2nx, 2ny), 23nt) ≥ N ′(φ(2nx, 2ny), 23nt) ≥ N ′(Lnφ(x, y), t)

for all x, y ∈ X and all t > 0. Letting n −→∞ in the last inequality, we have

C(x+ 2y)− 3C(x+ y) + 3C(x)− C(x− y)− 6C(y) +GC(x, y) = 0

for all x, y ∈ X and thus C is a cubic mapping.
Now, we show the uniqueness of C. Let C0 : X −→ Y be another cubic mapping

with (3.4). Then C0 is a fixed ponit of J in S and by (3.4), we get

d(Jf,C0) ≤ d(Jf, JC) ≤ Ld(f, C0) ≤ L

8(1− L)
<∞

and by (3) of Theorem 1.2, we have C = C0. �

Similar to Theorem 3.1, we can also have the following theorem.

Theorem 3.2. Let φ : X2 −→ Z be a function such that there is a real number L
satisfying 0 < L < 1 and

(3.5) N ′(φ(x, y), t) ≥ N ′
(L

8
φ(2x, 2y), t

)
for all x, y ∈ X and all t > 0. Let f : X −→ Y be a mapping satisfying f(0) = 0,
(3.2), and (3.3). Further, assume that if g satisfies (2.1), then g is a cubic mapping.
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Then there exists an unique cubic mapping C : X −→ Y such that the inequality

N
(
f(x)− C(x),

L

8(1− L)
t
)

≥ min{N ′(aφ(x, 0), t), N ′(bφ(0, x), t), N ′(cφ(x,−x), t)}
(3.6)

for all x ∈ X and all t > 0.

Proof. Let ψ(x, t) = min{N ′(aφ(x, 0), t), N ′(bφ(0, x), t), N ′(cφ(x,−x), t)}. Con-
sider the set S = {g | g : X −→ Y } and the generalized metric d on S defined
by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ ψ(x, t), ∀x ∈ X, ∀t > 0}.

Then (S, d) is a complete metric space(see [17]). Define a mapping J : S −→ S by
Jg(x) = 8g(2−1x) for all x ∈ X and all g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for
some c ∈ [0,∞). Then by (3.2) and (3.5), we have

N(Jg(x)− Jh(x), cLt) ≥ N(8(g(2−1x)− h(2−1x)), cLt) ≥ ψ(x, t)

for all x ∈ X and all t > 0. Hence we have d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S
and so J is a strictly contractive mapping. By (3.3), we get

(3.7) N
(
f(x)− 8f(2−1x),

L

8
t
)
≥ ψ

(
2−1x,

L

8
t
)
≥ ψ(x, t)

for all x ∈ X and all t > 0. Hence d(f, Jf) ≤ L
8 < ∞ and by Theorem 1.2, there

exists a mapping C : X −→ Y which is a fixed point of J such that d(Jnf, C)→ 0
as n→∞. Moreover, C(x) = N − limn→∞ 23nf(2−nx) for all x ∈ X and d(f, C) ≤

L
8(1−L) and hence we have (3.6). The rest of the proof is similar to that of Theorem

3.1. �

Using Theorem 3.1 and Theorem 3.2, we have the following corollaries.

Corollary 3.3. Let φ : X2 −→ Z be a function with (3.1). Let f : X −→ Y be
a mapping such that f(0) = 0 and (3.2). Further, assume that if g satisfies (2.1),
then g is a cubic mapping and that

N(Gf (0, x), t) ≥ min{N ′(a1φ(x, 0), t), N ′(a2φ(0, x), t), N ′(a3φ(x,−x), t)},
N(Gf (x,−x), t) ≥ min{N ′(b1φ(x, 0), t), N ′(b2φ(0, x), t), N ′(b3φ(x,−x), t)}

(3.8)

for all x ∈ X, all t > 0 and for some nonnegative real numbers ai, bi(i = 1, 2, 3).
Then there exists an unique cubic mapping C : X −→ Y such that

N
(
f(x)− C(x),

7

24(1− L)
t
)

≥ min{N ′(c1φ(x, 0), t), N ′(c2φ(0, x), t), N ′(c3φ(x,−x), t)}
(3.9)

for all x ∈ X and all t > 0, where c1 = max{a1, b1}, c2 = max{1, a2, b2}, and
c3 = max{1, a3, b3}.

Proof. Setting x = 0 and y = x in (3.2), we have

(3.10) N(f(2x)− 9f(x)− f(−x) +Gf (0, x), t) ≥ N ′(φ(0, x), t)

for all x ∈ X and all t > 0. Setting y = −x in (3.2), we have

(3.11) N(3f(x)− 5f(−x)− f(2x) +Gf (x,−x), t) ≥ N ′(φ(x,−x), t)
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for all x ∈ X and all t > 0. Hence by (3.10) and (3.11), we get

N(6f(x) + 6f(−x)−Gf (0, x)−Gf (x,−x), 2t)

≥ min{N ′(φ(0, x), t), N ′(φ(x,−x), t)}
(3.12)

for all x ∈ X and all t > 0. Thus by (3.8), (3.10), and (3.12), we get

N
(
f(2x)− 8f(x),

7

3
t
)

= min
{
N(f(2x)− 9f(x)− f(−x) +Gf (0, x), t), N

(5

6
Gf (0, x),

5

6
t
)
,

N
(
f(x) + f(−x)− 1

6
Gf (0, x)− 1

6
Gf (x,−x),

1

3
t
)
, N
(1

6
Gf (x,−x),

1

6
t
)}

≥ min{N ′(c1φ(x, 0), t), N ′(c2φ(0, x), t), N ′(c3φ(x,−x), t)}
for all x ∈ X and all t > 0. By Theorem 3.1, there exists an unique cubic mapping
C : X −→ Y with (3.9). �

Corollary 3.4. Let φ : X2 −→ Z be a function with (3.5). Let f : X −→ Y be
a mapping satisfying f(0) = 0 and (3.2). Further, assume that if g satisfies (2.1),
then g is a cubic mapping and that (3.8) hold. Then there exists an unique cubic
mapping C : X −→ Y such that the inequality

N
(
f(x)− C(x),

L

8(1− L)
t
)

≥ min{N ′(c1φ(x, 0), t), N ′(c2φ(0, x), t), N ′(c3φ(x,−x), t)}
(3.13)

holds for all x ∈ X and all t > 0, where c1 = max{a1, b1}, c2 = max{1, a2, b2}, and
c3 = max{1, a3, b3}.

Proof. By (??), we get

N
(
f(x)− 8f(2−1x),

7L

24
t
)
≥ ψ

(
2−1x,

L

8
t
)

≥ min{N ′(c1φ(x, 0), t), N ′(c2φ(0, x), t), N ′(c3φ(x,−x), t)}
for all x ∈ X and all t > 0. By Theorem 3.2, there exists an unique cubic mapping
C : X −→ Y with (3.13). �

From now on, we consider the following functional equation

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y)

+ k[f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)] = 0
(3.14)

for some positive real number k.

Lemma 3.5. [12] A mapping f : X −→ Y satisfies (3.14) if and only if f is a
cubic mapping.

Using Theorem 2.1, Theorem 3.1, and Theorem 3.2, we have the following ex-
ample.

Example 3.6. Let f : X −→ Y be a mapping such that f(0) = 0 and

N(f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) + k[f(2x+ y) + f(2x− y)

− 2f(x+ y)− 2f(x− y)− 12f(x)], t) ≥ t

t+ ‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p

(3.15)
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for all x, y ∈ X, all t > 0 and some positive real numbers k, p with p 6= 3
2 . Then

there exists an unique cubic mapping C : X −→ Y such that

(3.16) N(f(x)− C(x), t) ≥ 2k|8− 22p|t
2k|8− 22p|t+ ‖x‖2p

for all x ∈ X.

Proof. Let Gf (x, y) = k[f(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)] and
φ(x, y) = ‖x‖2p + ‖y‖2p + ‖x‖2p‖y‖p. Then Gf (y, x) = Gf (y,−x) for all x, y ∈ X
and f satisfies (3.2). Letting y = 0 in (3.15), we have

N(f(2x)− 8f(x), t) ≥ N ′
( 1

2k
φ(x, 0), t

)
for all x ∈ X and all t > 0, where

N ′(r, t) =

{
0, if t ≤ 0

t
t+|r| , if t > 0

for all r ∈ R. By Theorem 3.1, and Theorem 3.2, there exists an unique mapping
C : X −→ Y with (2.1) and (3.16). Since Gf (y, x) = Gf (y,−x) for all x, y ∈ X ,
GC(y, x) = GC(y,−x) for all x, y ∈ X and letting y = 0 in DC(x, y) = 0, we have
C(2x) = 8C(x) for all x ∈ X. By Theorem 2.1, we have the result. �

We can use Corollary 3.3 and Corollary 3.4 to get a classical result in the frame-
work of normed spaces. As an example of φ(x, y) in Corollary 3.3 and Corollary
3.4, we can take φ(x, y) = ε(‖x‖p‖y‖p +‖x‖2p +‖y‖2p). Then we can formulate the
following example.

Example 3.7. Let X be a normed space and Y a Banach space. Suppose that if
g satisfies (2.1), then g is a cubic mapping. Let f : X −→ Y be a mapping such
that f(0) = 0 and

(3.17) ‖Df(x, y)‖ ≤ ε(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p)

for all x, y ∈ X and a fixed positive real numbers p, ε with p 6= 3
2 . Suppose that

‖Gf (0, x)‖ ≤ εmax{a1, a2, a3}‖x‖2p, ‖Gf (x,−x)‖ ≤ εmax{b1, b2, b3}‖x‖2p

for all x ∈ X, all t > 0 and for some nonnegative real numbers ai, bi(i = 1, 2, 3).
Then there is an unique cubic mapping C : X −→ Y such that

‖f(x)− C(x)‖ ≤ 7ε

3|8− 22p|
max{3, a1, a2, 3a3, b1, b2, 3b3}‖x‖2p

for all x ∈ X.

Proof. Define a fuzzy norm N ′ on R by

NR(x, t) =

{
t

t+|x| , if t > 0

0, if t ≤ 0

for all x ∈ R and all t > 0. Similary we can define a fuzzy norm NY on Y . Then
(Y,NY ) is a fuzzy Banach space. Let φ(x, y) = ε(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p). Then
by definitions NY and N ′, the following inequality holds :

NY (Df(x, y), t) ≥ NR(φ(x, y), t)
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for all x, y ∈ X and all t > 0. By Corollary 3.3 and Corollary 3.4, we have the
result. �
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DRYGAS FUNCTIONAL EQUATIONS WITH EXTRA TERMS

AND ITS STABILITY

YOUNG JU JEON AND CHANG IL KIM∗

Abstract. In this paper, we consider the generalized Hyers-Ulam stability

for the following functional equation with an extra term Gf

f(x + y) + f(x− y) + Gf (x, y) = 2f(x) + f(y) + f(−y),

where Gf is a functional operator of f .

1. Introduction and preliminaries

In 1940, Ulam [12] proposed the following stability problem :

“Let G1 be a group and G2 a metric group with the metric d. Given a constant
δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→
G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists an unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

In 1941, Hyers [6] answered this problem under the assumption that the groups are
Banach spaces. Aoki [1] and Rassias [11] generalized the result of Hyers. Rassias
[11] solved the generalized Hyers-Ulam stability of the functional inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for some ε ≥ 0 and p with p < 1 and for all x, y ∈ X, where f : X −→ Y is a
function between Banach spaces. The paper of Rassias [11] has provided a lot of
influence in the development of what we call the generalized Hyers-Ulam stability
or Hyers-Ulam-Rassias stability of functional equations. A generalization of the
Rassias theorem was obtained by Gǎvruta [5] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassis approach.

The functional equation

(1.1) f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation and a solution of a quadratic functional
equation is called quadratic. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [10] for mappings f : X −→ Y ,
where X is a normed space and Y is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced by an Abelian
group. Czerwik [3] proved the generalized Hyers-Ulam stability for the quadratic
functional equation and Park [9] proved the generalized Hyers-Ulam stability of the
quadratic functional eqution in Banach modules over a C∗-algebra.

2010 Mathematics Subject Classification. 39B52, 39B82.
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In this paper, we are interested in what kind of terms can be added to the Drygas
functional equation [4]

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)

while the generalized Hyers-Ulam stability still holds for the new functional equa-
tion. We denote the added term by Gf (x, y) which can be regarded as a functional
operator depending on the variables x, y, and functions f . Then the new functional
equation can be written as

(1.2) f(x+ y) + f(x− y) +Gf (x, y) = 2f(x) + f(y) + f(−y).

In fact, the functional operator Gf (x, y) was introduced and considered in the cases
of additive, quadratic functional equations with somewhat different point of view
by the authors([7], [8]).

2. Solutions of 1.2 as additive-quadratic mappings

Let X and Y be normed spacese. For given l ∈ N and any i ∈ {1, 2, · · ·, l}, let
σi : X ×X −→ X be a binary operation such that

σi(rx, ry) = rσi(x, y)

for all x, y ∈ X and all r ∈ R. It is clear that σi(0, 0) = 0. Also let F : Y l −→ Y
be a linear, continuous function. For a map f : X −→ Y , define

Gf (x, y) = F (f(σ1(x, y)), f(σ2(x, y)), · · ·, f(σl(x, y))).

From now on, for any mapping f : X −→ Y , we deonte

fo(x) =
f(x)− f(−x)

2
, fe(x) =

f(x) + f(−x)

2

First, we consider the following functional equation

af(x+ y) + bf(x− y)− cf(y − x)

= (a+ b)f(x)− cf(−x) + (a− c)f(y) + bf(−y)
(2.1)

for fixed real numbers a, b, c with a = b − c and a 6= 0. We can easily show the
following lemma.

Lemma 2.1. Let f : X −→ Y be a mapping. Then f satisfies (2.1) if and only if
f is an additive-quadratic mapping.

Definition 2.2. The functional operator G is called additive-quadratic if whenever
Gh(x, y) = 0 for all x, y ∈ X, h is an additive-quadratic mapping.

Lemma 2.3. Let f : X −→ Y be a mapping satisfying (1.2) and G additve-
quadratic. Then the following are equivalent :
(1) f is additive-quadratic,
(2) the following equality

(2.2) Gf (x, y) = −Gf (y, x)

holds for all x, y ∈ X, and
(3) there exist real numbers b, c such that b 6= c and

(2.3) bGf (x, y) = cGf (y, x)

holds for all x, y ∈ X.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

871 YOUNG JU JEON 870-879



DRYGAS FUNCTIONAL EQUATIONS WITH EXTRA TERMS AND ITS STABILITY 3

Proof. (1) (⇒) (2) (⇒) (3) are trivial.

(3) (⇒) (1) By (2.2), we have f(0) = 0 and by (1.2), we have

Gf (x, y) = 2f(x) + f(y) + f(−y)− f(x+ y)− f(x− y), and

Gf (y, x) = 2f(y) + f(x) + f(−x)− f(x+ y)− f(y − x)

for all x, y ∈ X. Hence by (2.3), we have

(b+c)f(x+y)+bf(x−y)−cf(y−x) = (2b+c)f(x)+cf(−x)+(b+2c)f(y)+bf(−y)

for all x, y ∈ X and by Lemma 2.1, we have that f is additive-quadratic. �

3. The generalized Hyers-Ulam stability of (1.2)

In this section, we deal with the generalized Hyers-Ulam stability of (1.2).
Throughout this paper, assume that G is additive-quadratic and the following in-
equalities hold

‖Gh(x, x)‖ ≤ ‖Gh(0, x)‖+
t∑

i=1

|bi|‖Gh(δix, 0)‖ if h : odd,

‖Gh(x, x)‖ ≤
r∑

i=1

|pi|‖Gh(0, αix)‖+

s∑
i=1

|ai|‖Gh(λix, 0)‖ if h : even

(3.1)

for some r, s, t ∈ N ∪ {0}, some real numbers pi, ai, bi, αi, λi, and δi and for all
x ∈ X.

Theorem 3.1. Let φ : X2 −→ [0,∞) be a function such that

(3.2)

∞∑
n=0

2−nφ(2nx, 2ny) <∞

for all x, y ∈ X. Let f : X −→ Y be an odd mapping such that

(3.3) ‖f(x+ y) + f(x− y) +Gf (x, y)− 2f(x)‖ ≤ φ(x, y).

for all x, y ∈ X. Then there exists an odd mapping A : X −→ X such that A
satisfies (1.2) and

(3.4) ‖A(x)− f(x)‖ ≤
∞∑

n=0

2−n−1
[
φ(2nx, 2nx) + φ(0, 2nx) +

t∑
i=1

|bi|φ(2nδix, 0)
]
.

for all x ∈ X. Further, if Gf satisfies (2.2), then A : X −→ X is an unique additive
mapping with (3.4).

Proof. By (3.3), we have

‖Gf (x, 0)‖ ≤ φ(x, 0), ‖Gf (0, x)‖ ≤ φ(0, x)

for all x, y ∈ X. Setting y = x in (3.3), we have

(3.5) ‖f(2x) +Gf (x, x)− 2f(x)‖ ≤ φ(x, x)

for all x ∈ X. Hence by (3.1) and (3.5), we have

(3.6) ‖f(x)− 2−1f(2x)‖ ≤ 2−1
[
φ(x, x) + φ(0, x) +

t∑
i=1

|bi|φ(δix, 0)
]
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for all x ∈ X. By (3.6), we have

‖f(x)− 2−nf(2nx)‖

≤
n−1∑
k=0

2−k−1
[
φ(2kx, 2kx) + φ(0, 2kx) +

t∑
i=1

|bi|φ(2kδix, 0)
]

for all x ∈ X and all n ∈ N . For m,n ∈ N ∪ {0} with 0 ≤ m < n,

‖2−mf(2mx)− 2−nf(2nx)‖

= 2−m‖f(2mx)− 2−(n−m)f(2n−m(2mx))‖

≤
n−1∑
k=m

2−k−1
[
φ(2kx, 2kx) + φ(0, 2kx) +

t∑
i=1

|bi|φ(2kδix, 0)
](3.7)

for all x ∈ X. By (3.2) and (3.7), {2−nf(2nx)} is a Cauchy sequence in Y and
since Y is a Banach space, there exists a mapping A : X −→ Y such that A(x) =
limn→∞ 2−nf(2nx) for all x ∈ X. By (3.7), we have (3.4).

Replacing x and y by 2nx and 2ny in (3.3), respectively and deviding (3.3) by
2n, we have

‖2−n[f(2n(x+ y)) + f(2n(x− y)) +Gf (2nx, 2ny)− 2f(2nx)]‖ ≤ 2−nφ(2nx, 2ny)

for all x, y ∈ X and letting n → ∞, we can show that A satisfies (1.2). Since f is
odd, A is odd.

Suppose that Gf satisfies (2.2). Then clearly, we can show that GA satisfies (2.2)
and hence by Lemma 2.3, A is an additive-quadratic mapping. Since A is odd, A
is an additive mapping.

Now, we show the uniqueness of A. Let E : X −→ Y be an additive mapping
with (3.4). Since A and E are additive,

‖A(x)− E(x)‖ = ‖A(2nx)− E(2nx)‖

≤ 2−k
∞∑

n=0

2−n
[
φ(2nx, 2nx) + φ(0, 2nx) +

t∑
i=1

|bi|φ(2nδix, 0)
]

for all x ∈ X and all k ∈ N. Hence, letting k →∞, by (3.2), we have A = E. �

Similar to Theorem 3.1, we have the following theorem.

Theorem 3.2. Let φ : X2 −→ [0,∞) be a function such that

(3.8)
∞∑

n=0

2nφ(2−nx, 2−ny) <∞

for all x, y ∈ X. Let f : X −→ Y be an odd mapping satisfying (3.3). Then there
exists an odd mapping A : X −→ X such that A satisfies (1.2) and

(3.9) ‖A(x)−f(x)‖ ≤
∞∑

n=0

2n−1
[
φ(2−nx, 2−nx)+φ(0, 2−nx)+

t∑
i=1

|bi|φ(2−nδix, 0)
]

for all x ∈ X. Further, if Gf satisfies (2.2), then A : X −→ X is an unique additive
mapping with (3.9)
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Proof. By (3.3), we have

‖Gf (x, 0)‖ ≤ φ(x, 0), ‖Gf (0, x)‖ ≤ φ(0, x)

for all x, y ∈ X. Setting y = x = x
2 in (3.5), we have

(3.10)
∥∥∥f(x) +Gf

(x
2
,
x

2

)
− 2f

(x
2

)∥∥∥ ≤ φ(x
2
,
x

2

)
for all x ∈ X. Hence by (3.1), (3.3), and (3.10), we have

(3.11)
∥∥∥f(x)− 2f

(x
2

)∥∥∥ ≤ φ(x, x) + φ(0, x) +
t∑

i=1

|bi|φ(δix, 0)

for all x ∈ X. By (3.11), we have

‖f(x)− 2nf(2−nx)‖ ≤
n−1∑
k=0

2k
[
φ(2−kx, 2−kx) + φ(0, 2−kx) +

t∑
i=1

|bi|φ(2−kδix, 0)
]

for all x ∈ X and all n ∈ N . For m,n ∈ N ∪ {0} with 0 ≤ m < n,

‖2mf(2−mx)− 2nf(2−nx)‖

= 2m‖f(2−mx)− 2(n−m)f(2−(n−m)(2−mx))‖

≤
n−1∑
k=m

2k
[
φ(2−kx, 2−kx) + φ(0, 2−kx) +

t∑
i=1

|bi|φ(2−kδix, 0)
](3.12)

for all x ∈ X. By (3.12), {2nf(2−nx)} is a Cauchy sequence in Y . The rest of proof
is similar to Theorem 3.1. �

Theorem 3.3. Let φ : X2 −→ [0,∞) be a function such that

(3.13)

∞∑
n=0

2−2nφ(2nx, 2ny) <∞

for all x, y ∈ X. Let f : X −→ Y be an even mapping such that

(3.14) ‖f(x+ y) + f(x− y) +Gf (x, y)− 2f(x)− 2f(y)‖ ≤ φ(x, y).

for all x, y ∈ X. Then there exists an even mapping Q : X −→ X such that
(3.15)

‖Q(x)−f(x)‖ ≤
∞∑

n=0

2−2n−2
[
φ(2nx, 2nx)+

r∑
i=1

|pi|φ(0, 2naix)+
s∑

i=1

|ai|φ(2nλix, 0)
]

for all x ∈ X. Further, if Gf satisfies (2.2), then Q : X −→ Y is an unique
quadratic mapping with (3.15)

Proof. Setting y = x in (3.14), we have

‖22f(x)− f(2x) +Gf (x, x)‖ ≤ φ(x, x)

for all x ∈ X and by (3.14), we have

‖Gf (x, 0)‖ ≤ φ(x, 0), ‖Gf (0, x)‖ ≤ φ(0, x)
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for all x ∈ X. Since f is even, letting y = x in (3.14), by (3.1), we have

‖f(x)− 2−2f(2x)‖

≤ 2−2
[
φ(x, x) + ‖Gf (x, x)‖

]
≤ 2−2

[
φ(x, x) +

r∑
i=1

|pi|‖Gf (0, αix)‖+
s∑

i=1

|ai|‖Gf (λix, 0)‖
]

≤ 2−2
[
φ(x, x) +

r∑
i=1

|pi|φ(0, αix) +
s∑

i=1

|ai|φ(λix, 0)
]

for all x ∈ X. Hence we have

‖f(x)− 2−2nf(2nx)‖

≤
n−1∑
k=0

2−2k−2
[
φ(2kx, 2kx) +

r∑
i=1

|pi|φ(0, 2kaix) +
s∑

i=1

|ai|φ(2kλix, 0)
](3.16)

for all x ∈ X and all n ∈ N . For m,n ∈ N ∪ {0} with 0 ≤ m < n, by (3.16)

‖2−2mf(2mx)− 2−2nf(2nx)‖

= 2−2m‖f(2mx)− 2−2(n−m)f(2n−m(2mx))‖

≤
n−1∑
k=m

2−2k−2
[
φ(2kx, 2kx) +

r∑
i=1

|pi|φ(0, 2kaix) +

s∑
i=1

|ai|φ(2kλix, 0)
](3.17)

for all x ∈ X. By (3.17), {2−2nf(2nx)} is a Cauchy sequence in Y . The rest of
proof is similar to Theorem 3.1. �

Theorem 3.4. Let φ : X2 −→ [0,∞) be a function such that

(3.18)
∞∑

n=0

22nφ(2−nx, 2−ny) <∞

for all x, y ∈ X. Let f : X −→ Y be an even mapping satisfying (3.14). Then there
exists an even mapping Q : X −→ X such that
(3.19)

‖Q(x)−f(x)‖ ≤
∞∑

n=0

22n
[
φ(2−nx, 2−nx)+

r∑
i=1

|pi|φ(0, 2−naix)+
s∑

i=1

|ai|φ(2−nλix, 0)
]

for all x ∈ X. Further, if Gf satisfies (2.2), then Q : X −→ Y is an unique
quadratic mapping with (3.19)

Proof. Setting y = x = x
2 in (3.14), we have∥∥∥22f
(x

2

)
− f(x) +Gf

(x
2
,
x

2

)∥∥∥ ≤ φ(x
2
,
x

2

)
for all x ∈ X. By (3.14), we have

‖Gf (x, 0)‖ ≤ φ(x, 0), ‖Gf (0, x)‖ ≤ φ(0, x)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

875 YOUNG JU JEON 870-879



DRYGAS FUNCTIONAL EQUATIONS WITH EXTRA TERMS AND ITS STABILITY 7

for all x ∈ X and so, we have∥∥∥22f
(x

2

)
− f(x)

∥∥∥ ≤ φ(x
2
,
x

2

)
+
∥∥∥Gf

(x
2
,
x

2

)∥∥∥
≤ φ

(x
2
,
x

2

)
+

r∑
i=1

|pi|
∥∥∥Gf

(
0, αi

x

2

)∥∥∥+
s∑

i=1

|ai|
∥∥∥Gf

(
λi
x

2
, 0
)∥∥∥

≤ φ
(x

2
,
x

2

)
+

r∑
i=1

|pi|φ
(

0, αi
x

2

)
+

s∑
i=1

|ai|φ
(
λi
x

2
, 0
)

for all x ∈ X. Similar to Theorem 3.1, we have the result. �

Theorem 3.5. Let φ : X2 −→ [0,∞) be a function with (3.2). Let f : X −→ Y
be a mapping with (3.3). Then there exists a mapping F : X −→ X such that F
satisfies (1.2) and

‖F (x)− f(x)‖

≤
∞∑

n=0

2−2n−2
[
φ1(2nx, 2nx) +

r∑
i=1

|pi|φ1(0, 2nx) +
s∑

i=1

|ai|φ1(λi2
nx, 0)

]
+

∞∑
n=0

2−n−1
[
φ1(2nx, 2nx) + φ1(0, 2nx) +

t∑
i=1

|bi|φ1(δi2
nx, 0)

](3.20)

for all x ∈ X, where φ1(x, y) = 1
2

[
φ(x, y) + φ(−x,−y)

]
. Further, if Gf satisfies

(2.2), then F : X −→ X is an unique additive-quadratic mapping with (3.20)

Proof. By (3.3), we have

(3.21) ‖fe(x+ y) + fe(x− y) +Gfe(x, y)− 2fe(x)− 2fe(y)‖ ≤ φ1(x, y)

for all x, y ∈ X. By Theorem 3.3, there exists an even mapping Q : X −→ Y such
that Q(x) = limn−→∞ 2−2nfe(2

nx) for all x ∈ X,

(3.22) Q(x+ y) +Q(x− y) +GQ(x, y) = 2Q(x) + 2Q(y)

for all x, y ∈ X, and

‖Q(x)− fe(x)‖

≤
∞∑

n=0

2−2n−2
[
φ1(2nx, 2nx) +

r∑
i=1

|pi|φ1(0, 2naix) +
s∑

i=1

|ai|φ1(2nλix, 0)
](3.23)

for all x ∈ X. Similarly, there exists an odd mapping A : X −→ Y such that
A(x) = limn−→∞ 2−nfo(2nx) for all x ∈ X,

(3.24) A(x+ y) +A(x− y) +GA(x, y)− 2A(x) = 0

for all x, y ∈ X, and

(3.25) ‖A(x)−fo(x)‖ ≤
∞∑

n=0

2−n−1
[
φ1(2nx, 2nx)+φ1(0, 2nx)+

t∑
i=1

|bi|φ1(2nδix, 0)
]

for all x ∈ X.

Let F = Q+A. SinceQ is even andA is odd, 2Q(y) = F (y)+F (−y) and by (3.22)
and (3.24), F satisfies (1.2). Since ‖F (x)−f(x)‖ ≤ ‖Q(x)−fe(x)‖+‖A(x)−fo(x)‖,
by (3.23) and (3.25), we have (3.20).
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Suppose that Gf satisfies (2.2). Then clearly, we can show that GF satisfies
(2.2) and hence by Lemma 2.3, F is an additive-quadratic mapping. The proof of
the uniqueness of F is similar to Theorem 3.1. �

Theorem 3.6. Let φ : X2 −→ [0,∞) be a function such that
∞∑

n=0

2nφ(2−nx, 2−ny) <∞

for all x, y ∈ X. Let f : X −→ Y be a mapping with (3.3). Then there exist a
mapping F : X −→ X such that

‖F (x)− f(x)‖

≤
∞∑

n=0

22n−2
[
φ1(2−nx, 2−nx) +

r∑
i=1

|pi|φ1(0, 2−nx) +
s∑

i=1

|ai|φ1(λi2
−nx, 0)

]
+
∞∑

n=0

2n−1
[
φ1(2−nx, 2−nx) + φ1(0, 2−nx) +

t∑
i=1

|bi|φ1(δi2
−nx, 0)

]

(3.26)

for all x ∈ X, where φ1(x, y) = 1
2

[
φ(x, y) + φ(−x,−y)

]
. Further, if Gf satisfies

(2.2), then F : X −→ X is an unique additive-quadratic mapping with (3.26).

4. Applicaions

In this section, we illustrate how the theorems in section 3 work well for the
generalized Hyers-Ulam stability of various additive-quadratic functional equations.

As examples of φ(x, y) in Theorem 3.5 and Theorem 3.6, we can take φ(x, y) =
ε(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p). Then we can formulate the following theorem :

Theorem 4.1. Assume that all of the conditions in Theorem 3.1 hold and Gf

satisfies (2.2). Let p be a real number with 0 < p < 1
2 , 1 < p. Let f : X −→ Y be a

mapping such that
(4.1)
‖f(x+y)+f(x−y)−2f(x)−f(y)−f(−y)+Gf (x, y)‖ ≤ ε(‖x‖p‖y‖p+‖x‖2p+‖x‖2p)

for all x, y ∈ X. Then there exists an unique additive-quadratic mapping F : X −→
Y such that

‖F (x)− f(x)‖ ≤

{
Ψ1(x), if 0 < p < 1

2

Ψ2(x), if 1 < p

for all x ∈ X, where

Ψ1(x) =
[
3 +

r∑
i=1

|pi|+
s∑

i=1

|ai||λi|2p
] ε

4− 4p
‖x‖2p +

[
4 +

t∑
i=1

|bi||δi|2p
] ε

2− 4p
‖x‖2p

and

Ψ2(x) =
[
3 +

r∑
i=1

|pi|+
s∑

i=1

|ai||λi|2p
] 4p−1ε

4p − 4
‖x‖2p +

[
4 +

t∑
i=1

|bi||δi|2p
]22p−1ε

4p − 2
‖x‖2p

Lemma 4.2. Let G be the operator defined by

Gf (x, y) = f(2x+ y)− f(x+ 2y) + f(x− y)− f(y − x)− 3f(x) + 3f(y)

for all mapping f : X −→ Y . Then G is additive-quadratic.
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Proof. Suppose that Gf (x, y) = 0 for all x, y ∈ X. Then we have

(4.2) f(2x+ y)− f(x+ 2y) + f(x− y)− f(y − x)− 3f(x) + 3f(y) = 0.

and so we have

(4.3) fe(2x+ y)− fe(x+ 2y)− 3fe(x) + 3fe(y) = 0

for all x, y ∈ X and letting y = y − x in (4.3), we have

(4.4) fe(x+ y)− fe(x− 2y)− 3fe(x) + 3fe(x− y) = 0

for all x, y ∈ X. Letting y = −y in (4.4), we have

(4.5) fe(x− y)− fe(x+ 2y)− 3fe(x) + 3fe(x+ y) = 0

for all x, y ∈ X. By (4.4) and (4.5), we have

fe(x+2y)+fe(x−2y)−2fe(x)−8fe(y)−4[fe(x+y)+fe(x−y)−2fe(x)−2fe(y)] = 0

for all x, y ∈ X and so fe is quadratic.
Since fo is an odd mapping, by (4.2), we have

(4.6) fo(2x+ y)− fo(x+ 2y) + 2fo(x− y)− 3fo(x) + 3fo(y) = 0

for all x, y ∈ X and letting y = −x− y in (4.6), we have

(4.7) fo(x− y) + fo(x+ 2y) + 2fo(2x+ y)− 3fo(x)− 3fo(x+ y) = 0

for all x, y ∈ X. By (4.6) and (4.7), we have

(4.8) fo(2x+ y) + fo(x− y)− 2fo(x) + fo(y)− fo(x+ y) = 0

for all x, y ∈ X and letting y = −y in (4.10), we have

(4.9) fo(2x− y) + fo(x+ y)− 2fo(x)− fo(y)− fo(x− y) = 0

for all x, y ∈ X. By (4.10) and (4.9), we have

(4.10) fo(2x+ y) + fo(2x− y)− 4fo(x) = 0

for all x, y ∈ X and hence fo is additive. Thus f is an additive-quadratic mapping.
�

By Lemma 2.3, Theorem 4.1, and Lemma 4.2, we have the following theorem :

Theorem 4.3. Let f : X −→ Y be a mapping such that

‖f(x+ 2y)− f(2x+ y) + f(x+ y) + f(y − x) + f(x)− 4f(y)− f(−y)‖
≤ ε(‖x‖p‖y‖p + ‖x‖2p + ‖x‖2p)

for all x, y ∈ X and some a real number p with 0 < p < 1
2 , 1 < p. Then there exists

an unique additive-quadratic mapping F : X −→ Y such that

‖F (x)− f(x)‖ ≤


[

3
4−4p + 4

2−4p

]
ε‖x‖2p, if 0 < p < 1

2[
3×4p−1

4p−4 + 2×4p
4p−2

]
ε‖x‖2p, if 1 < p

for all x ∈ X.

Proof. For a mapping h : X −→ Y , let Gh(x, y) = h(2x+ y)− h(x+ 2y) + h(x−
y) − h(y − x) − 3h(x) + 3h(y). By Lemma 4.2, G is additive-quadratic and f,G
satisfiy (4.1). Since Gf satisfies (2.2) in Lemma 2.3, by Theorem 4.1, we have the
result. �
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Abstract

In this paper, we tend to apply the proposed modified Laplace Adomian decomposition

method that is the coupling of Laplace transform and Adomian decomposition method. The

modified Laplace Adomian decomposition method is applied to solve the Fredholm–Volterra

integro–differential equations of the second kind in the space L2[a, b]. The nonlinear term will

simply be handled with the help of Adomian polynomials. The Laplace decomposition technique

is found to be fast and correct. Several examples are tested and also the results of the study are

discussed. The obtained results expressly reveal the complete reliability, efficiency, and accuracy

of the proposed algorithmic rule for solving the Fredholm–Volterra integro–differential equations

and therefore will be extended to other problems of numerous nature.

Mathematics Subject Classification: 41A10, 45J05, 65R20.

Key-Words: Fredholm-Volterra Integro-Differential Equations; Adomian Decomposition Method;

Laplace Transform Method; Laplace Adomian Decomposition Method.

1. Introduction

Mathematical modeling of real-life problems usually results in functional equations, such

as differential, integral, and integro-differential equations. Many mathematical formulations

of physical phenomena reduced to integro-differential equations, like fluid dynamics, biological

models, chemical mechanics and contact problems, see [6, 14,19].

Many problems from physics and engineering and alternative disciplines cause linear and

nonlinear integral equations. Now, for the solution of those equations several analytical and nu-

merical methods are introduced, however numerical methods are easier than analytical methods

and most of the time numerical methods are used to solve these equations we refer to [1, 2, 18].

Laplace Adomians decomposition method was first introduced by Suheil A. Khuri [16,17] and

has been with successfully used to find the solution of differential equations [20]. This method

generates a solution in the form of a series whose terms are determined by a recursive relation

using the Adomian polynomials.
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Most of the nonlinear integro-differential equations don’t have an exact analytic solution,

therefore approximation and numerical technique should be used, there are only a number of

techniques for the solution of integro-differential equations, since it’s relatively a new subject in

arithmetic.

The modified laplace decomposition technique has applied for solving some nonlinear or-

dinary, partial differential equations. Recently, the authors have used many methods for the

numerical or the analytical solution of linear and nonlinear Fredholm and Volterra integral and

integrodifferential equations of the second kind [8, 9, 11,12,21].

In this paper, we consider the Fredholm–Volterra integro–differential equations of the sec-

ond kind with continuous kernels with respect to position. We applied Laplace transform and

Adomian polynomials to solve nonlinear Fredholm–Volterra integro–differential equations. Al–

Towaiq and Kasasbeh [7] have applied the modification of Laplace decomposition method to

solve linear interval Fredholm integro–differential equations of the form :

u′(x) = f(x) +

∫ b

a

k(x, t)u(t)dt; u(a) = α.

But in this paper, we will study the modification of Laplace Adomian decomposition method to

solve the nonlinear interval Fredholm–Volterra integro–differential equation of the form:

φ(u+ q) = p(u) + λ

∫ b

a

k(u, v)µ(v, φ(v))dv + λ

∫ u

0

ψ(u, v)ν(v, φ(v))dv; (q << 1), (1)

where q is the Phase-Lag is positive, very small and assumed to be intrinsic properties of the

medium. The constant parameter λ may be complex and has many physical meanings, the

function φ(u) is unknown in the Banach space and continuous with their derivative with respect to

time in the space L2[a, b], where [a, b] is the domain of integration with respect to the position and

it’s called the potential function of the mixed integral equation. The kernels k(u, v), ψ(u, v) are

positive and continuous in L2[a, b] and the known function p(u) is continuous and its derivatives

with respect to position.

Using Taylor Expansion after neglecting the second derivative in the equation (1) we get,

φ(u) + q
dφ(u)

du
= p(u) + λ

∫ b

a

k(u, v)µ(v, φ(v))dv + λ

∫ u

0

ψ(u, v)ν(v, φ(v))dv; (q << 1), (2)

with initial condition,

φ(a) = α. (3)

The equation (2) with initial condition (3) is called Integro-Differential Equation for the

Phase-Lag. The Integro-Differential Equation is a kind of functional equation that has associate

integral and derivatives of unknown function. These equations were named after the leading
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mathematicians who have first studied them such as Fredholm, Volterra. Fredholm and Volterra

equations are the most encountered types, see [10]. There is, formally only one difference be-

tween them, in the Fredholm equation the region of integration is fixed where in the Volterra

equation the region is variable. Integro-Differential Equations (IDEs) are given as a combination

of differential and integral equations.

2. Preliminaries

In this section, we give some definitions and properties of the Adomian polynomials and

Laplace transform.

2.1 Laplace transform

Definition 1. The Laplace transform of a function φ(u);u > 0 is defined as

L[φ(u)] = Φ(s) =

∫ +∞

0

e−suφ(u)du, (4)

where s can be either real or complex.

Definition 2. Given two functions φ and ψ, we define, for any u > 0,

(φ ∗ ψ)(u) =

∫ u

0

φ(v)ψ(u− v)dv, (5)

the function φ ∗ ψ is called the convolution of φ and ψ.

Theorem 1. The convolution theorem

L[φ ∗ ψ](u) = L[φ(u)] ∗ L[ψ(u)]. (6)

Lemma 1. Laplace Transform of an Integral: If Φ(s) = L[φ(u)] then

L

[∫ u

0

φ(v)dv

]
=

Φ(s)

s
. (7)

Theorem 2. The Laplace transform L[φ(u)] of the derivatives are defined by

L[φ(n)(u)] = snL[φ(u)]− sn−1φ(0)− sn−2φ′(0)− · · · − φ(n−1)(0). (8)

2.2 Adomians Decomposition method

Consider the general functional equation:

φ = p+N1φ+N2φ, (9)
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where N1, N2 are a nonlinear operators, p is a known function, and we are seeking the solution

φ satisfying (9). We assume that for every p , Eq. (9) has one and only one solution.

The Adomians technique consists of approximating the solution of (9) as an infinite series

φ =
∞∑
n=0

φn, (10)

and decomposing the nonlinear operators N1, N2 as respectively

N1φ =
∞∑
n=0

An, N2φ =
∞∑
n=0

Bn, (11)

where An, Bn are polynomials (called Adomian polynomials)of {φ0, φ1, . . . , φn} [4, 5] given by

An =
1

n!

dn

dλn

[
N1

(
∞∑
i=0

λiφi

)]
λ=0

; n = 0, 1, 2, . . .

Bn =
1

n!

dn

dλn

[
N2

(
∞∑
i=0

λiφi

)]
λ=0

; n = 0, 1, 2, . . .

The proofs of the convergence of the series
∑∞

n=0 φn,
∑∞

n=0An and
∑∞

n=0Bn are given in [3, 13].

Substituting (10) and (11) into (9) yields, we get

∞∑
n=0

φn = p+
∞∑
n=0

An +
∞∑
n=0

Bn.

Thus, we can identify

φ0 =p,

φn+1 =An(φ0, φ1, . . . , φn) +Bn(φ0, φ1, . . . , φn); n = 0, 1, 2, . . .

Thus all components of φ can be calculated once the An, Bn are given. We then define the

n-terms approximate to the solution φ by

Ψn[φ] =
n−1∑
i=0

φi , with lim
n→∞

Ψn[φ] = φ.

3. Description of the Method

The purpose of this section is to discuss the use of modified Laplace decomposition algo-

rithm for the Fredholm–Volterra integro–differential equation. Applying the Laplace transform

(denoted by L) on the both sides of the equation yield (2), we have

L[φ(u)] + qL

[
dφ(u)

du

]
=L[p(u)] + λL

[∫ b

a

k(u, v)µ(v, φ(v))dv

]
+ λL

[∫ u

0

ψ(u, v)ν(v, φ(v))dv

]
,

(12)
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using the differentiation property of Laplace transform (8) we get

L[φ(u)] + qsL[φ(u)]− qφ(0) =L[p(u)] + λL

[∫ b

a

k(u, v)µ(v, φ(v))dv

]
+ λL

[∫ u

0

ψ(u, v)ν(v, φ(v))dv

]
.

(13)

Thus, the given equation is equivalent to

L[φ(u)] =
qφ(0)

(1 + qs)
+
L[p(u)]

(1 + qs)
+

λ

(1 + qs)
L

[∫ b

a

k(u, v)µ(v, φ(v))dv

]
+

λ

(1 + qs)
L

[∫ u

0

ψ(u, v)ν(v, φ(v))dv

]
.

(14)

The Adomian decomposition method and the Adomian polynomials can be used to handle

(14) and to address the nonlinear terms µ(v, φ(v)), ν(v, φ(v)). We first represent the linear term

φ(u) at the left side by an infinite series of components given by

φ(u) =
∞∑
n=0

φn(u), (15)

where the components φn;n ≥ 0 will be determined recursively. However, the nonlinear terms

µ(v, φ(v)), ν(v, φ(v)) at the right side of Eq. (14) will be represented by an infinite series of the

Adomian polynomials An, Bn respectively in the form

µ(v, φ(v)) =
∞∑
n=0

An(v), ν(v, φ(v)) =
∞∑
n=0

Bn(v), (16)

where An, Bn;n ≥ 0 are defined by

An =
1

n!

dn

dλn

[
µ

(
∞∑
i=0

λiφi

)]
λ=0

; n = 0, 1, 2, . . .

Bn =
1

n!

dn

dλn

[
ν

(
∞∑
i=0

λiφi

)]
λ=0

; n = 0, 1, 2, . . .

where the so-called Adomian polynomials An, Bn can be evaluated for all forms of nonlinearity

[22]. In other words, assuming that the nonlinear function is µ(v, φ(v)), ν(v, φ(v)), therefore the

Adomian polynomials are given by

A0 = µ(φ0), B0 = ν(φ0),

A1 = φ1µ
′(φ0), B1 = φ1ν

′(φ0),

A2 = φ2µ
′(φ0) +

1

2
φ2
1µ
′′(φ0), B2 = φ2ν

′(φ0) +
1

2
φ2
1ν
′′(φ0).
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Substituting (15) and (16) into (14), we will get

L

[
∞∑
0

φn(u)

]
=

qφ(0)

(1 + qs)
+
L[p(u)]

(1 + qs)
+

λ

(1 + qs)
L

[∫ b

a

k(u, v)
∞∑
0

An(v)dv

]

+
λ

(1 + qs)
L

[∫ u

0

ψ(u, v)
∞∑
0

Bn(v)dv

]
.

(17)

The Adomian decomposition method presents the recursive relation

L[φ0(u)] =
qφ(0)

(1 + qs)
+
L[p(u)]

(1 + qs)
+

λ

(1 + qs)
, (18)

L[φ1(u)] =
λ

(1 + qs)
L

[∫ b

a

k(u, v)A0(v)dv

]
+

λ

(1 + qs)
L

[∫ u

0

ψ(u, v)B0(v)dv

]
, (19)

L[φ2(u)] =
λ

(1 + qs)
L

[∫ b

a

k(u, v)A1(v)dv

]
+

λ

(1 + qs)
L

[∫ u

0

ψ(u, v)B1(v)dv

]
. (20)

In general, the recursive relation is given by

L[φn+1(u)] =
λ

(1 + qs)
L

[∫ b

a

k(u, v)An(v)dv

]
+

λ

(1 + qs)
L

[∫ u

0

ψ(u, v)Bn(v)dv

]
, n = 0, 1, 2, . . .

(21)

A necessary condition for Eq. (21) to work is that

lim
s→∞

λ

(1 + qs)
= 0.

Applying inverse Laplace transform to Eqs. (18)–(21), so our required recursive relation

φ0(u) = G(u), (22)

and

φn+1(u) =L−1
[

λ

(1 + qs)
L

[∫ b

a

k(u, v)An(v)dv

]]
+L−1

[
λ

(1 + qs)
L

[∫ u

0

ψ(u, v)Bn(v)dv

]]
,

(23)

where G(u) may be a function that arises from the source term and also the prescribed initial

conditions, the initial solution is very important, the choice of (22) as the initial solution always

leads to noise oscillation during the iteration procedure, the modified laplace decomposition

method [15] suggests that the operate G(u) defined above in (18) be rotten into two parts:

G(u) = G1(u) +G2(u).
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Instead of iteration procedure (22) and (23), we suggest the following modification

φ0(u) = G1(u),

φ1(u) = G2(u) + L−1
[

λ

(1 + qs)
L

[∫ b

a

k(u, v)A0(v)dv

]]
+ L−1

[
λ

(1 + qs)
L

[∫ u

0

ψ(u, v)B0(v)dv

]]
,

φn+1(u) = L−1
[

λ

(1 + qs)
L

[∫ b

a

k(u, v)An(v)dv

]]
+ L−1

[
λ

(1 + qs)
L

[∫ u

0

ψ(u, v)Bn(v)dv

]]
, n = 0, 1, 2, . . .

We then define the n-terms approximate to the solution φ(u) by

Ψn[φ(u)] =
n−1∑
i=0

φi(u), with lim
n→∞

Ψn[φ(u)] = φ(u).

In this paper, the obtained series solution converges to the exact solution.

3.1 A Test of Convergence

In fact, on every interval the inequality ‖φi+1‖2 < β‖φi‖2 is required to hold for i = 0, 1, . . . , n,

wherever 0 < β < 1 may be a constant and n is that the maximum order of the approximate

used in the computation. Of course, this is often only a necessary condition for convergence, as

a result of it might be necessary to compute ‖φi‖2 for each i = 0, 1, . . . , n so as to conclude that

the series is convergent.

4. Application of the Laplace transform–Adomian decomposition method

In this section, the Laplace transform–Adomian decomposition method for solving Fredholm–

Volterra integro–differential equation is illustrated in the two examples given below. To show

the high accuracy of the solution results from applying the present method to our problem (2)

compared with the exact solution, the maximum error is defined as:

Rn = ‖φExact(u)−Ψn[φ(u)]‖∞,

where n = 1, 2, . . . represents the number of iterations.

Example 1

Consider the nonlinear Fredholm–Volterra integro–differential equation

φ(u+ 0.2) = p(u) +
1

4

∫ 1

0

cos(u)φ2(v)dv +

∫ u

0

φ3(v)dv, (24)
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where

p(u) =
1

12
(−3− u3cos(u)).

Using Taylor Expansion after neglecting the second derivative in the equation (24) we get,

φ(u) + 0.2
dφ(u)

du
= p(u) +

1

4

∫ 1

0

cos(u)φ2(v)dv +

∫ u

0

φ3(v)dv; φ(0) = 0. (25)

The exact solution for this problem is

φ(u) = cos(u)− sin(u).

First, we apply the Laplace transform to both sides of (25)

L[φ(u)] + 0.2L

[
dφ(u)

du

]
= L[p(u)] +

1

4
L

[∫ 1

0

cos(u)φ2(v)dv

]
+ L

[∫ u

0

φ3(v)dv

]
, (26)

Using the property of Laplace transform and the initial conditions, we get

L[φ(u)] + 0.2sL[φ(u)] = L[p(u)] +
1

4
L

[∫ 1

0

cos(u)φ2(v)dv

]
+ L

[∫ u

0

φ3(v)dv

]
, (27)

or equivalently

L[φ(u)] =
L[p(u)]

1 + 0.2s
+

1

4 + 0.8s
L

[∫ 1

0

cos(u)φ2(v)dv

]
+

1

1 + 0.2s
L

[∫ u

0

φ3(v)dv

]
. (28)

Substituting the series assumption for φ(u) and the Adomian polynomials for φ2(u), φ3(u) as

given above in (15) and (16) respectively into Eq. (28) we obtain

L

[
∞∑
n=0

φn(u)

]
=

L[p(u)]

1 + 0.2s
+

1

4 + 0.8s
L

[∫ 1

0

cos(u)
∞∑
n=0

An(v)dv

]

+
1

1 + 0.2s
L

[∫ u

0

∞∑
n=0

Bn(v)dv

]
.

(29)

The recursive relation is given below

L[φ0(u)] =
L[p(u)]

1 + 0.2s
,

L[φ1(u)] =
1

4 + 0.8s
L

[∫ 1

0

cos(u)A0(v)dv

]
+

1

1 + 0.2s
L

[∫ u

0

B0(v)dv

]
,

L[φn+1(u)] =
1

4 + 0.8s
L

[∫ 1

0

cos(u)An(v)dv

]
+

1

1 + 0.2s
L

[∫ u

0

Bn(v)dv

]
,

(30)
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where An, Bn are the Adomian polynomials for the nonlinear terms φ2(u), φ3(u) respectively.

The Adomian polynomials for µ(v, φ(v)) = φ2(u), ν(v, φ(v)) = φ3(u) are given by

A0 = φ2
0, B0 = φ3

0,

A1 = 2φ0φ1, B1 = 3φ2
0φ1,

A2 = 2φ0φ2 + φ2
1, B2 = 3φ2

0φ2 + 3φ0φ
2
1,

A3 = 2φ0φ3 + 2φ1φ2, B3 = 3φ2
0φ3 + 6φ0φ1φ2 + φ3

1.

Taking the inverse Laplace transform of both sides of the first part of (30), and using the recursive

relation (30) gives

φ0(u) = 1− u− u2 +
1

2
u3 +

1

12
u4 − . . .

φ1(u) =
1

2
u2 − 1

3
u3 − 1

8
u4 +

1

6
u5 + . . .

φ2(u) =
1

12
u4 − 1

12
u5 + . . .

(31)

Thus the series solution is given by

Ψn[φ(u)] =
n−1∑
i=0

φi(u) =

(
1− 1

2!
u2 +

1

4!
u4 + . . .

)
−
(
u− 1

3!
u3 +

1

5!
u5 + . . .

)
n = 1, 2, . . .

φ(u) = lim
n→∞

Ψn[φ(u)] = lim
n→∞

[(
1− 1

2!
u2 +

1

4!
u4 + . . .

)
−
(
u− 1

3!
u3 +

1

5!
u5 + . . .

)]
,

that converges to the exact solution

φ(u) = cos(u)− sin(u).

Example 2

Consider the nonlinear Fredholm–Volterra integro–differential equation

φ(u+ 0.01) = p(u) +

∫ 1

0

φ(v)dv +

∫ u

0

e−uφ2(v)dv, (32)

where

p(u) = 1− 1

4
e−u + 0.0100502eu.

Using Taylor Expansion after neglecting the second derivative in the equation (32) we get,

φ(u) + 0.01
dφ(u)

du
= p(u) +

∫ 1

0

φ(v)dv +

∫ u

0

e−uφ2(v)dv; φ(0) = 1. (33)

The exact solution for this problem is

φ(u) = eu.
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First, we apply the Laplace transform to both sides of (33)

L[φ(u)] + 0.01L

[
dφ(u)

du

]
= L[p(u)] + L

[∫ 1

0

φ(v)dv

]
+ L

[∫ u

0

e−uφ2(v)dv

]
, (34)

using the property of Laplace transform and the initial conditions, we get

L[φ(u)] + 0.01sL[φ(u)]− 0.01 = L[p(u)] + L

[∫ 1

0

φ(v)dv

]
+ L

[∫ u

0

e−uφ2(v)dv

]
, (35)

or equivalently

L[φ(u)] =
0.01

1 + 0.01s
+

L[p(u)]

1 + 0.01s
+

1

1 + 0.01s
L

[∫ 1

0

φ(v)dv

]
+

1

1 + 0.01s
L

[∫ u

0

e−uφ2(v)dv

]
.

(36)

Substituting the series assumption for φ(u) and the Adomian polynomials for φ2(u) as given

above in (15) and (16) respectively into above equation, we obtain

L

[
∞∑
n=0

φn(u)

]
=

0.01

1 + 0.01s
+

L[p(u)]

1 + 0.01s
+

1

1 + 0.01s
L

[∫ 1

0

∞∑
n=0

φn(v)dv

]

+
1

1 + 0.01s
L

[∫ u

0

e−u
∞∑
n=0

An(v)dv

]
,

(37)

the recursive relation is given below

L[φ0(u)] =
0.01

1 + 0.01s
+

L[p(u)]

1 + 0.01s
,

L[φ1(u)] =
1

1 + 0.01s
L

[∫ 1

0

φ0(v)dv

]
+

1

1 + 0.01s
L

[∫ u

0

e−uA0(v)dv

]
,

L[φn+1(u)] =
1

1 + 0.01s
L

[∫ 1

0

φn(v)dv

]
+

1

1 + 0.01s
L

[∫ u

0

e−uAn(v)dv

]
,

(38)

where An are the Adomian polynomials for the nonlinear terms φ2(u). The Adomian polynomials

for µ(v, φ(v)) = φ2(u) is given by

A0 = φ2
0,

A1 = 2φ0φ1,

A2 = 2φ0φ2 + φ2
1,

A3 = 2φ0φ3 + 2φ1φ2,
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Taking the inverse Laplace transform of both sides of the first part of (38), and using the recursive

relation (38) gives

φ0(u) = 1 + u− 1

2
u3 − 1

2
u4 − 13

40
u5 + . . .

φ1(u) =
1

2
u2 +

2

3
u3 +

5

12
u4 +

7

120
u5 + . . .

φ2(u) =
1

8
u4 +

11

40
u5 + . . .

(39)

Thus the series solution is given by

Ψn[φ(u)] =
n−1∑
i=0

φi(u) =

(
1 + u+

1

2!
u2 +

1

3!
u3 +

1

4!
u4 +

1

5!
u5 + . . .

)
n = 1, 2, . . .

φ(u) = lim
n→∞

Ψn[φ(u)] = lim
n→∞

[(
1 + u+

1

2!
u2 +

1

3!
u3 +

1

4!
u4 +

1

5!
u5 + . . .

)]
,

that converges to the exact solution

φ(u) = eu.

5. Conclusions

In this work, the Laplace decomposition technique has been successfully applied to finding

the approximate solution of the nonlinear Fredholm–Volterra integro–differential equation. The

method is extremely powerful and efficient find analytical moreover as numerical solutions for

wide classes of nonlinear Fredholm–Volterra integro–differential equations. It provides a lot of

realistic series solutions that converge very rapidly in real physical issues.

The main advantage of this technique is that the fact that it provides the analytical solution.

Some examples are given and therefore the results reveal that the method is extremely effective.

some of the nonlinear equations are examined by the modified technique to Illustrate the effec-

tiveness and convenience of this technique, and in all cases, the modified technique performed

excellently. The results reveal that the proposed technique is extremely effective and easy.
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Abstract

In this paper we studied Bézier surfaces that are very famous techniques and widely used in Computer
Aided Geometric Design. Mainly there are two types of Bézier surfaces which are rectangular and
triangular Bézier patches. In this paper we will give a representation for the conversion matrix which
converts one type to another.

1 Introduction

The theory of Bézier curves has an important role and they are numerically the most stable among all
polynomial bases currently used in CAD systems. On the other hand in these days Bézier surfaces are very
famous techniques and widely used in Computer Aided Geometric Design [1]-[13]. Mainly there are two
types of Bézier surfaces which are rectangular and triangular Bézier patches and they are de�ned in terms
of the univariate Bernstein polynomials Bni (s) =

�
n
i

�
si(1 � s)n�i and the bivariate Bernstein polynomial

Bni;j;k(u; v; w) =
�
n
i;j;k

�
uivjwk where u+ v+w = 1: A triangular Bézier patch of degree n with control points

Ti;j;k is de�ned by

T (u; v; w) =
X

i+j+k=n

Ti;j;kB
n
i;j;k(u; v; w); u; v; w � 0; u+ v + w = 1:

and a rectangular Bézier patch of degree n�m with control points Pi;j is represented by

P (s; t) =
nX
i=0

nX
j=0

PijB
n
i (s)B

n
j (t) 0 � s; t � 1; (see [3])

Since the two patches have di¤erent geometric properties it is not easy to use both of them in the same CAD
system and conversion of one type to another is needed.

2 Construction of the Conversion Matrices

The following theorem gives the conversion of degree n triangular Bézier patch to degenerate rectangular
Bézier patch of degree n� n:

De�nition 1 For all nonnegative integers x the falling factorial is de�ned by

(x)n = x(x� 1):::(x� n+ 1) =
nY
k=1

(x� (k � 1))
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Theorem 2 A degree n triangular Bézier patch T (u; v; w) can be represented as a degenerate Bézier patch
of degree n� n :

P (s; t) =
nX
i=0

nX
j=0

PijB
n
i (s)B

n
j (t); 0 � s; t � 1

where the control points Pij are determined by0BBB@
Pi0
Pi1
...
Pin

1CCCA = A1A2:::Ai

0BBB@
Ti0
Ti1
...

Ti;n�i

1CCCA ; i = 0; 1; 2; :::; n:

and Ai(i = 0; 1; :::; n) are degree elevation operators in the form

Ak =

266666664

1 0 0 : : : 0 0
1

n+1�k
n�k
n+1�k 0 : : : 0 0

0 2
n+1�k

n�k�1
n+1�k : : : 0 0

...
...

...
. . .

...
...

0 0 0 0 n�k
n+1�k

1
n+1�k

0 0 0 0 0 1

377777775
(n�k+2)�(n�k+1)

Until now no one has studied the generalization of the product A1A2:::Ak mentioned in the above theorem
and indeed the product of these matrices is not easy to calculate for di¤erent values of n and k: Here we will
give the generalization of this product which will make all the computations easier.

Theorem 3 The following formula is true

A1A2:::Ak = �Ak =
h
�a
(k)
i;j

i
(n+1)�(n�k+1)

;

where

�a
(k)
i;j =

�
i�1
j�1
�
(k)i�j (n� k)j�1
(n)i�1

;

(k)n = k(k � 1):::(k � n+ 1) =
nY
j=1

(k � (j � 1)) and

Ak =

266666664

1 0 0 : : : 0 0
1

n+1�k
n�k
n+1�k 0 : : : 0 0

0 2
n+1�k

n�k�1
n+1�k : : : 0 0

...
...

...
. . .

...
...

0 0 0 0 n�k
n+1�k

1
n+1�k

0 0 0 0 0 1

377777775
(n�k+2)�(n�k+1)

:

Proof. For k = 1;
�A1 = A1:

Suppose it is true for k, that is
A1A2:::Ak = �Ak:

We will show that it also true for k + 1; i.e

�AkAk+1 = �Ak+1:
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Let ci;j be the element at the ith row, jth column of the matrix �AkAk+1 :

ci;j =
n�k+1X
m=1

�a
(k)
i;ma

(k+1)
m;j

=
n�k+1X
m=1

�
i�1
m�1

�
(k)i�m (n� k)m�1
(n)i�1

a
(k+1)
m;j ;

where i = f1; 2; :::; n+ 1g and j = f1; 2; :::; n� kg :
For j = 1 (�rst column)

ci;1 =
n�k+1X
m=1

�a
(k)
i;ma

(k+1)
m;1

=
n�k+1X
m=1

�
i�1
m�1

�
(k)i�m (n� k)m�1
(n)i�1

a
(k+1)
m;1 :

For i = 1 and j = 1

c1;1 =
n�k+1X
m=1

�a
(k)
1;ma

(k+1)
m;1

=
n�k+1X
m=1

�
0

m�1
�
(k)1�m (n� k)m�1

(n)0
a
(k+1)
m;1

= a
(k+1)
1;1 = 1 = �a

(k+1)
1;1 :

For i = 2 and j = 1;

c2;1 =

n�k+1X
m=1

�a
(k)
2;ma

(k+1)
m;1

=
n�k+1X
m=1

�
1

m�1
�
(k)2�m (n� k)m�1

(n)1
a
(k+1)
m;1

=
k + 1

n
=
(k + 1)1
(n)1

:

For i = n+ 1 and j = 1;

cn+1;1 =
n�k+1X
m=1

�
n

m�1
�
(k)n+1�m (n� k)m�1

(n)n
a
(k+1)
m;1

=
(k + 1)k(k � 1):::(k � n+ 2)

n(n� 1)(n� 2):::1

=
(k + 1)n
(n)n

:

For j = 2 (second solumn), for i = 1 and j = 2

c1;2 =
n�k+1X
m=1

�a
(k)
1;ma

(k+1)
m;2

c1;2 =
n�k+1X
m=1

�
0

m�1
�
(k)1�m (n� k)0
(n)0

a
(k+1)
m;2

c1;2 = a
(k+1)
1;2 = 0 = �a

(k+1)
1;2 :
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For i = 2 and j = 2

c2;2 =
n�k+1X
m=1

�a
(k)
i;ma

(k+1)
m;2

=
n�k+1X
m=1

�
1

m�1
�
(k)2�m (n� k)m�1

(n)1
a
(k+1)
m;2

=
n� k � 1

n
= �a

(k+1)
2;2 :

For i = n+ 1 and j = 2

cn+1;2 =
n�k+1X
m=1

�a
(k)
n+1;ma

(k+1)
m;n+1

=
n�k+1X
m=1

�
n

m�1
�
(k)n+1�m (n� k)m�1

(n)n
a
(k+1)
m;2

=
n(k + 1)k(k � 1):::(k � n+ 3)(n� k � 1)

n(n� 1)(n� 2):::1

=
n(k + 1)n�1(n� k � 1)1

(n)n
= �a

(k+1)
n+1;2:

For j = n� k (last column), for i = 1 and j = n� k

c1;n�k =
n�k+1X
m=1

�a
(k)
1;ma

(k+1)
m;n�k

=
n�k+1X
m=1

�
0

m�1
�
(k)1�m (n� k)m�1

(n)0
a
(k+1)
m;n�k

= a
(k+1)
1;n�k = 0 = �a

(k+1)
1;n�k:

For i = 2 and j = n� k

c2;n�k =

n�k+1X
m=1

�a
(k)
2;ma

(k+1)
m;j

=
n�k+1X
m=1

�
1

m�1
�
(k)2�m (n� k)m�1

(n)1
a
(k+1)
m;n�k

= 0 = �a
(k+1)
2;n�k:

For i = n+ 1 and j = n� k

cn+1;n�k =
n�k+1X
m=1

�a
(k)
n+1;ma

(k+1)
m;n�k

=
n�k+1X
m=1

�
n

m�1
�
(k)n+1�m (n� k)m�1

(n)n
a
(k+1)
m;n�k

= 1 = �a
(k+1)
n+1;n�k:

Hence, �AkAk+1 = [ci;j ](n+1)�(n�k) =
h
�a
(k+1)
i;j

i
(n+1)�(n�k)

; where �a(k+1)i;j =
(i�1j�1)(k+1)i�j(n�k�1)j�1

(n)i�1
:
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Remark 4 Sum of the elements in each row of the matrix �Ak is equal to 1:

Now in the following theorem we consider the inverse process

Theorem 5 A rectangular Bézier patch P (s; t) of degree n� n can be represented as a Triangular Bézier
patch T (u; v; w) of degree n :

T (u; v; w) =
X

i+j+k=n

Ti;j;k B
n
i;j;k(u; v; w); u; v; w � 0; u+ v + w = 1:

where the control points Ti;j;k are determined by

0BBB@
Ti0
Ti1
...

Ti;n�i

1CCCA = BiBi�1:::B1

0BBB@
Pi0
Pi1
...
Pin

1CCCA i = 0; 1; 2; :::; n:

and Bi(i = 0; 1; :::; n) are degree elevation operators in the form

Bk =

266666664

1� t t 0 0 � � � 0 0
0 1� t t 0 � � � 0 0
0 0 1� t t � � � 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 1� t t 0
0 0 0 0 0 1� t t

377777775
(n�k+1)�(n�k+2)

Proof. Indeed

P (s; t) =
nX
i=0

nX
j=0

Pi;jB
n
i (s)B

n
j (t)

=
nX
i=0

nX
j=0

Pi;jB
n
i (s)

�
tBn�1j�1 (t) + (1� t)B

n�1
j (t)

	

=
nX

i=0

Bni (s)

8<:
n

t
X
j=0

Pi;jB
n�1
j�1 (t) + (1� t)

nX
j=0

Pi;jB
n�1
j (t)

9=;
=

nX
i=0

n�rX
j=0

P ri;jB
n
i (s)B

n�r
j (t);

where
P 0i;j(t) � P 0i;j = Pi;j
P ri;j(t) = tP

r�1
i;j+1 + (1� t)P

r�1
i;j :

Let r = i;

P (s; t) =
nX
i=0

n�iX
j=0

P ii;jB
n
i (s)B

n�i
j (t)

=
nX
i=0

n�iX
j=0

P ii;j

�
n

i

��
n� i
j

�
si(1� s)n�itj(1� t)n�i�j

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

897 Sabancigil 893-901



if we use the following reparametrization �
s = u

t = v
1�u =

v
v+w

we get

P (s; t) =
nX
i=0

n�iX
j=0

P ii;j

�
n

i

��
n� i
j

�
ui(1� u)n�i

�
v

v + w

�j
(1� v

v + w
)n�i�j :

Now if i+ j + k = n

P (s; t) =
nX
i=0

n�iX
j=0

P ii;j

�
n

i

��
n� i
j

�
ui(1� u)n�i

�
v

v + w

�j
(1� v

v + w
)k

=
X

i+j+k=n

Ti;j;kB
n
i;j;k(u; v; w)

Ti;j;k =
nX
i=0

n�iX
j=0

P ii;j(t):

For each value of i, we obtain (n� i+ 1)� (n� i+ 2) matrix Bi:

Theorem 6 The product of the matrices in the above theorem BkBk�1:::B1 can be generalized as follows

Zk = BkBk�1:::B1 =

266666664

bk;0 bk;1 bk;2 � � � bk;k�1 bk;k 0 0 0 � � � 0
0 bk;0 bk;1 bk;2 � � � bk;k�1 bk;k 0 0 � � � 0
0 0 bk;0 bk;1 bk;2 � � � bk;k�1 bk;k 0 � � � 0
0 0 0 bk;0 bk;1 bk;2 � � � bk;k�1 bk;k � � � 0
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
0 0 0 0 0 bk;0 bk;1 bk;2 � � � bk;k�1 bk;k

377777775
where bk;j =

�
k
j

�
tj(1� t)k�j and Zk is (n� k + 1)� (n+ 1) matrix.

Proof. For k = 1;
Z1 = B1;

suppose it is true for k, that is
BkBk�1:::B1 = Z

k;

we will show that it also true for k + 1; i.e

Bk+1BkBk�1:::B1 = Z
k+1:

Let zi;j be the element at the ith row, jth column of the matrix Bk+1BkBk�1:::B1;

zi;j =
n�k+1X
m=1

b
(k+1)
i;m b

(k)
m;j

where b(k+1)i;m is the element at the ith row, mth column of the matrix Bk+1; b
(k)
m;j is the element at the m

th

row, jth column of the matrix BkBk�1:::B1, i = f1; 2; :::; n� kg and j = f1; 2; :::; n+ 1g :
For i = 1(�rst row)

z
1;j
=

n�k+1X
m=1

b
(k+1)
1;m b

(k)
m;j :
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For i = 1 and j = 1

z1;1 =
n�k+1X
m=1

b
(k+1)
1;m b

(k)
m;1

= b
(k+1)
1;1 b

(k)
1;1 + b

(k+1)
1;2 b

(k)
2;1 + :::+ b

(k+1)
1;n�k+1b

(k)
n�k+1;1

= (1� t) bk;0 = (1� t)k+1 = Zk+1(1;1):

For i = 1 and j = 2;

z1;2 =
n�k+1X
m=1

b
(k+1)
1;m b

(k)
m;2

= b
(k+1)
1;1 b

(k)
1;2 + b

(k+1)
1;2 b

(k)
2;2 + :::+ b

(k+1)
1;n�k+1b

(k)
n�k+1;2

= (1� t) bk;1 + tbk;0
= bk+1;1 = Z

k+1
(1;2):

For i = 1 and j = n+ 1;

z1;n+1 =
n�k+1X
m=1

b
(k+1)
1;m b

(k)
m;n+1

= b
(k+1)
1;1 b

(k)
1;n+1 + b

(k+1)
1;2 b

(k)
2;n+1 + :::+ b

(k+1)
1;n�k+1b

(k)
n�k+1;n+1

= 0 = Zk+1(1;n+1):

For i = 2 (second row)

z
2;j
=

n�k+1X
m=1

b
(k+1)
2;m b

(k)
m;j :

For i = 2 and j = 1;

z
2;1
=

n�k+1X
m=1

b
(k+1)
2;m b

(k)
m;1

= b
(k+1)
2;1 b

(k)
1;1 + b

(k+1)
2;2 b

(k)
2;1 + :::+ b

(k+1)
2;n�k+1b

(k)
n�k+1;1

= 0 = Zk+1(2;1):

For i = 2 and j = 2

z
2;2
=

n�k+1X
m=1

b
(k+1)
2;m b

(k)
m;2

= b
(k+1)
2;1 b

(k)
1;2 + b

(k+1)
2;2 b

(k)
2;2 + :::+ b

(k+1)
2;n�k+1b

(k)
n�k+1;2

= (1� t)bk;0
= (1� t)k+1 = Zk+12;2 :

For i = 2 and j = n+ 1;

z
2;n+1

=
n�k+1X
m=1

b
(k+1)
2;m b

(k)
m;n+1

= b
(k+1)
2;1 b

(k)
1;n+1 + b

(k+1)
2;2 b

(k)
2;n+1 + :::+ b

(k+1)
2;n�k+1b

(k)
n�k+1;n+1

= tbk;k = Z
k+1
2;n+1:
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For i = n� k + 1

zn�k+1;j =
n�k+1X
m=1

b
(k+1)
n�k+1;mb

(k)
m;j :

For i = n� k and j = 1

zn�k;1 =
n�k+1X
m=1

b
(k+1)
n�k;mb

(k)
m;1

= b
(k+1)
n�k;1b

(k)
1;1 + b

(k+1)
n�k;2b

(k)
2;1 + :::+ b

(k+1)
n�k;n�k+1b

(k)
n�k+1;1

= 0 = Zk+1n�k;1:

For i = n� k and j = 2

zn�k;2 =
n�k+1X
m=1

b
(k+1)
n�k;mb

(k)
m;2

= b
(k+1)
n�k;1b

(k)
1;2 + b

(k+1)
n�k;2b

(k)
2;2 + :::+ b

(k+1)
n�k;n�k+1b

(k)
n�k+1;2

= 0 = Zk+1n�k;2:

For i = n� k and j = n+ 1

zn�k;n+1 =

n�k+1X
m=1

b
(k+1)
n�k;mb

(k)
m;n+1

= b
(k+1)
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Conclusion 7 As we mentioned before, mainly there are two types of Bézier surfaces which are rectangular
and triangular Bézier patches. These two types of patches have di¤erent geometric properties so it is di¢ cult
to use both of them in the same CAD system. One may need to convert one type to another and here in this
paper we studied on the conversion matrix to convert triangular Bézier patch to a rectangular Bézier patch
and a rectangular Bézier patch to a triangular Bézier patch. We found simple representations for these two
matrices which will allow the conversion in one step.
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Abstract. The notions of energetic subsets and (anti) permeable values are introduced, and related properties are

investigated. These notions are applied to the theory of BE-algebras. Regarding (anti) fuzzy subalgebras/filters

and energetic subsets are investigated.

1. Introduction

As a generalization of a BCK-algebra, the notion of BE-algebras has been introduced by H.

S. Kim and Y. H. Kim in [5]. The study of BE-algebras has been continued in papers [1], [2],

and [6]. Jun et al. [3] introduced the notions of S-energetic subsets and I-energetic subsets in

BCK/BCI-algebras, and investigated several properties. Jun et.al [4] defined the notions of

a C-energetic subset and (anti) permeable C-value in BCK-algebras and studied some related

properties of them.

In this paper, we introduce the notions of energetic subsets and (anti) permeable values, and

investigate some related properties. These notions are applied to the theory of BE-algebras.

Regarding (anti) fuzzy subalgebras/filters and energetic subsets are investigated.

2. Preliminaries

We display basic notions on BE-algebras. We refer the reader to the papers [2, 5] for further

information regarding BE-algebras.

By a BE-algebra [5] we mean a system (X; ∗, 1) of type (2, 0) which the following axioms hold:

(BE1) (∀x ∈ X) (x ∗ x = 1),

(BE2) (∀x ∈ X) (x ∗ 1 = 1),

(BE3) (∀x ∈ X) (1 ∗ x = x),

(BE4) (∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)) (exchange).
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We introduce a relation “ ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

A BE-algebra (X; ∗, 1) is said to be transitive if it satisfies: for any x, y, z ∈ X, y ∗ z ≤
(x ∗ y) ∗ (x ∗ z). A BE-algebra (X; ∗, 1) is said to be self distributive if it satisfies: for any

x, y, z ∈ X, x∗ (y ∗z) = (x∗y)∗ (x∗z). Note that every self distributive BE-algebra is transitive,

but the converse is not true in general [5].

Every self distributive BE-algebra (X; ∗, 1) satisfies the following properties:

(2.1) (∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z),

(2.2) (∀x, y ∈ X) (x ∗ (x ∗ y) = x ∗ y),

(2.3) (∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)).

Definition 2.1. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then F

is a filter [5] of X if

(i) 1 ∈ F ;

(ii) (∀x, y ∈ X)(x ∗ y, x ∈ F ⇒ y ∈ F ).

The concept of fuzzy sets was introduced by Zadeh [7]. Let X be a set. The mapping f : X →
[0, 1] is called a fuzzy set in X. A fuzzy set f in a BE-algebra X is called a fuzzy subalgebra of X

if it satisfies

(F0) (∀x, y ∈ X)(f(x ∗ y) ≥ min{f(x), f(y)}).
A fuzzy set f in a BE-algebra X is called a fuzzy filter of X if it satisfies

(F1) (∀x ∈ X)(f(1) ≥ f(x));

(F2) (∀x, y ∈ X)(f(y) ≥ min{f(x ∗ y), f(x)}).
Note that every fuzzy filter f of a BE-algebra X satisfies

(∀x, y ∈ X)(x ≤ y ⇒ f(y) ≥ f(x)).

For a fuzzy set f in X and t ∈ [0, 1], the (strong) upper (resp. lower) t-level sets are defined as

follows:

U(f ; t) := {x ∈ X|f(x) ≥ t}, U∗(f ; t) := {x ∈ X|f(x) > t},
L(f ; t) := {x ∈ X|f(x) ≤ t}, L∗(f ; t) := {x ∈ X|f(x) < t}.

3. Energetic subsets

In what follows, let X denote a BE-algebra unless otherwise specified.

Definition 3.1. A nonempty subset A of a BE-algebra X is said to be S-energetic if it satisfies

(S) (∀a, b ∈ X)(a ∗ b ∈ A⇒ {a, b} ∩ A 6= ∅).

Definition 3.2. A nonempty subset A of a BE-algebra X is said to be F -energetic if it satisfies

(F ) (∀x, y ∈ X)(y ∈ A⇒ {x ∗ y, x} ∩ A 6= ∅).
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Example 3.3. (1) Let X := {1, a, b, c} be a BE-algebra with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 a 1

It is easy to show that A := {b, c} is a S-energetic subset of X. But B := {a} is not an S-

energetic subset of X since c ∗ b = a ∈ B and {c, b} ∩ B = ∅. It is routine to verify that

C := {c} is an S-energetic subset of X. But it is not an F -energetic subset of X, since c ∈ C

and {b ∗ c, b} ∩ C = ∅.
(2) Let X := {1, a, b, c} be a BE-algebra with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 a a 1

It is easy to show that A := {a, b} is an F -energetic subset of X.

Theorem 3.4. For any nonempty subset A of X, if A is a subalgebra of a BE-algebra X, then

X \ A is an S-energetic a subset of X.

Proof. Let a, b ∈ X be such that a ∗ b ∈ X \ A. If {a, b} ∩ (X \ A) = ∅, then a, b ∈ A and

so a ∗ b ∈ A since A is a subalgebra of X. This is a contradiction. Thus {a, b} ∩ (X \ A) 6= ∅.
Therefore X \ A is an S-energetic subset of X. �

Theorem 3.5. For any nonempty subset A of X, if A is a filter of a BE-algebra X, then X \A
is an F -energetic a subset of X.

Proof. Let x, y ∈ X be such that y ∈ X \A. If {x ∗ y, x} ∩X \A = ∅, then x ∗ y, x ∈ A and so

y ∈ A, since A is a filter of X. This is a contradiction. Therefore {x ∗ y, x} ∩X \ A 6= ∅. Thus

X \ A is an F -energetic subset of X. �

Theorem 3.6. Let A be a nonempty subset of a BE-algebra X with 1 /∈ A. If A is F -energetic,

then X \ A is a filter of X.

Proof. Obviously, 1 ∈ X \ A. Let x, y ∈ X be such that x ∗ y, x ∈ X \ A. Assume that y ∈ A.

Then {x ∗ y, x} ∩ A 6= ∅ by (F ). Hence x ∗ y ∈ A or x ∈ A, which is a contradiction. Therefore

y ∈ X \ A. This completes the proof. �

Theorem 3.7. If f is a fuzzy filter of a BE-algebra X, then the nonempty lower t-level set

L(f ; t) is an F -energetic subset of X for all t ∈ [0, 1].
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Proof. Assume that L(f ; t) 6= ∅ for t ∈ [0, 1] and let x, y ∈ X be such that y ∈ L(f ; t). Then

t ≥ f(y) ≥ min{f(x∗y), f(x)}. Hence f(x∗y) ≤ t or f(x) ≤ t, i.e., x∗y ∈ L(f ; t) or x ∈ L(f ; t).

Thus {x ∗ y, x} ∩ L(f ; t) 6= ∅. Therefore L(f ; t) is an F -energetic subset of X. �

Corollary 3.8. If f is a fuzzy filter of a BE-algebra X, then the nonempty stronger lower t-level

set L∗(f ; t) is an F -energetic subset of X.

Since L(f ; t) ∪ U∗(f ; t) = X and L(f ; t) ∩ U∗(f ; t) = ∅ for all t ∈ [0, 1], we have the following

corollary.

Corollary 3.9. If f is a fuzzy filter of a BE-algebra X, then U∗(f ; t) is empty set or a filter of

X for all t ∈ [0, 1].

For any a, b ∈ X, we consider sets

Xb
a := {x ∈ X|a ∗ (b ∗ x) = 1} and Ab

a := X \Xb
a.

Obviously, a, b /∈ Ab
a, A

b
a = Aa

b and 1 /∈ Ab
a. In the following example, we know that there exist

a, b ∈ X such that Ab
a may not be F -energetic.

Example 3.10. Let X := {1, a, b, c, d, 0} be a BE-algebra [2] with the following Cayley table

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 a b

d 1 1 a 1 1 a

0 1 1 1 1 1 1

Then Ad
c = {0, b} and it is not F -energetic since b ∈ Ad

c but {a ∗ b, a} ∩ Ad
c = ∅.

We consider conditions for the set Ab
a to be F -energetic.

Theorem 3.11. If X is a self distributive BE-algebra X, then Ab
a is F -energetic for all a, b ∈ X.

Proof. Let y ∈ Ab
a for any a, b, y ∈ X. Assume that {x ∗ y, x} ∩ Ab

a = ∅ for any x ∈ X. Then

x ∗ y /∈ Ab
a and x /∈ Ab

a and so a ∗ (b ∗ (x ∗ y)) = 1 and a ∗ (b ∗ x) = 1. Using (BE3) and the self

distributivity of X, we have

1 =a ∗ (b ∗ (x ∗ y)) = a ∗ ((b ∗ x) ∗ (b ∗ y))

=(a ∗ (b ∗ x)) ∗ (a ∗ (b ∗ y)) = 1 ∗ (a ∗ (b ∗ y)) = a ∗ (b ∗ y)

and so y /∈ Ab
a. This is a contradiction, and therefore {a ∗ b, a} ∩ Ab

a 6= ∅. Hence Ab
a is an

F -energetic subset of X for all a, b ∈ X. �
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Definition 3.12. A fuzzy set f in a BE-algebra X is called an anti fuzzy subalgebra of X if

f(x ∗ y) ≤ max{f(x), f(y)} for all x, y ∈ X. A fuzzy set f in a BE-algebra X is called an anti

fuzzy filter of X if it satisfies

(AF1) (∀x ∈ X)(f(1) ≤ f(x));

(AF2) (∀x, y ∈ X)(f(y) ≤ max{f(x ∗ y), f(x)}).

Proposition 3.13. For any anti fuzzy filter of a BE-algebra X, then following are valid.

(i) (∀x, y ∈ X)(x ≤ y ⇒ f(y) ≤ f(x));

(ii) (∀x, y, z ∈ X)(f(x ∗ z) ≤ max{f(x ∗ (y ∗ z)), f(y)});
(iii) (∀a, x ∈ X)(f((a ∗ x) ∗ x) ≤ f(a)).

Proof. (i) Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 1. It follows from Definition 3.12 that

f(y) ≤ max{f(x ∗ y), f(x)} = max{f(1), f(x)} = f(x).

(ii) Using (AF2) and (BE4), we have f(x∗z) ≤ max{f(y∗(x∗z)), f(y)} = max{f(x∗(y∗z)), f(y)}
for any x, y, z ∈ X.

(iii) Taking y := (a ∗ x) ∗ x and x := a in (AF2), we have f((a ∗ x) ∗ x) ≤ max{f(a ∗ ((a ∗ x) ∗
x)), f(a)} = max{f((a ∗ x) ∗ (a ∗ x)), f(a)} = max{f(1), f(a)} = f(a) for any a, x ∈ X. �

Theorem 3.14. Any fuzzy set of a BE-algebra X satisfying (AF1) and Proposition 3.13 (ii) is

an anti fuzzy filter of X.

Proof. Taking x := 1 in Proposition 3.13 (ii) and (BE3), we have f(z) = f(1 ∗ z) ≤ max{f(1 ∗
(y ∗ z)), f(y)} = max{f(y ∗ z), f(y)} for all y, z ∈ X. Hence f is an anti fuzzy filter of X. �

Corollary 3.15. For any fuzzy set f of a BE-algebra X, f is an anti fuzzy filter of X if and

only if it satisfies (AF1) and Proposition 3.13 (ii).

Theorem 3.16. Any fuzzy set f of a BE-algebra X is an anti fuzzy filter of X if and only if it

satisfies the following conditions:

(i) (∀x, y ∈ X)(f(y ∗ x) ≤ f(x));

(ii) (∀x, a, b ∈ X)(f((a ∗ (b ∗ x)) ∗ x) ≤ max{f(a), f(b)}).

Proof. Assume that f is an anti fuzzy filter of X. It follows from Definition 3.12 that f(y ∗x) ≤
max{f(x ∗ (y ∗ x)), f(x)} = max{f(1), f(x)} = f(x) for all x, y ∈ X. Using Proposition 3.13, we

have f((a∗(b∗x))∗x) ≤ max{f((a∗(b∗x))∗(b∗x)), f(b)} ≤ max{f(a), f(b)} for any a, b, x ∈ X.

Conversely, let f be a fuzzy set satisfying conditions (i) and (ii). Setting y := x in (i), we have

f(x∗x) = f(1) ≤ f(x) for all x ∈ X. Using (ii), we obtain f(y) = f(1∗y) = f((x∗y)∗(x∗y))∗y) ≤
max{f(x ∗ y), f(y)} for all x, y ∈ X. Hence f is an anti fuzzy filter of X. �

Proposition 3.17. For any fuzzy set of a BE-algebra X, then f is an anti fuzzy filter of X if

and only if

(∗) (∀x, y, z ∈ X)(z ≤ x ∗ y ⇒ f(y) ≤ max{f(x), f(z)}).
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Proof. Assume that f is an anti fuzzy filter of X. Let x, y, z ∈ X be such that z ≤ x ∗ y. By

Proposition 3.13, we have f(y) ≤ max{f(x ∗ y), f(x)} ≤ max{f(z), f(x)}.
Conversely, suppose that f satisfies (∗). By (BE2), we have x ≤ x ∗ 1 = 1. Using (∗), we have

f(1) ≤ f(x) for all x ∈ X. It follows from (BE1) and (BE4) that x ≤ (x ∗ y) ∗ y for all x, y ∈ X.

Using (∗), we have f(y) ≤ max{f(x ∗ y), f(x)}. Therefore f is an anti fuzzy filter of X. �

4. Permeable values in BE-algebras

Definition 4.1. Let f be a fuzzy set in a BE-algebra X. A number t ∈ [0, 1] is called a permeable

S-value for f if U(f ; t) 6= ∅ and the following assertion is valid.

(4.1) (∀a, b ∈ X)(f(a ∗ b) ≥ t⇒ max{f(a), f(b)} ≥ t).

Example 4.2. Consider a BE-algebra X = {1, a, b, c} as in Example 3.3 (1). Let f be a fuzzy

set of X defined by f(1) = 0.2, f(a) = 0.3, and f(b) = f(c) = 0.6. Take t ∈ (0.3, 0.6]. Then

U(f ; t) = {b, c}. It is easy to check that t is a permeable S-value for f .

Theorem 4.3. Let f be a fuzzy subalgebra of a BE-algebra X. If t ∈ [0, 1] is a permeable

S-value for f , then the nonempty upper t-level set U(f ; t) is an S-energetic subset of X.

Proof. Let a, b ∈ X be such that a ∗ b ∈ U(f ; t). Then f(a ∗ b) ≥ t and so max{f(a), f(b)} ≥ t.

Therefore f(a) ≥ t or f(b) ≥ t, i.e., a ∈ U(f ; t) or b ∈ U(f ; t). Hence {a, b} ∩ U(f ; t) 6= ∅. Thus

U(f ; t) is an S-energetic subset of X. �

Since U(f ; t) ∪ L∗(f ; t) = X and U(f ; t) ∩ L∗(f ; t) = ∅ for all t ∈ [0, 1], we have the following

corollary.

Corollary 4.4. Let f be a fuzzy subalgebra of a BE-algebra X. If t ∈ [0, 1] is a permeable

S-value for f , then L∗(f ; t) is empty or a subalgebra of X.

Definition 4.5. Let f be a fuzzy set in a BE-algebra X. A number t ∈ [0, 1] is called an anti

permeable S-value for f if L(f ; t) 6= ∅ and the following assertion is valid.

(4.2) (∀a, b ∈ X)(f(a ∗ b) ≤ t⇒ min{f(a), f(b)} ≤ t).

Example 4.6. Consider a BE-algebra X = {1, a, b, c} as in Example 3.3 (1). Let f be a fuzzy

set of X defined by f(1) = 0.4, f(a) = f(b) = 0.5, and f(c) = 0.3. Take t ∈ [0.3, 0.4). Then

L(f ; t) = {c}. It is easy to check that t is an anti permeable S-value for f .

Theorem 4.7. Let f be an anti fuzzy subalgebra of a BE-algebra X. For any anti permeable

S-value t ∈ [0, 1] for f , we have L(f ; t) 6= ∅ ⇒ L(f ; t) is an S-energetic subset of X.

Proof. Let a, b ∈ X be such that a ∗ b ∈ L(f ; t). Then f(a ∗ b) ≤ t and so min{f(a), f(b)} ≤ t.

Thus f(a) ≤ t or f(b) ≤ t, i.e., a ∈ L(f ; t) or b ∈ L(f ; t). Hence {a, b} ∩ L(f ; t) 6= ∅. Therefore

L(f ; t) is an S-energetic subset of X. �
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Theorem 4.8. Let f be a fuzzy subalgebra of a BE-algebra X and let t ∈ [0, 1] be such that

L(f ; t) 6= ∅. Then t is an anti permeable S-value for f .

Proof. Let a, b ∈ X be such that f(a∗b) ≤ t for all t ∈ [0, 1]. Then min{f(a), f(b)} ≤ f(a∗b) ≤ t.

Therefore t is an anti permeable S-value for f . �

Definition 4.9. Let f be a fuzzy set in a BE-algebra X. A number t ∈ [0, 1] is called a permeable

F -value for f if U(f ; t) 6= ∅ and the following assertion is valid.

(4.3) (∀x, y ∈ X)(f(y) ≥ t⇒ max{f(x ∗ y), f(x)} ≥ t).

Example 4.10. Consider the BE-algebra X = {1, a, b, c, d, 0} as in Example 3.10. Let f be

a fuzzy set in X defined by f(1) = 0.2, f(a) = f(b) = 0.4, and f(c) = f(d) = f(0) = 0.7. If

t ∈ (0.4, 0.7], then U(f ; t) = {0, c, d} and it is easy to check that t is a permeable F -value for f .

Theorem 4.11. Let f be a fuzzy filter of a BE-algebra X. If t ∈ [0, 1] is a permeable F -value

for f , then the nonempty upper t-level set U(f ; t) is an F -energetic subset of X.

Proof. Assume that U(f ; t) 6= ∅ for t ∈ [0, 1]. Let y ∈ X be such that y ∈ U(f ; t). Then

t ≤ f(y). It follows from (4.3) that t ≤ max{f(x ∗ y), f(x)} for all x ∈ X. Hence f(x ∗ y) ≥ t or

f(x) ≥ t, i.e., x ∗ y ∈ U(f ; t) or x ∈ U(f ; t). Hence {x ∗ y, x} ∩ U(f ; t) 6= ∅. Therefore U(f ; t) is

an F -energetic subset of X. �

Since U(f ; t) ∪ L∗(f ; t) = X and U(f ; t) ∩ L∗(f ; t) = ∅ for all t ∈ [0, 1], we have the following

corollary.

Corollary 4.12. Let f be a fuzzy filter of a BE-algebra X. If t ∈ [0, 1] is a permeable F -value

for f , then L∗(f ; t) is empty or a filter of X.

Theorem 4.13. For a fuzzy set f in a BE-algebra X, if there exists a subset K of [0, 1] such

that {U(f ; t), L∗(f ; t)} is a partition of X and L∗(f ; t) is a filter of X for all t ∈ K, then t is a

permeable F -value for f .

Proof. Assume that f(y) ≥ t for any y ∈ X. Then y ∈ U(f ; t) and so {x ∗ y, x} ∩ U(f ; t) 6= ∅
for any x ∈ X, since U(f ; t) is an F -energetic subset of X. Hence x ∗ y ∈ U(f ; t) or x ∈ U(f ; t)

and so max{f(x ∗ y), f(x)} ≥ t. Therefore t is a permeable F -value for f . �

Theorem 4.14. Let f be a fuzzy set in a BE-algebra X with U(f ; t) 6= ∅ for t ∈ [0, 1]. If f is

an anti fuzzy filter of X, then t is a permeable F -value for f .

Proof. Let y ∈ X be such that f(y) ≥ t. Then t ≤ f(y) ≤ max{f(x ∗ y), f(x)} for all x ∈ X.

Hence t is a permeable F -value for f . �

Theorem 4.15. Let f be an anti fuzzy filter of a BE-algebra X. Then the following assertion

is valid.

(∀t ∈ [0, 1])(U(f ; t) 6= ∅ ⇒ U(f ; t) is an F -energetic subset of X).
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Proof. Let y ∈ X be such that y ∈ U(f ; t). Then f(y) ≥ t. By (AF2), we have t ≤ f(y) ≤
max{f(x ∗ y), f(x)} for all x ∈ X. Hence f(x ∗ y) ≥ t or f(x) ≥ t, i.e., x ∗ y ∈ U(f ; t) or

x ∈ U(f ; t). Therefore {x ∗ y, x} ∩ U(f ; t) 6= ∅. Thus U(f ; t) is an F -energetic subset of X. �

Definition 4.16. Let f be a fuzzy set in a BE-algebra X. A number t ∈ [0, 1] is called an anti

permeable F -value for f if L(f ; t) 6= ∅ and the following assertion is valid.

(4.4) (∀x, y ∈ X)(f(y) ≤ t⇒ min{f(x ∗ y), f(x)} ≤ t).

Theorem 4.17. Let f be a fuzzy set in a BE-algebra X with L(f ; t) 6= ∅ for t ∈ [0, 1]. If f is a

fuzzy filter of X, then t is an anti permeable F -value for f .

Proof. Let y ∈ X be such that f(y) ≤ t. Then min{f(x ∗ y), f(x)} ≤ f(y) ≤ t for all x ∈ X.

Hence t is an anti permeable F -value for f . �

Theorem 4.18. Let f be an anti fuzzy filter of a BE-algebra X. If t ∈ [0, 1] is an anti permeable

F -value for f , then the lower t-level set L(f ; t) is an F -energetic subset of X.

Proof. Let y ∈ X be such that y ∈ L(f ; t). Then f(y) ≤ t. It follows from (4.4) that min{f(x ∗
y), f(x)} ≤ t for all x ∈ X. Hence x ∗ y ∈ L(f ; t) or x ∈ L(f ; t) and so {x ∗ y, x} ∩ L(f ; t) 6= ∅.
Therefore L(f ; t) is an F -energetic subset of X. �

Corollary 4.19. Let f be an anti fuzzy filter of a BE-algebra X. If t ∈ [0, 1] is an anti permeable

F -value for f , then U∗(f ; t) is empty or a filter of X.

Theorem 4.20. For a fuzzy set f in a BE-algebra X, if there exists a subset K of [0, 1] such

that {U∗(f ; t), L(f ; t)} is a partition of X and U∗(f ; t) is a filter of X for all t ∈ K, then t is an

anti permeable F -value for f .

Proof. Assume that f(y) ≤ t for any y ∈ X. Then y ∈ L(f ; t) and so {x ∗ y, x} ∩ L(f ; t)} 6= ∅
for all x ∈ X, since L(f ; t) is an F -energetic subset of X. Hence f(x ∗ y) ≤ t or f(x) ≤ t and so

min{f(x ∗ y), f(x)} ≤ t. Therefore t is anti permeable F -value for f . �

References

[1] S. S. Ahn, Y. H. Kim, J. M. Ko, Filters in commutative BE-algerbas, Commun. Korean Math. Soc. 27 (2012),

no. 2, 233–242.

[2] S. S. Ahn, K. S. So, On ideals and upper sets in BE-algerbas, Sci. Math. Jpn. 68 (2008), no. 2, 279–285.

[3] Y. B. Jun, S. S. Ahn, E. H. Roh, Energetic subsets and permeable values with applications in BCK/BCI-

algebras, Appl. Math. Sci. 7 (2013), no. 89, 4425–4438.

[4] Y. B. Jun, E. H. Roh and S. Z. Song, Commutative energetic subsets of BCK-algebras, Bulletin of the Section

of Logic 45 (2016), 53–63.

[5] H. S. Kim, Y. H. Kim, On BE-algerbas, Sci. Math. Jpn. 66 (2007), no. 1, 113–116.

[6] H. S. Kim, K. J. Lee, Extended upper sets in BE-algerbas, Bull. Malays. Math. Sci. Soc. 34 (2011), no. 3,

511–520.

[7] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

909 Jung Mi Ko 902-909



Rapid gradient penalty schemes and convergence

for solving constrained convex optimization

problem in Hilbert spaces

Natthaphon Artsawanga,1, Kasamsuk Ungchittrakoola,b,∗

aDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
bResearch Center for Academic Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan

University, Phitsanulok 65000, Thailand

Abstract

The purposes of this paper are to establish and study the convergence of a new gradient scheme

with penalization terms called rapid gradient penalty algorithm (RGPA) for minimizing a convex

differentiable function over the set of minimizers of a convex differentiable constrained function.

Under the observation of some appropriate choices for the available properties of the considered

functions and scalars, we can generate a suitable algorithm that weakly converges to a minimal

solution of the considered constraint minimization problem. Further, we also provide a numerical

example to compare the rapid gradient penalty algorithm (RGPA) and the algorithm introduced

by Peypouquet [20].

Keywords: Rapid gradient penalty algorithm, penalization, constraint minimization, fenchel

conjugate
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1. Introduction

LetH be a real Hilbert space with the norm and inner product given by ‖·‖ and 〈·, ·〉, respectively.

Let f : H → R and g : H → R be convex and (Fréchet) differentiable functions on the space H and

the gradients ∇f and ∇g are Lipschitz continuous operators with constants Lf and Lg, respectively.

We consider the following constrained convex optimization problem

min
x∈argmin g

f(x). (1.1)

Throughout the paper, we also assume that the solution set S := arg min{f(x) : x ∈ arg min g} is

a nonempty set. Further, without loss of generality, we may assume that min g = 0.

Due to the interesting applications of (1.1) in many branches of mathematics and sciences, many

researchers have paid attention to solve the problem (1.1) which can be mentioned briefly as follows:

In 2010, Attouch and Czarnecki [1] initially presented and studied a numerical algorithm called the

multiscale asymptotic gradient (MAG) for solving general constrained convex optimization prob-

lem. They proved that every sequence generated by (MAG) converges weakly to a solution of their
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considered problem. It seems that their representation is the starting point for the development

of numerical algorithms in the context of solving type of constrained convex optimization problem

(see, for instance [2–4, 7–10, 18]) and the references therein. Inspired by Attouch and Czarnecki

[1], in 2012 Peypouquet [20] proposed and analyzed an algorithm called diagonal gradient scheme

(DGS) via gradient method and exterior penalization scheme for constrained minimization of con-

vex functions. He also provided a weak convergence to find a solution of the considered constrained

minimization of convex functions. Several applications are provided such as relaxed feasibility,

mathematical programming with convex inequality constraints, and Stokes equation and signal

reconstruction, etc. In 2013, Shehu et al. [21] studied the problem (1.1) in the case when the

constrained set is simple enough and also proposed an algorithm for solving (1.1). In the last two

decades, intensive research efforts dedicated to algorithms of inertial type and their convergence

behavior can be noticed (see [6, 11, 13–17, 19]). In 2017, Bot et al. [9] considered the problem of

minimizing a smooth convex objective function subject to the set of minima of another differentiable

convex function. They proposed a new algorithm called gradient-type penalty with inertial effects

method (GPIM) for solving the problem (1.1). They also illustrated the usability of their method

via a numerical experiment for image classification via support vector machines.

In the remaining part of this section, we recall some elements of convex analysis. For a function

h : H → R := R ∪ {−∞,+∞} we denote by dom h = {x ∈ H : h(x) < +∞} its effective domain

and say that h is proper, if dom h 6= ∅ and h(x) 6= −∞ for all x ∈ H. The Fenchel conjugate of h

is h∗ : H → R, which is defined by

h∗(z) = sup
x∈H
{〈z, x〉 − h(x)} for all z ∈ H.

The subdifferential of h at x ∈ H, with h(x) ∈ R, is the set

∂h(x) := {v ∈ H : h(y)− h(x) ≥ 〈v, y − x〉 ∀y ∈ H}.

We take by convention ∂h(x) := ∅, if h(x) ∈ {±∞}.
The convex and differentiable function T : H → R has a Lipschitz continuous gradient with

Lipschitz constant LT > 0, if ‖∇T (x)−∇T (y)‖ ≤ LT ‖x− y‖ for all x, y ∈ H.
Let C ⊂ H be a nonempty closed convex set. The indicator function is defined as:

δC(x) =

{
0 if x ∈ C
+∞ otherwise.

The support function of C is defined as: σC(x) := supc∈C〈x, c〉 for all x ∈ H. The normal cone C at

a point x is

NC(x) :=

{
{x ∈ H : 〈x, c− x〉 ≤ 0 for all c ∈ C}, if x ∈ C
∅, otherwise.

We denote by Ran(NC) for the range of NC . Notice that δ∗C = σC . Moreover, it holds that x ∈ NC(x)

if and only if σC(x) = 〈x, x〉.
Inspired by the research works in this direction, we are interested in the development and

improvement of the method for finding solutions of the considered problem, that is, we wish to

establish the algorithm called rapid gradient penalty algorithm (RGPA) for solving (1.1) which is

generated by a controlling sequence of scalars together with the gradient of objective and feasibility

gap functions as follows:

(RGPA)


x1 ∈ H;

yn = xn − λn∇f(xn)− λnβn∇g(xn);

xn+1 = yn + αn(yn − xn) for all n ≥ 1,
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where {λn} and {βn} are sequences of positive parameters and {αn} ⊆ (0, 1).

For n ≥ 1, we write Ωn := f + βng, which is also (Fréchet) differentiable function. Therefore,

∇Ωn is Lipschitz continuous with constant Ln := Lf +βnLg. In particular, if we setting αn = 0 for

all n ≥ 1, the algorithm (RGPA) can be reduced to (DGS) in Peypouquet [20].

In order to support our ideas, we also provide a numerical example to simulate an event for

solving problem (1.1). We also compare the time and the iteration between two algorithms including

(RGPA) and (DGS).

2. The Hypotheses

In this section, we will carry out the main assumptions to prove the convergence results for

rapid gradient penalty algorithm (RGPA). In order to prove the convergence results, the following

assumptions will be proposed.

Assumption A

(I) The function f is bounded from below;

(II) There exists a positive K > 0 such that βn+1 − βn ≤ Kλn+1βn+1, Ln

2 −
1

2λn
≤ −K and

α2
n−1
2λn

+ (1 + αn)2K < 0 for all n ≥ 1;

(III) {αn} ∈ l2 \ l1,

∞∑
n=1

λn = +∞ and lim inf
n→∞

λnβn > 0;

(IV) For each p ∈ Ran(Nargmin g), we have
∞∑
n=1

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
< +∞.

Remark 2.1. The conditions in Assumption A sparsely extend the hypotheses in [20]. The

differences are given by the second and third inequality in (II), which here involves a sequence {αn}
which controls the inertial terms, and by {αn} ∈ l2 \ l1.

In the following remark, we present some situations where Assumption A is verified.

Remark 2.2. Let K > 0, q ∈ (0, 1), δ > 0 and γ ∈ (0, 1
3Lg

) be any given. Then we set αn := 1
n+1

for all n ≥ 1, which implies that lim
n→∞

αn = 0,
∞∑
n=1

α2
n < +∞ and αn ≤ 1

2 for all n ≥ 1. We also set

βn :=
3γ[Lf + 2(K + δ)]

1− 3γLg
+ γKnq and λn :=

γ

βn
for all n ≥ 1.

Since βn ≥ 3γ[Lf+2(K+δ)]
1−3γLg

, we have for each n ≥ 1

βn(1− 3γLg) ≥ 3γ[Lf + 2(K + δ)].

It follows that
1

3λn
− βnLg ≥ Lf + 2(K+δ) for all n ≥ 1,

which implies that

− (K + δ) ≥ Ln
2
− 1

6λn
for all n ≥ 1. (2.1)

According to (2.1), we obtain that

−K ≥ Ln
2
− 1

2λn
and

1

3
> 2λnK for all n ≥ 1.
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Let us consider, for each n ≥ 1

α2
n − 1

2λn
+ (1 + αn)2K ≤

− 3
4 + 9

42λnK

2λn
<
− 3

4 + 3
4

2λn
= 0.

On the other hand,

βn+1 − βn = γK[(n+ 1)q − nq] ≤ γK = Kλn+1βn+1.

Hence, we can conclude that Assumption A (II) holds.

Since q ∈ (0, 1), we obtain that
∞∑
n=1

1

βn
= +∞, so

∞∑
n=1

λn = +∞. Notice that λnβn = γ for all

n ≥ 1. It follows that lim inf
n→∞

λnβn = lim inf
n→∞

γ > 0. Thus Assumption A (III) holds.

Finally, since g∗ − σargmin g ≥ 0. If g(x) ≥ k
2dist2(x, arg min g) where k > 0, then g∗(x) −

σargmin g(x) ≤ 1
2k‖x‖

2 for all x ∈ H.
Therefore, for each p ∈ Ran(Nargmin g), we obtain that

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
≤ λn

2kβn
‖p‖2.

Thus,
∞∑
n=1

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
converges, if

∞∑
n=1

λn
βn

converges, which is equivalently

to
∞∑
n=1

1

β2
n

converges. This holds for the above choices of {βn} and {λn} when q ∈ ( 1
2 , 1).

3. Convergence analysis for convexity

In this section, we will prove the convergence of the sequence of {xn} generated by (RGPA)

and of the sequence of objective values {f(xn)}.
We start the convergence analysis of this section with three technical lemmas.

Lemma 3.1. Let x∗ be an arbitrary element in S and set p∗ := −∇f(x∗). Then for each n ≥ 1

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 + (1 + αn)λnβng(xn) ≤ (1 + αn)2‖xn − yn‖2

+ (1 + αn)λnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
. (3.1)

Proof. Applying to the first-order optimality condition, we have

0 ∈ ∇f(x∗) +Nargmin g(x
∗).

It follows that

p∗ = −∇f(x∗) ∈ Nargmin g(x
∗).

Note that for each n ≥ 1, xn−yn
λn

− βn∇g(xn) = ∇f(xn).

By monotonicity of ∇f , we obtain that〈
xn − yn
λn

− βn∇g(xn) + p∗, xn − x∗
〉

= 〈∇f(xn)−∇f(x∗), xn − x∗〉

≥ 0 ,∀n ≥ 1,

and hence, for each n ≥ 1

2 〈xn − yn, xn − x∗〉 ≥ 2λnβn 〈∇g(xn), xn − x∗〉 − 2λn 〈p∗, xn − x∗〉 . (3.2)
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Since g is convex and differentiable, we have for each n ≥ 1

〈∇g(xn), x∗ − xn〉+ g(xn) ≤ g(x∗) = 0,

whence

2λnβng(xn) ≤ 2λnβn〈∇g(xn), xn − x∗〉. (3.3)

On the other hand,

2〈xn − yn, xn − x∗〉 = ‖xn − yn‖2 + ‖xn − x∗‖2 − ‖yn − x∗‖2. (3.4)

Combining (3.2), (3.3) and (3.4), we get that

‖yn − x∗‖2 ≤ ‖xn − yn‖2 + ‖xn − x∗‖2 − 2λnβng(xn) + 2λn〈p∗, xn − x∗〉. (3.5)

Since x∗ ∈ S and p∗ ∈ Nargmin g(x
∗), we have

σargmin g(p
∗) = 〈p∗, x∗〉.

In (3.5), we observe that

2λn〈p∗, xn − x∗〉 − λnβng(xn) = 2λn〈p∗, xn〉 − λnβng(xn)− 2λn〈p∗, x∗〉

= λnβn

[〈
2p∗

βn
, xn

〉
− g(xn)−

〈
2p∗

βn
, x∗
〉]

≤ λnβn
[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
. (3.6)

Combining (3.6) and (3.5), we obtain that

‖yn − x∗‖2 ≤ ‖xn − yn‖2 + ‖xn − x∗‖2 − λnβng(xn) + λnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

(3.7)

On the other hand, we observe that

‖xn+1 − x∗‖2 = ‖yn + αn(yn − xn)− x∗‖2 = ‖(1 + αn)(yn − x∗) + αn(x∗ − xn)‖2

= (1 + αn)‖yn − x∗‖2 − αn‖xn − x∗‖2 + αn(1 + αn)‖xn − yn‖2. (3.8)

By (3.7) and (3.8), we obtain the desired result.

Lemma 3.2. For all n ≥ 1, we have

Ωn+1(xn+1) ≤ Ωn(xn) + (βn+1 − βn)g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2

+

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2.

Proof. Since ∇Ω is Ln-Lipschitz continuous and by Descent Lemma (see [5, Theorem 18.15]), we

obtain that

Ωn(xn+1) ≤ Ωn(xn) + 〈∇Ωn(xn), xn+1 − xn〉+
Ln
2
‖xn+1 − xn‖2.

Recall that −yn−xn

λn
= ∇Ωn(xn).
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It follows that

f(xn+1) + βng(xn+1)

≤ f(xn) + βng(xn)−
〈
yn − xn
λn

, xn+1 − xn
〉

+
Ln
2
‖xn+1 − xn‖2

= f(xn) + βng(xn)− 1

2λn
‖yn − xn‖2 −

1

2λn
‖xn+1 − xn‖2 +

1

2λn
‖yn − xn+1‖2 +

Ln
2
‖xn+1 − xn‖2

= f(xn) + βng(xn) +
α2
n − 1

2λn
‖yn − xn‖2 +

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2.

Adding βn+1g(xn+1) to both sides, we have

f(xn+1) + βn+1g(xn+1) ≤ f(xn) + βng(xn) + (βn+1 − βn)g(xn+1)

+
α2
n − 1

2λn
‖yn − xn‖2 +

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2,

which means that

Ωn+1(xn+1) ≤ Ωn(xn) + (βn+1 − βn)g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2 +

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2.

For n ≥ 1 and x∗ ∈ S, we denote by

Λn := f(xn) + (1− (1 + αn)Kλn)βng(xn) +K‖xn − x∗‖2

= Ωn(xn)− (1 + αn)Kλnβng(xn) +K‖xn − x∗‖2.

Lemma 3.3. Let x∗ ∈ S and set p∗ := −∇f(x∗). Then there exists θ > 0 such that for each n ≥ 1

Λn+1 − Λn + θ‖yn − xn‖2 ≤ (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

Proof. From Lemma 3.2 and Assumption A (II), we obtain that

Ωn+1(xn+1)− Ωn(xn) ≤ Kλn+1βn+1g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2

≤ (1 + αn+1)Kλn+1βn+1g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2. (3.9)

On the other hand, multiplying (3.1) by K, we have

K‖xn+1 − x∗‖2 −K‖xn − x∗‖2 + (1 + αn)Kλnβng(xn)

≤ (1 + αn)2K‖xn − yn‖2 + (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
. (3.10)

Combining (3.9) and (3.10), we have

Λn+1 − Λn ≤
[
α2
n − 1

2λn
+ (1 + αn)2K

]
‖yn − xn‖2 + (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

(3.11)

For each n ≥ 1,
α2

n−1
2λn

+ (1 + αn)2K < 0, we have there exists θ > 0 such that

α2
n − 1

2λn
+ (1 + αn)2K < −θ.
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From (3.11), we have

Λn+1 − Λn + θ‖yn − xn‖2 ≤ (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

This completes the proof.

The next lemma is an important role in convergence analysis (see in [3, Lemma 2] or [12, Lemma

3.1]).

Lemma 3.4. Let {γn}, {δn} and {εn} be real sequences. Assume that {γn} is bounded from below,

{δn} is non-negative and
∞∑
n=1

εn < +∞ such that

γn+1 − γn + δn ≤ εn for all n ≥ 1.

Then lim
n→∞

γn exists and
∞∑
n=1

δn < +∞.

Lemma 3.5. Let x∗ ∈ S. Then the following statements hold:

(i) The sequence {Λn} is bounded from below and lim
n→∞

Λn exists;

(ii)
∞∑
n=1

‖yn − xn‖2 < +∞;

(iii) lim
n→∞

‖xn − x∗‖2 exists and
∞∑
n=1

λnβng(xn) < +∞;

(iv) lim
n→∞

Ωn(xn) exists;

(v) lim
n→∞

g(xn) = 0 and every weak cluster point of the sequence {xn} lies in arg min g.

Proof. We set p∗ := −∇f(x∗).

(i). From Assumption A (II) implies 1−(1+αn)Kλn ≥ 0. Since f is convex and differentiable,

we have for each n ≥ 1

Λn = f(xn) + (1− (1 + αn)Kλn)βng(xn) +K‖xn − x∗‖2 ≥ f(xn) +K‖xn − x∗‖2

≥ f(x∗) + 〈∇f(x∗), xn − x∗〉+K‖xn − x∗‖2 = f(x∗)−
〈

p∗√
2K

,
√

2K(xn − x∗)
〉

+K‖xn − x∗‖2

≥ f(x∗)− ‖p
∗‖2

4K
−K‖xn − x∗‖2 +K‖xn − x∗‖2 = f(x∗)− ‖p

∗‖2

4K
.

Therefore, {Λn} is bounded from below.

Next, we set γn = Λn, δn = θ‖yn − xn‖2 and

εn = (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

Recall that min g = 0. Thus g ≤ δargmin g. Therefore σargmin g = (δargmin g)
∗ ≤ g∗ and hence,

g∗ − σargmin g ≥ 0. It follows that

εn = (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
≤ 2Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

By using Assumption A (IV) and p∗ ∈ Nargmin g(x
∗), we have

∞∑
n=1

εn < +∞. Applying Lemma

3.3 and Lemma 3.4, we obtain that lim
n→∞

Λn exists.
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(ii). Follows immediately from Lemmas 3.3 and 3.4.

(iii). We set γn = ‖xn − x∗‖2, δn = (1 + αn)λnβng(xn) and

εn = (1 + αn)2‖yn − xn‖2 + (1 + αn)λnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

From statement (ii), Lemma 3.4 and Lemma 3.1, we get that

lim
n→∞

‖xn − x∗‖ exists and
∞∑
n=1

λnβng(xn) < +∞.

For (iv) since for each n ≥ 1 Ωn(xn) = Λn + (1 +αn)Kλnβng(xn)−K‖xn−x∗‖2, by using (i), (iii)

and lim
n→∞

αn = 0, we have lim
n→∞

Ωn(xn) exists.

(v). It follows from Assumption A (III) that lim inf
n→∞

λnβn > 0. According to statement (iii)

implies lim
n→∞

g(xn) = 0. Let x be any weak cluster point of the sequence {xn}. Therefore, there exists

subsequence {xnk
} of {xn} converges weakly to x as k →∞. By the weak lower semicontinuity of

g, we get that

g(x) ≤ lim inf
k→∞

g(xnk
) ≤ lim

n→∞
g(xn) = 0,

which means that x ∈ arg min g. This completes the proof.

Lemma 3.6. Let x∗ ∈ S. Then

∞∑
n=1

λn [Ωn(xn)− f(x∗)] < +∞.

Proof. Since f is differentiable and convex function, we obtain that for each n ≥ 1

f(x∗) ≥ f(xn) + 〈∇f(xn), x∗ − xn〉.

Since g is differentiable, convex function and min g = 0 , we obtain that for each n ≥ 1

0 = g(x∗) ≥ g(xn) + 〈∇g(xn), x∗ − xn〉,

which implies that

0 ≥ βng(xn) + 〈βn∇g(xn), x∗ − xn〉, for all n ≥ 1.

Therefore, we can conclude that

f(x∗) ≥ Ωn(xn) + 〈∇Ωn(xn), x∗ − xn〉 = Ωn(xn) +

〈
xn − yn
λn

, x∗ − xn
〉
. (3.12)

From (3.12), we obtain that

2λn [Ωn(xn)− f(x∗)] ≤ 2〈xn − yn, xn − x∗〉 = ‖xn − yn‖2 + ‖xn − x∗‖2 − ‖yn − x∗‖2. (3.13)

On the other hand, for each n ≥ 1

‖yn − x∗‖2

= ‖xn+1 − αn(yn − xn)− x∗‖2 = ‖xn+1 − x∗‖2 + α2
n‖yn − xn‖2 − 2〈αn(xn+1 − x∗), yn − xn〉

= ‖xn+1 − x∗‖2 + α2
n‖yn − xn‖2 − α2

n‖xn+1 − x∗‖2 − ‖yn − xn‖2 + ‖αn(xn+1 − x∗)− (yn − xn)‖2

≥ ‖xn+1 − x∗‖2 + α2
n‖yn − xn‖2 − α2

n‖xn+1 − x∗‖2 − ‖yn − xn‖2,

which implies that

−‖yn − x∗‖2 ≤ −‖xn+1 − x∗‖2 − α2
n‖yn − xn‖2 + α2

n‖xn+1 − x∗‖2 + ‖yn − xn‖2. (3.14)
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Combining (3.13) and (3.14), we have for all n ≥ 1

2λn [Ωn(xn)− f(x∗)] ≤ (2− α2
n)‖xn − yn‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + α2

n‖xn+1 − x∗‖2

≤ 2‖xn − yn‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + α2
n‖xn+1 − x∗‖2.

Therefore, according to Lemma 3.5 (iii), we get that the sequence {‖xn − x∗‖} is bounded, which

means that there exists M > 0 such that ‖xn − x∗‖ ≤M for all n ≥ 1.

By Assumption A (III) and Lemma 3.5, we obtain that

2
∞∑
n=1

λn[Ωn(xn)− f(x∗)] ≤ 2
∞∑
n=1

‖yn − xn‖2 + ‖x1 − x∗‖2 +M2
∞∑
n=1

α2
n < +∞.

The following proposition will play an important role in convergence analysis, which is the main

result of this paper.

Proposition 3.7 ([5, Opial Lemma]). Let H be a real Hilbert space, C ⊆ H be nonempty set and

{xn} be any given sequence such that:

(i) For every z ∈ C, lim
n→∞

‖xn − z‖ exists;

(ii) Every weak cluster point of the sequence {xn} lies in C.

Then the sequence {xn} converges weakly to a point in C.

Let {xn} be define by (RGPA). Then {xn} converges weakly to a point in S. Moreover, the

sequence {f(xn)} converges to the optimal objective value of the optimization problem (1.1).

Proof. From Lemma 3.5 (iii), lim
n→∞

‖xn− x∗‖ exists for all x∗ ∈ S. Let x be any weak cluster point

of {xn}. Then there exists a subsequence {xnk
} of {xn} such that {xnk

} converges weakly to x as

k →∞. According to Lemma 3.5 (v) implies x ∈ arg min g. It suffices to show that f(x) ≤ f(x) for

all x ∈ arg min g. Since

∞∑
n=1

λn = +∞, and by Lemma 3.6 and Lemma 3.5 (iv), we have

lim
n→∞

Ωn(xn)− f(x∗) ≤ 0 for all x∗ ∈ S.

Therefore, f(x) ≤ lim inf
k→∞

f(xnk
) ≤ lim

n→∞
Ωn(xn) ≤ f(x∗), ∀x∗ ∈ S, which implies that x ∈ S.

Applying Opial Lemma, we obtain that {xn} converges weakly to a point in S. The last statement

follows immediately from the above.

4. Numerical experiments

In this section, we present the convergence of the algorithm proposed (RGPA) in this paper by

the minimization problem with linear equality constraints. Firstly, we are given a linear system of

the form

Ax = b,

where A ∈ Rm×n and b ∈ Rm. In addition, we assume that n > m. In this section, the system

has many solutions. This leads us to the question of which solution should be considered. As a

result, we may consider the following problem, say, the minimization problem with linear equality

constraints.

minimize
1

2
‖x‖2

subject to Ax = b,
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Table 1: Comparison of the convergence of (RGPA) and (DGS) for the parameters K = 0.001 and q ∈ ( 1
2
, 1).

q
(RGPA) (DGS)

Time (sec) #(Iters) Time (sec) #(Iters)

0.6 2.38 566 10.23 2221

0.7 2.31 568 107.78 25336

0.8 2.46 581 384.00 90636

0.9 44.96 11458 447.11 103487

or , equivalently,

minimize
1

2
‖x‖2

subject to x ∈ arg min
1

2
‖A(·)− b‖2.

The above problem can be written in the form of the problem (1.1) as

minimize f(x) :=
1

2
‖x‖2

subject to g(x) :=
1

2
‖A(x)− b‖2.

In this setting, we have ∇f(x) = x and notice that ∇f is 1-Lipschitz continuous.

Furthermore, we get that∇g(x) = A>(Ax−b) and notice that∇g is ‖A‖2-Lipschitz continuous.

All the numerical experiments were performed under MATLAB (R2015b). We begin with the

problem by random matrix A in Rm×n , vector x1 ∈ Rn and b ∈ Rm with m = 1000 and n = 4000

generated by using MATLAB command randi, which the entries of A, x1 and b are integer in

[-10,10]. Next, we are going to compare a performance of the algorithms (RGPA) and (DGS).

The choice of the parameters for the computational experiment is based on Remark 2.2. We chooses

γ = 1
4‖A‖2 and δ = 1. We consider different choices of the parameters K ∈ (0, 1] and q ∈ ( 1

2 , 1). We

will terminate the algorithms (RGPA) and (DGS) when the errors become small, i.e.,

‖xn − x∗‖ ≤ 10−6,

where x∗ = A>(AA>)−1b.

In Table 1 we present a comparison of the convergence between two algorithms including

(RGPA) and (DGS) for the parameters K = 0.001 and different choices for the parameters

q ∈ ( 1
2 , 1). We observe that when q = 0.6 leads to lowest computation time for (RGPA) and

(DGS) with 2.38 second and 10.23 second, respectively. Furthermore, we also observe that (DGS)

hit a big number of iterations than (RGPA) for all choices of parameter q.

In Table 2 we present a comparison of the convergence of (RGPA) and (DGS) for the pa-

rameters q = 0.6 and K ∈ (0, 1]. We observe that the number of iterations and computation time

for (RGPA) smaller than the number of iterations for (DGS) for each choice of parameters K.

Furthermore, (RGPA) needs tiny computation time to reach the optimality tolerance than (DGS)

for each choice of parameter K.

We observe that our algorithm (RGPA) performs an advantage behavior when comparing

with algorithm (DGS) for all different choices of parameters. Note that the number of iterations

for (RGPA) smaller than the number of iterations for (DGS). Furthermore, (RGPA) needs tiny

computation time to reach optimality tolerance than (DGS) for each different choice of parameters.

5. Conclusions

We have presented a new gradient penalty scheme, say, rapid gradient penalty algorithm (RGPA).

We provide sufficient conditions to guarantee the convergences of (RGPA) for the considered con-
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Table 2: Comparison of the convergence of (RGPA) and (DGS) for the parameters q = 0.6 and K ∈ (0, 1].

K
(RGPA) (DGS)

Time (sec) #(Iters) Time (sec) #(Iters)

0.001 2.38 566 10.23 2221

0.005 2.40 585 171.46 40888

0.01 6.63 1612 254.93 64469

0.05 83.22 20480 288.39 65722

0.1 107.41 26257 212.02 52464

0.5 79.95 18606 100.33 24419

1 51.46 13414 67.20 16616

strained convex optimization problem (1.1). We also provide a numerical example to compare the

performance of the algorithms (RGPA) and (DGS). As a result, we observe that our algorithm

(RGPA) performs an advantage behavior when comparing with (DGS) for all different choices of

parameters.
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[9] RI. Boţ, ER. Csetnek and N. Nimana, Gradient-type penalty method with inertial effects for

solving constrained convex optimization problems with smooth data, Optim. Lett. 12(1) (2018),

17–33.
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Abstract

The purpose of this paper is to introduce a new modification of Lupaş operators in the

frame of post quantum setting and to investigate their approximation properties. First using

the relations between q-calculus and post quantum calculus, the post quantum analogue of op-

erators constructed will be linear and positive but will not follow Korovkin’s theorem. Hence a

new modification of q-Lupaş operators is constructed which will preserve test functions. Based

on these modification of operators, approximation properties have been investigated. Further,

the rate of convergence of operators by mean of modulus of continuity and functions belonging

to the Lipschitz class as well as Peetre’s K-functional are studied.

Keywords and phrases: Lupaş operators; Post quantum analogue; q analogue; Peetre’s
K-functional; Korovkin’s type theorem; Convergence theorems.

AMS Subject Classification (2010): 41A10, 41A25, 41A36.

1. Introduction and preliminaries

A. Lupaş [17] introduced the linear positive operators at the International Dortmund
Meeting held in Witten (Germany, March, 1995) as follows:

Lm(f ;u) = (1− a)−mu
∞∑
l=0

(mu)la
l

l!
f

(
l

m

)
, u ≥ 0, (1.1)

with f : [0,∞)→ R. If we impose Lm(u) = u, we get a = 1
2 . Thus operators (1.1) becomes

Lm(f ;u) = 2−mu
∞∑
l=0

(mu)l
l!2l

f

(
l

m

)
, u ≥ 0, (1.2)

where (mu)l is the rising factorial defined as:

(mu)0 = 1, (mu)l = mu(mu+ 1)(mu+ 2) · · · (mu+ l − 1), l ≥ 0.

The q-analogue of Lupaş operators (1.2) is defined in [26] as:

Lp,qm (f ;u) = 2−[m]qu
∞∑
l=0

([m]qu)l
[l]!2l

f

(
[l]q

[m]q

)
, u ≥ 0. (1.3)

1
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2

2. Construction of new operators and auxiliary results

Let us recall certain notations and definitions of (p, q)-calculus. Let p > 0, q > 0. For
each non negative integer l, m, m ≥ l ≥ 0, the (p, q)-integer, (p, q)-binomial are defined, as

[j]p,q = pj−1 + pj−2q + pj−3q2 + ...+ pqj−2 + qj−1 =



pj−qj
p−q , when p 6= q 6= 1,

j pj−1, when p = q 6= 1,

[j]q, when p = 1,
j, when p = q = 1.

where [j]q denotes the q-integers and m = 0, 1, 2, · · · .

The formula for (p, q)-binomial expansion is as follows:

(au+ bv)mp,q :=
m∑
l=0

p
(m−l)(m−l−1)

2 q
l(l−1)

2

[
m
l

]
p,q

am−lblum−lvl,

(u+ v)mp,q = (u+ v)(pu+ qv)(p2u+ q2v) · · · (pm−1u+ qm−1v),

(1− u)mp,q = (1− u)(p− qu)(p2 − q2u) · · · (pm−1 − qm−1u),

where (p, q)-binomial coefficients are defined by[
m
l

]
p,q

=
[m]p,q!

[l]p,q![m− l]p,q!
.

Details on (p, q)-calculus can be found in [9, 11, 21].

In the case of p = 1, the above notations reduce to q-analogues and one can easily see that
[m]p,q = pm−1[m]q/p. Mursaleen et al. [21] introduced (p, q)-calculus in approximation theory
and constructed post quantum analogue of Bernstein operators. On the other hand Khalid and
Lobiyal defined the (p, q)- analogue of Lupaş Bernstein operators in [12] and have shown its
application in computer aided geometric design for construction of Beizer curves and surfaces.
For another applications of extra parameters p in the field of approximation on compact disk,
one can refer [4]. For related literature, one can refer [1, 2, 9, 3, 13, 14, 18, 19, 20, 22, 23, 25, 24]
papers based on q and (p, q) integers in approximation theory and CAGD. Motivated by the
above mentioned work, we introduce a new analogue of Lupaş operators. The post quantum
analogue of (1.3) are as follows:

Definition 2.1. Let f : [0,∞) → R, 0 < q < p ≤ 1 and for any m ∈ N. we define the
(p, q)-analogue of Lupaş operators as

Lp,qm (f ;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

f

(
pl−m[l]p,q

[m]p,q

)
, u ≥ 0. (2.1)

The operators (2.1) are linear and positive. For p = 1, the operators (2.1) turn out to be
q-Lupaş operators defined in (1.3). Next, we prove some auxiliary results for (2.1).

Lemma 2.2. Let 0 < q < p ≤ 1 and m ∈ N. We have

(i) Lp,qm (1;u) = 1,
(ii) Lp,qm (t;u) = u

pm−1(2−p)[m]p,qu+1 ,

(iii) Lp,qm (t2;u) = u
[m]p,qp2m−2(2−p3)[m]p,qu+1 + qu2

p2m−4(2−p2)[m]p,qu+2 + qu

p2m−4(2−p2)[m]p,qu+2[m]p,q
.

Proof. we have
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(i)

Lp,qm (1;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

= 1.

(ii)

Lp,qm (t;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

pl−m[l]p,q
[m]p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!2l

pl−m[l]p,q
[m]p,q

= 2−[m]p,quu
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l+1

pl+1−m

=
2−[m]p,qu−1

pm−1
u
∞∑
l=0

([m]p,qu+ 1)lp
l

[l]p,q!2l

=
u

(pm−1)(2− p)([m]p,qu+1)
.

(iii)

Lp,qm (t2;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

p2l−2m[l]2p,q
[m]2p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!al

p2l−2m[l]2p,q
[m]2p,q

= 2−[m]p,quu
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l+1

p2l+2−2m[l + 1]p,q
[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2l[l + 1]p,q
[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2l[pl + q[l]p,q]

[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p3l

[m]p,q

=
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2lq[l]p,q
[m]p,q

= I1 + I2(say),

�
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we find that I1 and I2 are

I1 =
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p3l

[m]p,q

=
u

[m]p,qp2m−2(2− p3)
[m]p,qu+1

.

I2 =
2−[m]p,qu−1

p2m−2
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

p2lq[l]p,q
[m]p,q

=
2−[m]p,qu−1([m]p,qu+ 1)

p2m−2
qu
∞∑
l=0

([m]p,qu+ 2)l−1
[l]p,q[l − 1]p,q!2l

p2l[l]p,q
[m]p,q

=
2−[m]p,qu−1([m]p,qu+ 1)

[m]p,qp2m−2
qu
∞∑
l=1

([m]p,qu+ 2)l−1p
2l

[l − 1]p,q!2l

=
2−[m]p,qu−2([m]p,qu+ 1)

[m]p,qp2m−4
qu
∞∑
l=0

([m]p,qu+ 2)lp
2l

[l]p,q!2l

=
qu2

p2m−4(2− p2)
[m]p,qu+2

+
qu

p2n−4(2− p2)
[m]p,qu+2

[m]p,q
.

On adding I1and I2, we get

Lp,qm (t2;u) =
u

[m]p,qp2m−2(2− p3)
[m]p,qu+1

+
qu2

p2m−4(2− p2)
[m]p,qu+2

+
qu

p2m−4(2− p2)
[m]p,qu+2

[m]p,q
.

The sequence of (p, q)-Lupaş operators constructed in (2.1) however do not preserve the test
functions t and t2. Hence one can not guarantee approximation via these operators. Therefore,
we construct the modified (p, q)- Lupaş operators as follows:

Lemma 2.3. Let 0 < q < p ≤ 1 and m ∈ N. For f : [0,∞)→ R, we define the (p, q)-analogue
of Lupaş operators as:

L̃p,qm (f ;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!al

f

(
[l]p,q

[m]p,q

)
, u ≥ 0. (2.2)

The operators (2.2) are linear and positive. For p = 1, the operators (2.2) turn out to be
q-Lupaş operator defined in (1.3).
We shall investigate approximation properties of the operators (2.2). We obtain rate of conver-
gence of the operators via modulus of continuities. We also obtain approximation behaviors of
the operators for functions belonging to Lipschitz spaces.

Lemma 2.4. Let 0 < q < p ≤ 1 and m ∈ N. We have

(i) L̃p,qm (1;u) = 1,

(ii) L̃p,qm (t;u) = u,

(iii) L̃p,qm (t2;u) = u
(2−p)([m]p,qu+1)[m]p,q

+ qu
[m]p,q

+ qu2.

Proof. We have

(i)

L̃p,qm (1;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

= 1.
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(ii)

L̃p,qm (t;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

[l]p,q
[m]p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!2l

[l]p,q
[m]p,q

= 2−[m]p,qu−1u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

= u.

(iii)

L̃p,qm (t2;u) = 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

[l]2p,q
[m]2p,q

= 2−[m]p,qu
∞∑
l=1

([m]p,qu)([m]p,qu+ 1)l−1
[l]p,q[l − 1]p,q!2l

[l]2p,q
[m]2p,q

= 2−[m]p,quu
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l+1

[l + 1]p,q
[m]p,q

= 2−[m]p,qu−1u

∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

[pl + q[l]p,q]

[m]p,q

=
2−[m]p,qu−1

[m]p,q
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

pl

+
2−[m]p,qu−1

[m]p,q
qu
∞∑
l=0

([m]p,qu+ 1)l[l]p,q
[l]p,q!2l

= I1 + I2(Say).

After solving I1 and I2, we get

I1 =
2−[m]p,qu−1

[m]p,q
u
∞∑
l=0

([m]p,qu+ 1)l
[l]p,q!2l

pl

=
u

(2− p)([m]p,qu+1)[m]p,q
.

I2 =
2−[m]p,qu−1

[m]p,q
qu

∞∑
l=0

([m]p,qu+ 1)l[l]p,q
[l]p,q!2l

=
2−[m]p,qu−1

[m]p,q
qu
∞∑
l=1

([m]p,qu+ 1)([m]p,qu+ 2)l−1[l]p,q
[l]p,q[l − 1]p,q!2l

=
2−[m]p,qu−2([m]p,qu+ 1)qu

[n]p,q

∞∑
l=0

([m]p,qu+ 2)l
[l]p,q!2l

=
qu

[m]p,q
+ qu2.

On adding I1and I2, we get

L̃p,qm (t2;u) =
u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2.

�
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Corollary 2.5. Using Lemma 2.4, we get the following central moments.

L̃p,qn (t− u;u) = 0

L̃p,qn ((t− u)2;u) = u
(2−p)([m]p,qu+1)[m]p,q

+ qu
[m]p,q

+ qu2 − u2 = δm(u) (say).

Remark 2.6. One can observe that

lim
m→∞

[m]p,q =


0, p,q ∈ (0, 1),

1
1−q , p = 1 and q ∈ (0, 1).

Thus for approximation processes, one need to choose convergent sequences (pm) and (qm) such
that for each n, 0 < qm < pm ≤ 1 and pm, qm → 1 so that [m]pm,qm →∞ as m→∞.

Theorem 2.7. Let f ∈ CB [0,∞) and qm ∈ (0, 1), pm ∈ (qm, 1] such that qm → 1, pm → 1, as
m→∞. Then for each u ∈ [0,∞) we have

lim
n→∞

L̃pm,qmm (f ;u) = f(u).

Proof. By Korovkin’s theorem it is enough to show that

lim
m→∞

L̃pm,qmm (tm;u) = um, m = 0, 1, 2.

By Lemma 2.4, it is clear that

lim
m→∞

L̃pm,qmm (1;u) = 1

lim
m→∞

L̃pm,qmm (1;u) = u

and

lim
m→∞

L̃pm,qmm (t2;u) = lim
m→∞

[
u

(2− pm)([m]pm,qmu+1)[m]pm,qm
+

qmu

[m]pm,qm
+ qmu

2

]

= u2.

This completes the proof. �

3. Direct results

Let CB [0,∞) be the space of real-valued continuous and bounded functions f defined on
the interval [0,∞). The norm ‖ · ‖ on the space CB [0,∞) is given by

‖ f ‖= sup
0≤x<∞

| f(x) | .

Let us consider the K-functional as:

K2(f, δ) = inf
s∈W 2

{‖ f − s ‖ +δ ‖ s
′′
‖},

where δ > 0 and W 2 = {s ∈ CB [0,∞) : s
′
, s
′′ ∈ CB [0,∞)}.

Then as in ([4], p. 177, Theorem 2.4), there euists an absolute constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ). (3.1)
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Second order modulus of smoothness of f ∈ CB [0,∞) is as follows

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
u∈[0,∞)

| f(u+ 2h)− 2f(u+ h) + f(u) | .

The usual modulus of continuity of f ∈ CB [0,∞) is defined by

ω(f, δ) = sup
0<h≤δ

sup
u∈[0,∞)

| f(u+ h)− f(u) | .

Theorem 3.1. Let f ∈ CB [0,∞), p, q ∈ (0, 1) such that 0 < q < p ≤ 1. Then for every
u ∈ [0,∞) we have

| L̃p,qm (f ;u)− f(u) |≤ Cω2(f ; δm(u)),

where

δ2m(u) =
u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2 − u2.

Proof. Let s ∈ W2. Then from Taylor’s expansion, we get

s(t) = s(u) + s′(u)(t− u) +

∫ t

u

(t− u)s′′(u)du, t ∈ [0,A], A > 0.

Now by Corollary 2.5, we have

L̃p,qm (s;u) = s(u) + L̃p,qm

(∫ t

u

(t− u)s′′(u)du;u

)
.

|L̃p,qm (s;u)(s;u)− s(u)| ≤ L̃p,qm

(∣∣∣∣∫ t

u

| (t− u) | | s′′(u) | du;u

∣∣∣∣)
≤ L̃p,qm

(
(t− u)2;u

)
‖ s′′ ‖,

hence we get

|L̃p,qm (s;u(s;u)− s(u)| ≤‖ s′′ ‖
(

u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2 − u2

)
.

By Lemma 2.3, we have

|L̃p,qm (f ;u)| ≤ 2−[m]p,qu
∞∑
l=0

([m]p,qu)l
[l]p,q!2l

∣∣∣∣f ( [l]p,q
[m]p,q

) ∣∣∣∣≤‖ f ‖ .
Thus, we have

|L̃p,qm (f ;u)| ≤ | L̃p,qm ((f − s);u)− (f − s)(u) | +|L̃p,qm (s;u)− s(u)|.

After substituting all values, we get

|L̃p,qm (f ;u)− f(u)| ≤ ‖ f − s ‖ + ‖ s′′ ‖
(

u

(2− p)([m]p,qu+1)[m]p,q
+

qu

[m]p,q
+ qu2 − u2

)
.

By taking the infimum on the right hand side over all s ∈ W2, we get

|L̃p,qm (f ;u)− f(u)| ≤ CK2

(
f, δ2m(u)

)
.

By using the property of K-functional, we have

|L̃p,qm (f ;u)− f(u)| ≤ Cω2 (f, δm(u)) .

This completes the proof. �
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4. Pointwise estimates

Theorem 4.1. Let 0 < α ≤ 1 and Ȩ be any bounded subset of the interval [0,∞). If f ∈
CB [0,∞), is locally Lip(α), i.e., the condition

|f(v)− f(u)| ≤  L|v − u|α, v ∈ Ȩ and u ∈ [0,∞) (4.1)

holds, then, for each u ∈ [0,∞), we have

|L̃p,qm (f ;u)− f(u)| ≤  L
{
δm(u)

α
2 + 2(d(u, Ȩ))α

}
, u ∈ [0,∞)

where  L is a constant depending on α and f and d(u; Ȩ) is the distance between u and Ȩ defined
by

d(u, Ȩ) = inf {|t− u|; t ∈ E} and δm(u) = L̃p,qm ((t− u)2;u).

Proof. Let Ȩ be the closure of Ȩ in [0, 1). Then, there exists a point t0 ∈ Ȩ such that d(u, Ȩ) =
|u− t0|.
Using the triangle inequality, we have

|f(t)− f(u)| ≤ |f(t)− f(t0)|+ |f(t0)− f(u)|.
By using (4.1) we get,

|L̃p,qm (f ;u)− f(u)| ≤ L̃p,qm (|f(t)− f(t0)|;u) + L̃p,qm (|f(u)− f(t0)|;u)

≤  L
{
L̃p,qm (|t− t0|α;u) + (|u− t0|α;u) + |u− t0|α

}
≤  L

{
L̃p,qm (|t− u|α;u) + 2|u− t0|α

}
.

By choosing p = 2
α and q = 2

2−α , we get 1
p + 1

q = 1. Then by using Hölder’s inequality we get

|L̃p,qm (f ;u)− f(u)| ≤  L
{
L̃p,qm (|t− u|αp;u)

1
p [L̃p,qm (1q;u)]

1
q + 2(d(u, Ȩ))α

}
≤  L

{
L̃p,qm

(
((t− u)2;u)

)α
2 + 2(d(u, Ȩ))α

}
≤  L

{
δm(u)

α
2 + 2(d(u, Ȩ))α

}
.

Hence the proof is completed. �

Now, we recall local approximation in terms of α order Lipschitz-type maximal function
given by Lenze [16] as

ω̃α(f ;u) = sup
t6=u,t∈(0,∞)

|f(t)− f(u)|
|t− u|α

, u ∈ [0,∞) and α ∈ (0, 1]. (4.2)

Then we get the next result

Theorem 4.2. Let f ∈ CB [0,∞) and α ∈ (0, 1]. Then, for all u ∈ [0,∞), we have

|L̃pm,qmm (f ;u)− f(u)| ≤ ω̃α(f ;u)
(
δm(u)

)α
2

,

where δm(u) is defined in Corollary 2.5.

Proof. We know that

|L̃pm,qmm (f ;u)− f(u)| ≤ L̃pm,qmm (|f(t)− f(u)|;u).

From equation (4.2), we have

|L̃pm,qmm (f ;u)− f(u)| ≤ ω̃α(f ;u)L̃pm,qmm (|t− u|α;u).

From Hölder’s inequality with p = 2
α and q = 2

2−α , we have

|L̃pm,qmm (f ;u)− f(u)| ≤ ω̃α(f ;u)
(
L̃pm,qmm (|t− u|2;u)

)α
2 ,
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which proves the desired result. �

5. Weighted approximation by L̃p,qm

In this section we shall discuss weighted approximation theorems for the operators L̃p,qm
on the interval [0,∞).

Theorem 5.1 (cf. [5, 15]). Let (Tm) be the sequence of linear positive operators from Cu2 [0,∞)
to Bu2 [0,∞) satisfy

lim
m→∞

‖ Tmκi − κi ‖u2= 0, i = 0, 1, 2.

Then for any function f ∈ C∗u2 [0,∞)

lim
m→∞

‖ Tmf − f ‖u2= 0.

Theorem 5.2 (cf. [6, 7]). Let (qm) and (pm) be two sequences such that 0 < qm < pm ≤ 1, for
all n and both converge to 1. Then for each function f ∈ C∗u2 [0,∞), we get

lim
m→∞

‖ Lpm,qmm f − f ‖u2= 0.

Proof. By Theorem 5.1, it is enough to show

lim
m→∞

‖ L̃pm,qmm κi − κi ‖u2 = 0, i = 0, 1, 2. (5.1)

By Lemma 2.4 (i) and (ii), it is clear that

‖ Lpm,qmm (1;u)− 1 ‖u2 = 0

‖ L̃pm,qmm (t;u)− u ‖u2 = 0

and by Lemma 2.4 (iii), we have

‖ L̃pm,qmm (t2;u)− u2 ‖2 = sup
u∈[0,∞)

(
1

(2−pm)([m]pm,qmu+1)[m]pm,qm
+ qm

[m]pm,qm

)
u+ (qm − 1)u2

1 + u2

≤
(

1

(2− pm)[m]pm,qm
+

qm
[m]pm,qm

)
+ (qm − 1).

Last inequality means that (5.1) holds for i = 2. By Theorem 5.1, the proof is completed. �

Theorem 5.3. Let qm ∈ (0, 1), pm ∈ (q, 1] such that qm → 1, pm → 1 as m → ∞. Let
f ∈ C∗u2 [0,∞), and its modulus of continuity ωd+1(f ; δ) be defined on [0, d+ 1] ⊂ [0,∞). Then,
we have

|L̃pm,qmm (f ;u)− f(u)‖C[0,d] ≤ 6Mf (1 + d2)δm(d) + 2ωd+1(f ;
√
δm(d)),

where δm(d) = L̃p,qm ((t− u)2;u) = u
(2−p)([m]p,qu+1)[m]p,q

+ qu
[m]p,q

+ qu2 − u2.

Proof. From ([10] p. 378), for u ∈ [0, d] and t ∈ [0,∞), we have

|f(t)− f(u)| ≤ 6Mf (1 + d2)(t− u)2 +

(
1 +
|t− u|
δ

)
ωd+1(f ; δ).

Applying L̃p,qm both the sides, we have

|L̃p,qm (f ;u)− f(u)| ≤ 6Mf (1 + d2)L̃p,qm ((t− u)2;u) +

(
1 +

L̃p,qm (|t− u|;u)

δ

)
ωd+1(f ; δ).

Applying Cauchy-Schwarz inequality,for u ∈ [0, d] and t ≥ 0, we get

|L̃p,qm (f ;u)− f(u)| ≤ L̃p,qm (|(f ;u)− f(u)|;u)

≤ 6Mf (1 + d2)L̃p,qm ((t− u)2;u)

+ ωd+1(f ; δ)

(
1 +

1

δ
L̃p,qm

(
(t− u)2;u

) 1
2

)
.
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Thus, from Lemma 2.4, for u ∈ [0, d], we get

|L̃p,qm (f ;u)− f(u)| ≤ 6Mf (1 + d2)δm(d) + ωd+1(f ; δ)

(
1 +

√
δm(d)

δ

)
.

By Choosing δ =
√
δm(d), we get the required result. �

Now, we prove a theorem to approximate all functions in C∗u2 Such type of results are
given in [8] for locally integrable functions.

Theorem 5.4. Let 0 < qm < pm ≤ 1 such that qm → 1, pm → 1 as m → ∞. Then for each
function f ∈ C∗u2 [0,∞), and α > 1

lim
m→∞

sup
u∈[0,∞)

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

= 0.

Proof. Let for any fixed u0 > 0,

sup
u∈[0,∞)

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

≤ sup
u≤u0

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

+ sup
u≥u0

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

≤ ‖ Lpm,qmm (f)− f ‖[c0,u0] + ‖ f ‖u2 sup
u≤u0

| L̃pm,qmm (1 + t2;u) |
(1 + u2)α

+ sup
u≥u0

| f(u) |
(1 + u2)α

. (5.2)

Since, | f(u) |≤Mf (1 + u2) we have,

sup
u≥u0

| f(u) |
(1 + u2)α

≤ sup
u≥u0

Mf

(1 + u2)α−1
≤ Mf

(1 + u2)α−1
.

Let ε > 0, and let us choose u0 large then we have

Mf

(1 + u02)α−1
<
ε

3
(5.3)

and in view of (2.4), we get,

‖ f ‖u2 lim
m→∞

| L̃pm,qmm (1 + t2;u) |
(1 + u2)α

= ‖ f ‖u2

1 + u2

(1 + u2)α

≤ ‖ f ‖u2

(1 + u2)α−1

≤ ‖ f ‖u2

(1 + u02)α−1

≤ ε

3
. (5.4)

By using Theorem 5.3, the first term of inequality (5.2) becomes

‖ L̃pm,qmm (f)− f ‖[c0,u0]<
ε

3
, as m→∞. (5.5)

Hence we get the required proof by combining (5.3)-(5.5)

sup
u∈[0,∞)

| L̃pm,qmm (f ;u)− f(u) |
(1 + u2)α

< ε.

�
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ADDITIVE-QUADRATIC FUNCTIONAL INEQUALITIES IN

FUZZY NORMED SPACES AND STABILITY

YOUNG JU JEON AND CHANG IL KIM∗

Abstract. In this paper, we investigate the following functional inequality

N(f(x− y) + f(y − z) + f(z − x) − 2[f(x) + f(y) + f(z)]

− f(−x) − f(−y) − f(−z), t) ≥ N(f(x + y + z), t)

and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

1. Introduction and preliminaries

The concept of a fuzzy norm on a linear space was introduced by Katsaras [11]
in 1984. Later, Cheng and Mordeson [3] gave a new definition of a fuzzy norm in
such a manner that the corresponding fuzzy metric is of Kramosil and Michalek
type [13].

Definition 1.1. Let X be a real vector space. A function N : X × R −→ [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all c, s, t ∈ R,

(N1) N(x, t) = 0 for all t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a nondecreasing function on R and limt→∞N(x, t) = 1;
(N6) for any x 6= 0, N(x, ·) is continuous on R.

In this case, the pair (X,N) is called a fuzzy normed space.

Let (X,N) be a fuzzy normed space. A sequence {xn} in X is said to be con-
vergent if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0.
In this case, x is called the limit of the sequence {xn} in (X,N) and one denotes
it by N − limn→∞ xn = x. A sequence {xn} in (X,N) is said to be Cauchy if for
any ε > 0, there is an m ∈ N such that for any n ≥ m and any positive integer p,
N(xn+p − xn, t) > 1− ε for all t > 0. A fuzzy normed space is said to be complete
if each Cauchy sequence in it is convergent and a complete fuzzy normed space is
called a fuzzy Banach space.

In 1940, Ulam proposed the following stability problem (cf.[21]):

“Let G1 be a group and G2 a metric group with the metric d. Given a constant
δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→
G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists an unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

2010 Mathematics Subject Classification. 39B62, 39B72, 54A40, 47H10.
Key words and phrases. Hyers-Ulam stability, additive-quadratic functional inequality, fuzzy

normed space, fixed point theorem.
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2 YOUNG JU JEON AND CHANGIL KIM

In the next year, Hyers [10] gave a partial solution of Ulam,s problem for the case
of approximate additive mappings. Subsequently, his result was generalized by Aoki
[1] for additive mappings, and by Rassias [17] for linear mappings, to consider
the stability problem with unbounded Cauchy differences. A generalization of the
Rassias’ theorem was obtained by Gǎvruta [7] by replacing the unbounded Cauchy
difference by a general control function in the spirit of the Rassias’ approach. In
2008, for the first time, Mirmostafaee and Moslehian [14], [15] used the definition
of a fuzzy norm in [2] to obtain a fuzzy version of stability for the Cauchy functional
equation

(1.1) f(x+ y) = f(x) + f(y)

and the quadratic functional equation

(1.2) f(x+ y) + f(x− y) = 2f(x) + 2f(y).

Glányi [8] and Rätz [18] showed that if a mapping f : X −→ Y satisfies the
following functional inequality

(1.3) ‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖,

then f satisfies the following Jordan-Von Neumann functional equation

2f(x) + 2f(y)− f(xy−1) = f(xy).

for an abelian group X divisible by 2 into an inner product space Y. Glányi [9]
and Fechner [6] proved the Hyers-Ulam stability of (1.3). The stability problems of
several functional equations and inequalities have been extensively investigated by a
number of authors and there are many interesting results concerning the stability
of various functional equations and inequalities.

Now, we consider the following fixed point theorem on generalized metric spaces.

Definition 1.2. Let X be a non-empty set. Then a mapping d : X2 −→ [0,∞] is
called a generalized metric on X if d satisfies the following conditions:

(D1) d(x, y) = 0 if and only if x = y,
(D2) d(x, y) = d(y, x), and
(D3) d(x, y) ≤ d(x, z) + d(z, y).

In case, (X, d) is called a generalized metric space.

Theorem 1.3. [4] Let (X, d) be a complete generalized metric space and let J :
X −→ X a strictly contractive mapping with some Lipschitz constant L with 0 <
L < 1. Then for each given element x ∈ X, either d(Jnx, Jn+1x) = ∞ for all
nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞} and

(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

The following function equation f : X −→ Y is called the Drygas functional
equation :

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)
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ADDITIVE-QUADRATIC FUNCTIONAL INEQUALITIES... 3

for all x, y ∈ X. The Drygas functional equation has been studied by Szabo [20] and
Ebanks, Fǎiziev and Sahoo [5]. The solutions of the Drygas functional equation in
abelian group are obtained by H. Stetkær in [19].

In this paper, we investigate the following functional inequality which is related
with the Drygas type functional equation

N(f(x− y) + f(y − z) + f(z − x)− 2[f(x) + f(y) + f(z)]

− f(−x)− f(−y)− f(−z), t) ≥ N(f(x+ y + z), t)
(1.4)

and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.
Throughout this paper, we assume that X is a linear space, (Y,N) is a fuzzy

Banach space, and (R, N ′) is a fuzzy normed space.

2. Solutions and the stability for (1.4)

In this section, we investigate the functional equation (1.4) and prove the gen-
eralized Hyers-Ulam stability for it in fuzzy Banach spaces. For any mapping
f : X −→ Y , let

fo(x) =
f(x)− f(−x)

2
, fe(x) =

f(x) + f(−x)

2
.

In [12], the authors proved the following theorem:

Lemma 2.1. [12] Let f : X −→ Y be a mapping with f(0) = 0. Then f is quadratic
if and only if f satisfies the following functional equation

f(ax+by)+f(ax−by)−2a2f(x)−2b2f(y) = k[f(x+y)+f(x−y)−2f(x)−2f(y)]

for all x, y ∈ X, a fixed nonzero rational number a and fixed real numbers b, k with
a2 6= b2.

Using this, we have the following theorem:

Theorem 2.2. If a mapping f : X −→ Y saisfies (1.4), then f is an additive-
quadratic mapping.

Proof. Suppose that f satisfies (1.4). Setting x = y = z = 0 in (1.4), by (N3), we
have

N(f(0), t) ≤ N(6f(0), t) = N
(
f(0),

t

6

)
for all t > 0 and by (N5), N(f(0), t

6 ) ≤ N(f(0), t) for all t > 0. Hence we have

N(f(0), t) = N(f(0), 6t)

for all t > 0. By induction, we get

N(f(0), t) = N(f(0), 6nt)

for all t > 0 and all n ∈ N. By (N5), we get

N(f(0), t) = lim
n→∞

N(f(0), 6nt) = 1

for all t > 0 and hence by (N2), f(0) = 0. Letting z = −x− y in (1.4), we have

N(f(x− y) + f(x+ 2y) + f(−2x− y)− 2f(x)− 2f(y)− 2f(−x− y)

− f(−x)− f(−y)− f(x+ y), t) ≥ N(0, t) = 1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

936 YOUNG JU JEON 934-943



4 YOUNG JU JEON AND CHANGIL KIM

for all x, y ∈ X and all t > 0 and so by (N2), we get

f(x− y) + f(x+ 2y) + f(−2x− y)

= 2f(x) + 2f(y) + 2f(−x− y) + f(x+ y) + f(−x) + f(−y)
(2.1)

for all x, y ∈ X. By (2.1), we have

(2.2) fo(x− y) + fo(x+ 2y)− fo(2x+ y) = −fo(x+ y) + fo(x) + fo(y)

for all x, y ∈ X and interchanging x and y in (2.2), we have

(2.3) −fo(x− y) + fo(2x+ y)− fo(x+ 2y) = −fo(x+ y) + fo(x) + fo(y)

for all x, y ∈ X. By (2.2) and (2.3), we have

fo(x+ y) = fo(x) + fo(y)

for all x, y ∈ X and hence fo is an additive mapping. By (2.1), we have

(2.4) fe(x− y) + fe(2x+ y) + fe(x+ 2y) = 3fe(x+ y) + 3fe(x) + 3fe(y)

for all x, y ∈ X and letting y = −y in (2.4), we have

(2.5) fe(x+ y) + fe(2x− y) + fe(x− 2y) = 3fe(x− y) + 3fe(x) + 3fe(y)

for all x, y ∈ X. By (2.4) and (2.5), we have

fe(2x+ y) + fe(2x− y) + fe(x+ 2y) + fe(x− 2y)

= 2fe(x+ y) + 2fe(x− y) + 6fe(x) + 6fe(y)
(2.6)

for all x, y ∈ X. Letting y = 0 in (2.6), we get

(2.7) fe(2x) = 4fe(x)

for all x ∈ X and letting y = 2y in (2.6), by (2.7), we have

4fe(x+ y) + 4fe(x− y) + fe(x+ 4y) + fe(x− 4y)

= 2fe(x+ 2y) + 2fe(x− 2y) + 6fe(x) + 24fe(y)
(2.8)

for all x, y ∈ X. By (2.6) and (2.8), we have

(2.9) 2fe(2x+ y) + 2fe(2x− y) + fe(x+ 4y) + fe(x− 4y) = 18fe(x) + 36fe(y)

for all x, y ∈ X. Letting y = 2y in (2.9), by (2.7), we have

fe(x+ 8y) + fe(x− 8y) + 8fe(x+ y) + 8fe(x− y) = 18fe(x) + 144fe(y)

for all x, y ∈ X. By Lemma 2.1, fe is a quadratic mapping. Thus f is an additive-
quadratic mapping. �

Now, we will prove the generalized Hyers-Ulam stability of (1.4) in fuzzy normed
spaces. For any mapping f : X −→ Y , let

Df(x, y, z) = f(x−y)+f(y−z)+f(z−x)−2[f(x)+f(y)+f(z)]−f(−x)−f(−y)−f(−z).

Theorem 2.3. Assume that φ : X3 −→ [0,∞) is a function such that

(2.10) N ′
(
φ
(x

2
,
y

2
,
z

2

)
, t
)
≥ N ′

(L
4
φ(x, y, z), t

)
for all x, y, z ∈ X, t > 0 and some L with 0 < L < 1. Let f : X −→ Y be a
mapping such that f(0) = 0 and

(2.11) N(Df(x, y, z), t) ≥ min{N(f(x+ y + z), t), N ′(φ(x, y, z), t)}
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for all x, y, z ∈ X and all t > 0. Then there exists an unique additive-quadratic
mapping F : X −→ Y such that

(2.12) N
(
f(x)− F (x),

L

4(1− L)
t
)
≥ min{N ′(φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)}

for all x ∈ X and all t > 0. Further, we have

(2.13) F (x) = N − lim
n→∞

[2n(2n + 1)

2
f
( x

2n

)
+

2n(2n − 1)

2
f
(
− x

2n

)]
for all x ∈ X.

Proof. Consider the set S = {g | g : X −→ Y } and the generalized metric d on S
defined by

d(g, h) = inf{c ∈ [0,∞)| N(g(x)− h(x), ct) ≥ min{N ′(φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)},
∀x ∈ X,∀t > 0}.

Then (S, d) is a complete metric space([16]). Define a mapping J : S −→ S by
Jg(x) = 3g(x

2 ) + g(−x
2 ) for all g ∈ S and all x ∈ X. Let g, h ∈ S and d(g, h) ≤ c

for some c ∈ [0,∞). Then by (2.10), we have

N(Jg(x)− Jh(x), cLt)

= N
(

3g
(x

2

)
+ g
(
− x

2

)
− 3h

(x
2

)
− h
(
− x

2

)
, cLt

)
≥ min

{
N
(
g
(x

2

)
− h
(x

2

)
,

1

4
cLt
)
, N
(
g
(
− x

2

)
− h
(
− x

2

)
,

1

4
cLt
)}

≥ min
{
N ′
(
φ
(x

2
,−x

2
, 0
)
,

1

4
Lt
)
, N ′

(
φ
(
− x

2
,
x

2
, 0
)
,

1

4
Lt
)}

≥ min{N ′(φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)}

for all x ∈ X and all t > 0. Hence we have d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S
and so J is a strictly contractive mapping.

Putting y = −x and z = 0 in (2.11), we get

(2.14) N(f(2x)− 3f(x)− f(−x), t) ≥ N ′(φ(x,−x, 0), t)

for all x ∈ X, t > 0 and hence

N
(
f(x)− Jf(x),

L

4
t
)

= N
(
f(x)− 3f

(x
2

)
− f

(
− x

2

)
,
L

4
t
)

≥ N ′
(
φ
(x

2
,−x

2
, 0
)
,
L

4
t
)
≥ min{N ′(φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)}

for all x ∈ X, t > 0 and so we have d(f, Jf) ≤ L
4 < ∞. By Theorem 1.3, there

exists a mapping F : X −→ Y which is a fixed point of J such that d(Jnf, F )→ 0
as n→∞. By induction, we have

Jnf(x) =
2n(2n + 1)

2
f
( x

2n

)
+

2n(2n − 1)

2
f
(
− x

2n

)
for all x ∈ X and all n ∈ N and hence we have (2.13).
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Replacing x, y, z, and t by x
2n , y

2n , z
2n , and t

22n in (2.11), respectively, by (2.11),
we have

N
(
Dfe

( x
2n
,
y

2n
,
z

2n

)
,

1

22n
t
)

≥ min
{
N
(
Df
( x

2n
,
y

2n
,− z

2n

)
,

1

22n
t
)
, N
(
Df
(
− x

2n
,− y

2n
,
z

2n

)
,

1

22n
t
)}

≥ min{N ′(Lnφ(x, y, z), t), N ′(Lnφ(−x,−y, z), t)}

(2.15)

for all x, y, z ∈ X and all n ∈ N. Letting n→∞ in (2.15), we have

DFe(x, y, z) = 0

for all x, y, z ∈ X and by Lemma 2.1, Fe is an quadratic mapping. Similarly,
Fo is an additive mapping and thus F is an additive-quadratic mapping. Since
d(f, Jf) ≤ L

4 , by Theorem 1.3, we have (2.12).
Now, we show the uniqueness of F . LetG be another additive-quadratic mapping

with (2.12). Then clearly, G is a fixed point of J and

(2.16) d(Jf,G) = d(Jf, JG) ≤ Ld(f,G) ≤ L2

4(1− L)
<∞

and hence by (3) in Theorem 1.3, F = G. �

Similar to Theorem 2.3, we have the following threoem:

Theorem 2.4. Assume that φ : X3 −→ [0,∞) is a function such that

(2.17) N ′(φ(2x, 2y, 2z), t) ≥ N ′(2Lφ(x, y, z), t)

for all x, y, z ∈ X, t > 0 and some L with 0 < L < 1. Let f : X −→ Y be a
mapping with f(0) = 0 and (2.11). Then there exists an unique additive-quadratic
mapping F : X −→ Y such that

(2.18) N
(
f(x)− F (x),

1

2(1− L)
t
)
≥ min{N ′(φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)}

for all x ∈ X and all t > 0. Further, we have

F (x) = lim
n→∞

[2n + 1

22n+1
f(2nx)− 2n − 1

22n+1
f(−2nx)

]
for all x ∈ X.

Proof. Consider the set S = {g | g : X −→ Y } and the generalized metric d on S
defined by

d(g, h) = inf{c ∈ [0,∞)| N(g(x)− h(x), ct) ≥ min{N ′(φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)},
∀x ∈ X,∀t > 0}.

Then (S, d) is a complete metric space([16]). Define a mapping J : S −→ S by
Jg(x) = 3

8g(2x)− 1
8g(−2x) for all g ∈ S and all x ∈ X. Let g, h ∈ S and d(g, h) ≤ c

for some c ∈ [0,∞). Then by (2.10), we have

N(Jg(x)− Jh(x), cLt)

= N
(3

8
g(2x)− 1

8
g(−2x)− 3

8
h(2x) +

1

8
h(−2x), cLt

)
≥ min{N(g(2x)− h(2x), 2cLt), N(g(−2x)− h(−2x), 2cLt)}
≥ min{N ′(φ(2x,−2x, 0), 2Lt), N ′(φ(−2x, 2x, 0), 2Lt)}
≥ min{N ′φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)}
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for all x ∈ X. Hence we have d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S and since
0 < L < 1, J is a strictly contractive mapping. By (2.14), we get

N
(
f(x)− Jf(x),

t

2

)
= N

(3

8
[f(2x)− 3f(x)− f(−x)]− 1

8
[f(−2x)− 3f(−x)− f(x)],

t

2

)
≥ min{N ′(φ(x,−x, 0), t), N ′(φ(−x, x, 0), t)}

for all x ∈ X and all t > 0. Thus d(f, Jf) ≤ 1
2 <∞. The rest of proof the proof is

similar to Theorem 2.3. �

As examples of φ(x, y, z) and N ′(x, t) in Theorem 2.3 and Theorem 2.4, we can
take φ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p) and

N ′(x, t) =

{
t

t+k|x| , if t > 0

0, if t ≤ 0

for all x ∈ R, t > 0, and for some ε > 0, where k = 1, 2. Then we can formulate
the following corollary:

Corollary 2.5. Let X be a normed space and (Y,N) a fuzzy Banach space. Let
f : X −→ Y be a mapping such that

N(Df(x, y, z), t) ≥ min
{
N(f(x+ y + z), t),

t

t+ kε(‖x‖p + ‖y‖p + ‖z‖p)

}
for all x, y, z ∈ X, t > 0, a fixed real number p with 0 < p < 1 or 2 < p. Then there
is an unique additive-quadratic mapping F : X −→ Y such that

(2.19) N(f(x)− F (x), t) ≥


(2p − 4)t

(2p − 4)t+ 2kε‖x‖p
, if 2 < p

(2− 2p)t

(2− 2p)t+ 2kε‖x‖p
, if 0 < p < 1

for all x ∈ X and all t > 0.

For any f : X −→ Y , let

D1f(x, y) =f(x− y) + f(x+ 2y) + f(−2x− y)

− 2f(x)− 2f(y)− 2f(−x− y)− f(−x)− f(−y)− f(x+ y)
(2.20)

Using Corollary 2.5, we have the following corollary:

Corollary 2.6. Let X be a normed space and (Y,N) a fuzzy Banach space. Let
f : X −→ Y be a mapping such that

(2.21) N(D1f(x, y), t) ≥ t

t+ kε(‖x‖p + ‖y‖p + ‖x+ y‖p)

for all x, y, z ∈ X, t > 0, a fixed real number p with 0 < p < 1 or 2 < p. Then there
is an unique additive-quadratic mapping F : X −→ Y with (2.19).

We remark that the functional inequality (1.4) is not stable for p = 1 in Corollary
2.6. The following example shows that the inequality (2.21) is not stable for p = 1.
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Example 2.7. Define mappings t, s : R −→ R by

t(x) =


x, if |x| < 1

−1, if x ≤ −1

1, if 1 ≤ x,

s(x) =

{
x2, if |x| < 1

1, ortherwise

and a mapping f : R −→ R by

f(x) =
∞∑

n=0

[ t(2nx)

2n
+
s(2nx)

4n

]
We will show that f satisfies the following inequality

(2.22) |D1f(x, y)| ≤ 112(|x|+ |y|+ |x+ y|)

for all x, y ∈ R and so f satisfies (2.21). But there do not exist an additive-quadratic
mapping F : R −→ R and a non-negative constant K such that

(2.23) |F (x)− f(x)| ≤ K|x|

for all x ∈ R.

Proof. Note that to(x) = t(x), so(x) = 0, and |fo(x)| ≤ 2 for all x ∈ R. First,
suppose that 1

4 ≤ |x|+ |y|+ |x+y|. Then |D1fo(x, y)| ≤ 48(|x|+ |y|+ |x+y|). Now

suppose that 1
4 > |x| + |y| + |x + y|. Then there is a non-negative integer m such

that
1

2m+3
≤ |x|+ |y|+ |x+ y| < 1

2m+2

and so

2m|x| < 1

4
, 2m|y| < 1

4
, 2m|x+ y| < 1

4
.

Hence we have

{2mx, 2my, 2m(x− y), 2m(x+ y), 2m(x+ 2y), 2m(2x+ y)} ⊆ (−1, 1)

and so for any n = 0, 1, 2, · · ·,m,

|D1t0(2nx, 2ny)| = 0,

because t(x) = to(x) = x on (−1, 1). Thus

|D1fo(x, y)| =
∣∣∣ ∞∑
n=0

1

2n
D1to(2nx, 2ny)

∣∣∣
≤
∣∣∣ m∑
n=0

1

2n
D1to(2nx, 2ny)

∣∣∣+
∣∣∣ ∞∑
n=m+1

1

2n
D1to(2nx, 2ny)

∣∣∣
≤ 12

2m+1
≤ 48(|x|+ |y|+ |x+ y|),

because |D1t0(2nx, 2ny)| ≤ 6.
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Note that te(x) = 0, se(x) = s(x), and |fe(x)| ≤ 4
3 for all x ∈ R. First, suppose

that 1
4 ≤ |x|+ |y|+ |x+y|. Then |D1fe(x, y)| ≤ 64(|x|+ |y|+ |x+y|). Now suppose

that 1
4 > |x|+ |y|+ |x+ y|. Then there is a non-negative integer k such that

1

22k+4
≤ |x|+ |y|+ |x+ y| < 1

22k+2

and so

22k|x| < 1

4
, 22k|y| < 1

4
, 22k|x+ y| < 1

4
.

Hence we have

{2kx, 2ky, 2k(x− y), 2k(x+ y), 2k(x+ 2y), 2k(2x+ y)} ⊆ (−1, 1)

and so for any n = 0, 1, 2, · · ·, k,

|D1se(2
nx, 2ny)| = 0.

Thus

|D1fe(x, y)| =
∣∣∣ ∞∑
n=0

1

2n
D1se(2

nx, 2ny)
∣∣∣

≤
∣∣∣ k∑
n=0

1

4n
D1se(2

nx, 2ny)
∣∣∣+
∣∣∣ ∞∑
n=k+1

1

4n
D1se(2

nx, 2ny)
∣∣∣

≤ 16

4k+1
≤ 64(|x|+ |y|+ |x+ y|),

because |D1se(2
nx, 2ny)| ≤ 12. Hence we have

|D1fo(x, y)| ≤ 48(|x|+ |y|+ |x+ y|), |D1fe(x, y)| ≤ 64(|x|+ |y|+ |x+ y|)

for all x, y ∈ X and so we have (2.22).
Suppose that there exist an additive mapping A : R −→ R, a quadratic mapping

Q : R −→ R, and a non-negative constant K such that A+Q satisfies (2.23). Since
|f(x)| ≤ 10

3 , by (2.23), we have

− 10

3n2
−K |x|

n
≤ A(x)

n
+Q(x) ≤ 10

3n2
+K

|x|
n

for all x ∈ X and all positive integers n and so Q(x) = 0 for all x ∈ X. Since A is
additive,

− 10

3n
−K|x| ≤ A(x) ≤ 10

3n
+K|x|

for all x ∈ X and all n ∈ N and hence |A(x)| ≤ K|x|. By (2.23), we have

(2.24) |f(x)| ≤ 2K|x|

for all x ∈ X. Take a positive integer l such that l > 2K and x ∈ R with 0 < 2lx < 1.
Since x > 0,

f(x) ≥
∞∑

n=0

t(2nx)

2n
≥

l−1∑
n=0

t(2nx)

2n
= lx > 2Kx

which contradicts to (2.24). �
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[9] A. Gilányi, On a problem by K. Nikoden, Mathematical Inequalities and Applications 4(2002),

707-710.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA

27(1941), 222-224.
[11] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst 12(1984), 143-154.

[12] C. I. Kim, G. Han, and S. A. Shim, Hyers-Ulam Stability for a Class of Quadratic Functional

Equations via a Typical Form, Abs. and Appl. Anal. 2013(2013), 1-8.
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GENERALIZED ADDITIVE-CUBIC FUCNTIONAL EQUATION

AND ITS STABILITY

CHANG IL KIM

Abstract. In this paper, we establish some stability results for the following

additive-cubic functional equation with an extra term Gf

f(2x + y) + f(2x− y) + Gf (x, y) = 2f(x + y) + 2f(x− y) + 2f(2x) − 4f(x).

in Banach spaces, where Gf is a functional operator of f . Using these, we give

new additive-cubic functional equations and prove their stability.

1. Introduction

In 1940, Ulam [12] raised the following question concerning the stability of group
homomorphisms: “Under what conditions does there is an additive mapping near
an approximately additive mapping between a group and a metric group ? ”
In the next year, Hyers [5] gave a partial solution of Ulam,s problem for the case of
additive mappings. Hyers ’s result, using unbounded Cauchy different, was gener-
alized for additive mappings in [1] and for a linera mapping in [11]. Some stability
results for additive, quardartic and mixed additve-cubic functional equations were
investigated ([2], [3], [4], [6], [7], [8], [9], [10]).

The generalized Hyers–Ulam stability for the mixed additive-cubic functional
equation

(1.1) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 2f(2x)− 4f(x)

in quasi-Banach spaces has been investigated by Najati and Eskandani [8]. Func-
tional equation (1.1) is called an additive-cubic functional equation, since the func-
tion f(x) = ax3 + bx is its solution. Every solution of this mixed additive-cubic
functional equation is said to be an additive-cubic mapping.

In this paper, we are interested in what kind of a term Gf (x, y) can be added
to (1.1) while the solution of the new functional equation is also an additive-cubic
funtional equation and the generalized Hyers-Ulam stability for it still holds, where
Gf (x, y) is a functional operator depending on the variables x, y, and function f .
The new functional equation can be written as

(1.2) f(2x+ y) + f(2x− y) +Gf (x, y) = 2f(x+ y) + 2f(x− y) + 2f(2x)− 4f(x).

We give some new functional equations in section 3 as examples of our results and
prove the generalized Hyers-Ulam stability for these.

2010 Mathematics Subject Classification. 39B62, 39B72.

Key words and phrases. Hyers-Ulam stability, additive-cubic functional inequality.
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2 CHANGIL KIM

2. The generalized Hyers-Ulam stability for (1.2)

Let X be a real normed linear space and Y a real Banach space. For given l ∈ N
and any i ∈ {1, 2, · · ·, l}, let σi : X ×X −→ X be a binary operation such that

σi(rx, ry) = rσi(x, y)

for all x, y ∈ X and all r ∈ R. Also let F : Y l −→ Y be a linear, continuous
function. For a map f : X −→ Y , define

Gf (x, y) = F (f(σ1(x, y)), f(σ2(x, y)), · · ·, f(σl(x, y))).

Throughout this section we always assume that Gf satisfies the following two con-
ditions unless a specific expression for Gf is given.

Condition P1: Suppose that f : X −→ Y is a mapping satisfying f(2x) = 2f(x)
and

(2.1) f(2x+ y) + f(2x− y) +Gf (x, y) = 2f(x+ y) + 2f(x− y)

for all x, y ∈ X. Then f is an additive mapping.

Condition P2: Suppose that f : X −→ Y is a mapping satisfying f(2x) = 8f(x)
and

(2.2) f(2x+ y) + f(2x− y) +Gf (x, y) = 2f(x+ y) + 2f(x− y) + 12f(x)

for all x, y ∈ X. Then f is a cubic mapping.

For any f : X −→ Y , let

fa(x) =
4

3
f(x)− 1

6
f(2x), fc(x) = −1

3
f(x) +

1

6
f(2x)

Now, we prove the following main theorem.

Theorem 2.1. Let Gt be a functional operator satisfying Condition P1 and
Condition P2. Further, suppose that there is a real number λ(λ 6= −1) such that

(2.3) Gt(x, 2x) + 2Gt(x, x)− 2Gt(0, x) = λ[t(4x)− 10t(2x) + 16t(x)]

for all x ∈ X and all mapping t : X −→ Y. Let φ : X2 −→ [0,∞) be a function
such that

(2.4)
∞∑

n=0

2−nφ(2nx, 2ny) <∞

for all x, y ∈ X. Let f : X −→ Y be a mapping such that f(0) = 0 and

‖f(2x+ y) + f(2x− y) +Gf (x, y)

− 2f(x+ y)− 2f(x− y)− 2f(2x) + 4f(x)‖ ≤ φ(x, y)
(2.5)

for all x, y ∈ X. Then there exists an unique additive-cubic mapping F : X −→ Y
such that

‖Fa(x)− fa(x)‖

≤ 1

12|λ+ 1|

∞∑
n=0

2−n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]
(2.6)
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and

‖Fc(x)− fc(x)‖

≤ 1

48|λ+ 1|

∞∑
n=0

2−3n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]
(2.7)

for all x ∈ X.

Proof. By (2.5), we have

(2.8) ‖f(x) + f(−x)−Gf (0, x)‖ ≤ φ(0, x),

(2.9) ‖f(3x)− 4f(2x) + 5f(x) +Gf (x, x)‖ ≤ φ(x, x),

and

(2.10) ‖f(4x)− 2f(3x)− 2f(2x)− 2f(−x) + 4f(x) +Gf (x, 2x)‖ ≤ φ(x, 2x)

for all x ∈ X. By (2.3), (2.8), (2.9), and (2.10), we have

(2.11) ‖2−1fa(2x)− fa(x)‖ ≤ 1

12|λ+ 1|
[φ(x, 2x) + 2φ(x, x) + 2φ(0, x)]

for all x ∈ X. By (2.11), for m,n ∈ N ∪ {0} with 0 ≤ m < n, we have

‖2−nfa(2nx)− 2−mfa(2mx)‖

= 2−m‖2−(n−m)fa(2n−m · 2mx)− fa(2mx)‖

≤ 1

12|λ+ 1|

n−1∑
k=m

2−k[φ(2kx, 2k+1x) + 2φ(2kx, 2kx) + 2φ(0, 2kx)]

(2.12)

for all x ∈ X. By (2.12), {2−nfa(2nx)} is a Cauchy sequence in Y and since Y is
a Banach space, there exists a mapping A : X −→ Y such that

A(x) = lim
n→∞

2−nfa(2nx)

for all x ∈ X . Moreover, by (2.12), we have

‖A(x)− fa(x)‖

≤ 1

12|λ+ 1|

∞∑
n=0

2−n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]
(2.13)

for all x ∈ X. By (2.5), we have

‖fa(2x+ y) + fa(2x− y) +Gfa(x, y)− 2fa(x+ y)− 2fa(x− y)

− 2fa(2x) + 4fa(x)‖ ≤ 4

3
φ(x, y) +

1

6
φ(2x, 2y)

(2.14)

for all x, y ∈ X. Replacing x and y by 2nx and 2ny in (2.14), respectively and
deviding (2.5) by 2n, we have

‖2−nfa(2n(2x+ y)) + 2−nfa(2n(2x− y)) + 2−nGfa(2nx, 2ny)

− 2 · 2−nfa(2n(x+ y))− 2 · 2−nfa(2n(x− y))− 2 · 2−nfa(2n+1x)

+ 4 · 2−nfa(2nx)‖ ≤ 4

3
· 2−nφ(2nx, 2ny) +

1

6
· 2−nφ(2n+1x, 2n+1y)
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for all x, y ∈ X. Letting n→∞ in the last inequality, we have

A(2x+ y) +A(2x− y) + lim
n→∞

2−nGfa(2nx, 2ny)

− 2A(x+ y)− 2A(x− y)− 2A(2x) + 4A(x) = 0
(2.15)

for all x, y ∈ X and since F is continuous,

lim
n→∞

2−nGfa(2nx, 2ny)

= lim
n→∞

F (2−nfa(2nσ1(x, y)), 2−nfa(2nσ2(x, y)), · · ·, 2−nfa(2nσl(x, y)))

= GA(x, y)

for all x, y ∈ X. Hence by (2.15), we have

(2.16) A(2x+y)+A(2x−y)+GA(x, y) = 2A(x+y)+2A(x−y)+2A(2x)−4A(x)

for all x, y ∈ X. Relpacing x by 2nx in (2.11) and deviding (2.11) by 2n, we have

‖2−n−1fa(2n · 2x)− 2−nfa(2nx)‖

≤ 2−n

12|λ+ 1|
[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]

for all x ∈ X and letting n→∞ in the above inequality, we have

(2.17) A(2x) = 2A(x)

for all x, y ∈ X. By (2.16) and (2.17), A satisfies (2.1). By Condition P1, A is
an additive mapping .

By (2.3), (2.8), (2.9), and (2.10), we have

(2.18) ‖8−1fc(2x)− fc(x)‖ ≤ 1

48|λ+ 1|
[φ(x, 2x) + 2φ(x, x) + 2φ(0, x)]

for all x ∈ X. By (2.18), for m,n ∈ N ∪ {0} with 0 ≤ m < n, we have

‖2−3nfc(2nx)− 2−3mfc(2
mx)‖

= 2−3m‖2−3(n−m)fc(2
n−m · 2mx)− fc(2mx)‖

≤ 1

48|λ+ 1|

n−1∑
k=m

2−3k[φ(2kx, 2k+1x) + 2φ(2kx, 2kx) + 2φ(0, 2kx)]

(2.19)

for all x ∈ X. By (2.19), {2−3nfc(2nx)} is a Cauchy sequence in Y and since Y is
a Banach space, there exists a mapping C : X −→ Y such that

C(x) = lim
n→∞

2−3nh(2nx)

for all x ∈ X . Moreover, by (2.19), we have

‖C(x)− fc(x)‖

≤ 1

48|λ+ 1|

∞∑
n=0

2−3n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]
(2.20)

for all x ∈ X. By (2.5), we have

‖fc(2x+ y) + fc(2x− y) +Gfc(x, y)− 2fc(x+ y)− 2fc(x− y)

− 2fc(2x) + 4fc(x)‖ ≤ 1

3
φ(x, y) +

1

6
φ(2x, 2y)

(2.21)
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for all x, y ∈ X. Replacing x and y by 2nx and 2ny in (2.21), respectively and
deviding (2.21) by 23n, we have

‖2−3nfc(2n(2x+ y)) + 2−3nfc(2
n(2x− y)) + 2−3nGfc(2nx, 2ny)

− 2 · 2−3nfc(2n(x+ y))− 2 · 2−3nfc(2n(x− y))− 2 · 2−nfc(2n+1x)

+ 4 · 2−3nfc(2nx)‖ ≤ 1

3
· 2−3nφ(2nx, 2ny) +

1

6
· 2−3nφ(2n+1x, 2n+1y)

for all x, y ∈ X. Letting n→∞ in the last inequality, we have

C(2x+ y) + C(2x− y) + lim
n→∞

2−3nGfc(2nx, 2ny)

− 2C(x+ y)− 2C(x− y)− 2C(2x) + 4C(x) = 0
(2.22)

for all x, y ∈ X and since F is continuous,

lim
n→∞

2−3nGfc(2nx, 2ny)

= lim
n→∞

F (2−3nh(2nσ1(x, y)), 2−3nh(2nσ2(x, y)), · · ·, 2−3nh(2nσl(x, y)))

= GC(x, y)

for all x, y ∈ X. Hence by (2.22), we have

(2.23) C(2x+y)+C(2x−y)+GC(x, y) = 2C(x+y)+2C(x−y)+2C(2x)−4C(x)

for all x, y ∈ X. Relpacing x by 2nx in (2.18) and deviding (2.18) by 23n, we have

‖2−3 · 2−3nfc(2n · 2x)− 2−3nfc(2
nx)‖

≤ 2−3n

48|λ+ 1|
[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]

for all x ∈ X and letting n→∞ in the above inequality, we have

(2.24) C(2x) = 8C(x)

for all x, y ∈ X. By (2.23) and (2.24), C satisifes (2.2). By Condition P2, C is a
cubic mapping.

Let F = A+C. Then F is an additive-cubic mapping, Fa = A, and Fc = C. By
(2.13) and (2.20), we have (2.6) and (2.7).

For the uniqueness of F , let H be another additive-cubic mapping with (2.6)
and (2.7). Then Fa and Ha are additive mappings and hence

‖Fa(x)−Ha(x)‖ = 2−k‖Fa(2kx)−Ha(2kx)‖

≤ 1

6|λ+ 1|

∞∑
n=k

2−n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]

for all x ∈ X. Hence, letting k →∞ in the above inequality, we have Fa = Ha and
similarly, we have Fc = Hc. Thus F = H. �

Similarly, we have the following theorem:

Theorem 2.2. Let Gt be a functional operator satisfying Condition P1,
Condition P2, and

(2.25) Gt(x, 0) = −Gt(0, x).
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for all x ∈ X and all mapping t : X −→ Y. Further, suppose that there are real
numbers λ, δ(λ 6= −1) such that

Gt(x, 2x) + 2Gt(x, x)− 2Gt(0, x)

= λ[t(4x)− 10t(2x) + 16t(x)] + δ[f(x) + f(−x)]
(2.26)

for all x ∈ X and all mapping t : X −→ Y. Let φ : X2 −→ [0,∞) be a function with
(2.4). Let f : X −→ Y be a mapping with f(0) = 0 and (2.5). Then there exists
an unique additive-cubic mapping F : X −→ Y such that

‖Fa(x)− fa(x)‖ ≤ 1

12|λ+ 1|

∞∑
n=0

2−n[φ(2nx, 2n+1x)

+ 2φ(2nx, 2nx) + |δ|φ(2nx, 0) + (2 + |δ|)φ(0, 2nx)]

and

‖Fc(x)− fc(x)‖ ≤ 1

48|λ+ 1|

∞∑
n=0

2−3n[φ(2nx, 2n+1x)

+ 2φ(2nx, 2nx) + |δ|φ(2nx, 0) + (2 + |δ|)φ(0, 2nx)]

for all x ∈ X.

Proof. By (2.8) and (2.25), we have

‖f(x) + f(−x)‖ ≤ φ(x, 0) + φ(0, x)

for all x ∈ X, because ‖Gf (x, 0)‖ ≤ φ(x, 0) and Gf (x, 0) = −Gf (0, x). Similar to
the proof of Theorem 2.1, we have

‖(1 + λ)[f(4x)− 10f(2x) + 16f(x)]‖
≤ φ(x, 2x) + 2φ(x, x) + 2φ(0, x) + |δ|‖f(x) + f(−x)‖
≤ φ(x, 2x) + 2φ(x, x) + |δ|φ(x, 0) + (2 + |δ|)φ(0, x)

for all x ∈ X and so we get

‖2−1fa(2x)− fa(x)‖ ≤ 1

12|λ+ 1|
[φ(x, 2x) + 2φ(x, x) + |δ|φ(x, 0) + (2 + |δ|)φ(0, x)]

for all x ∈ X. The rest of this proof is similar to the proof of Theorem 2.1. �

3. Applications

In this section, using Theorem 2.1 and Theorem 2.2, we will prove the generalized
Hyers-Ulam stability for some additive-cubic functional equations.

First, we consider the following functional equation :

(3.1) f(2x+ y) + f(2x− y)− f(4x) = 2f(x+ y) + 2f(x− y)− 8f(2x) + 12f(x).

Theorem 3.1. Let φ : X2 −→ [0,∞) be a function with (2.4). Let f : X −→ Y be
a mapping such that f(0) = 0 and

‖f(2x+ y) + f(2x− y)− f(4x)− 2f(x+ y)− 2f(x− y)

+ 8f(2x)− 12f(x)‖ ≤ φ(x, y)
(3.2)

for all x, y ∈ X. Then there exists an unique additive-cubic mapping F : X −→ Y
such that

(3.3) ‖Fa(x)− fa(x)‖ ≤ 1

24

∞∑
n=0

2−n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

949 CHANG IL KIM 944-953



GENERALIZED ADDITIVE-CUBIC FUCNTIONAL EQUATION AND ITS STABILITY 7

and

(3.4) ‖Fc(x)− fc(x)‖ ≤ 1

96

∞∑
n=0

2−3n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx) + 2φ(0, 2nx)]

for all x ∈ X.

Proof. Let Gf (x, y) = −f(4x) + 10f(2x)− 16f(x). Then f satisfies (2.5) and

Gt(x, 2x) + 2Gt(x, x)− 2Gt(0, x) = −3[t(4x)− 10t(2x) + 16t(x)]

for all x ∈ X and all mapping t : X −→ Y. If t : X −→ Y is a mapping with
t(2x) = 2t(x) for all x ∈ X and (2.1), then Gt(x, y) = 0 for all x, y ∈ X and
so t is an additive mapping. Hence Gt satifies Condition P1 and similarly Gt

satifies Condition P2. By Theroem 2.1, there is an unique additive-cubic mapping
F : X −→ Y with (3.3) and (3.4). �

Using the above theorem, we have the following corollaries:

Corollary 3.2. Let f : X −→ Y be a mapping. Then f satisfies (3.1) if and only
if f is an additive-cubic mapping.

Ostadbashi and Kazemzadeh [9] investigated the following additive-cubic functi-
nal equation :

f(2x+ y) + f(2x− y)− f(4x)

= 2f(x+ y) + 2f(x− y)− 8f(2x) + 10f(x)− 2f(−x).
(3.5)

Corollary 3.3. Let φ : X2 −→ [0,∞) be a function with (2.4). Let f : X −→ Y
be a mapping such that f(0) = 0 and

‖f(2x+ y) + f(2x− y)− f(4x)− 2f(x+ y)− 2f(x− y)

+ 8f(2x)− 10f(x) + 2f(−x)‖ ≤ φ(x, y)
(3.6)

for all x, y ∈ X. Then there exists an unique additive-cubic mapping F : X −→ Y
such that

(3.7) ‖Fa(x)−fa(x)‖ ≤ 1

24

∞∑
n=0

2−n[φ1(2nx, 2n+1x)+2φ1(2nx, 2nx)+2φ1(0, 2nx)]

and

(3.8) ‖Fc(x)−fc(x)‖ ≤ 1

96

∞∑
n=0

2−3n[φ1(2nx, 2n+1x)+2φ1(2nx, 2nx)+2φ1(0, 2nx)]

for all x ∈ X, where φ1(x, y) = φ(x, y) + φ(0, x).

Proof. By (3.6), we have

‖f(x) + f(−x)‖ ≤ φ(0, x)

for all x ∈ X and hence we have

‖f(2x+ y) + f(2x− y)− f(4x)− 2f(x+ y)− 2f(x− y)

+ 8f(2x)− 12f(x)‖ ≤ φ(x, y) + φ(0, x) = φ1(x, y)

for all x, y ∈ X. By Theorem 3.3, we have the results. �
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Finally, we consider the following new functional equation :

f(2x+ y) + f(2x− y)− 2f(x+ y) + 3f(x− y)− 5f(y − x)

− 10(x) + 14f(y)− 2f(2y) = 0.
(3.9)

Lemma 3.4. Let Gf be a functional operator such that

(3.10) Gf (x, y) = −Gf (y, x)

for all mapping f : X −→ Y and all x, y ∈ X. Then Condition P1 and
Condition P2 hold.

Proof. Suppose that f : X −→ Y is a mapping with f(2x) = 2f(x) and (2.1).
Letting y = 0 in (2.1), we have

(3.11) Gf (x, 0) = 0

for all x ∈ X and by (3.10) and (3.11), we get

Gf (x, 0) = −Gf (0, x) = −[f(x) + f(−x)] = 0

for all x ∈ X. Hence

(3.12) f(−x) = −f(x)

for all x ∈ X. Interchaging x and y in (2.1), by (3.12), we have

(3.13) f(x+ 2y)− f(x− 2y) +Gf (y, x) = 2f(x+ y)− 2f(x− y)

for all x, y ∈ X and by (2.1), (3.10), and (3.13), we have

(3.14) f(2x+ y) + f(2x− y) + f(x+ 2y)− f(x− 2y) = 4f(x+ y)

for all x, y ∈ X. Letting y = −y in (3.14), we have

(3.15) f(2x+ y) + f(2x− y) + f(x− 2y)− f(x+ 2y) = 4f(x− y)

for all x, y ∈ X. By (3.14) and (3.15), we have

(3.16) f(x+ y) + f(x− y) = f(x+ 2y) + f(x− 2y)

for all x, y ∈ X. Letting x = x+ y in (3.16), we get

(3.17) f(x+ 2y) + f(x) = f(x+ 3y) + f(x− y)

for all x, y ∈ X and letting x = 2x in (3.16), we get

(3.18) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y)

for all x, y ∈ X. Letting y = x+ y in (3.18), we get

(3.19) f(3x+ y) + f(x− y) = 2f(2x+ y)− 2f(y)

for all x, y ∈ X and interchaging x and y in (3.19), we have

(3.20) f(x+ 3y)− f(x− y) = 2f(x+ 2y)− 2f(x)

for all x, y ∈ X. By (3.17) and (3.20), we have

(3.21) f(x+ 2y)− 3f(x) + 2f(x− y) = 0

for all x, y ∈ X. Letting x = x− y in (3.21), we get

(3.22) f(x+ y)− 3f(x− y) + 2f(x− 2y) = 0

for all x, y ∈ X and letting y = −y in (3.22), we get

(3.23) f(x− y)− 3f(x+ y) + 2f(x+ 2y) = 0
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for all x, y ∈ X. By (3.21) and (3.23), we have

f(x+ y) + f(x− y)− 2f(x) = 0

for all x, y ∈ X and hence f is an additive mapping. Thus Condition P1 holds.

(2) Suppose that f : X −→ Y is a mapping with f(2x) = 8f(x) and (2.2).
Similar to (1), we have

Gf (x, 0) = −Gf (0, x) = 0, f(−x) = −f(x)

for all x, y ∈ X. Interchaging x and y in (2.2), we have

(3.24) f(x+ 2y)− f(x− 2y) +Gf (y, x) = 2f(x+ y)− 2f(x− y) + 12f(y)

for all x, y ∈ X and by (2.2), (3.10), and (3.24), we have

(3.25) f(2x+y)+f(2x−y)+f(x+2y)−f(x−2y) = 4f(x+y)+12f(x)+12f(y)

for all x, y ∈ X. Letting y = −y in (3.25), we have

(3.26) f(2x+y)+f(2x−y)+f(x−2y)−f(x+2y) = 4f(x−y)+12f(x)−12f(y)

for all x, y ∈ X. By (3.25) and (3.26), we have

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

for all x, y ∈ X and hence f is a cubic mapping. Thus Condition P2 holds. �

Using Lemma 3.4, we investigate solutions and the generalized Hyers-Ulam sta-
bility for (3.9).

Theorem 3.5. Let φ : X2 −→ [0,∞) be a function with (2.4). Let f : X −→ Y be
a mapping such that f(0) = 0 and

‖f(2x+ y) + f(2x− y)− 2f(x+ y) + 3f(x− y)− 5f(y − x)

− 10(x) + 14f(y)− 2f(2y)‖ ≤ φ(x, y)
(3.27)

for all x, y ∈ X. Then there exists an unique additive-cubic mapping F : X −→ Y
such that

‖Fa(x)− fa(x)‖ ≤ 1

12

∞∑
n=0

2−n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx)

+ 5φ(2nx, 0) + 7φ(0, 2nx)]

(3.28)

and

‖Fc(x)− fc(x)‖ ≤ 1

48

∞∑
n=0

2−3n[φ(2nx, 2n+1x) + 2φ(2nx, 2nx)

+ 5φ(2nx, 0) + 7φ(0, 2nx)]

(3.29)

for all x ∈ X.

Proof. Let Gf (x, y) = 5[f(x− y)− f(y − x)]− 14[f(x)− f(y)] + 2[f(2x)− f(2y)].
Then f satisfies (2.5) and

Gt(x, 2x) + 2Gt(x, x)− 2Gt(0, x)

= −2[t(4x)− 10t(2x) + 16t(x)]− 5[f(x) + f(−x)]

for all x ∈ X and all mapping t : X −→ Y. Since Gf satifies (3.10), by Lemma 3.4,
Condition P1 and Condition P2 satisfy. By Theroem 2.2, there is an unique
additive-cubic mapping F : X −→ Y with (3.28) and (3.29). �
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Corollary 3.6. Let f : X −→ Y be a mapping. Then f satisfies (3.9) if and only
if f is an additive-cubic mapping.
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[7] D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random
normed spaces, J. Math. Anal. Appl. 343(2008), 567-572.

[8] A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation

in quasi-Banach spaces, J. Math. Anal. Appl., 342(2008), 1318-1331.
[9] S. Ostadbashi and J. Kazemzadeh, Orthogonal stability of mixed type additive and cubic

functional equation, Int. J. Nonlinear. Anal. Appl., 6(2015), 35-43
[10] C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point

Theory and Applications, 2011(2011), 1-11.

[11] Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc. Amer. Math.
Soc., 72(1978), 297-300.

[12] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley, New York, 1960.

Department of Mathematics Education, Dankook University, 152, Jukjeon-ro, Suji-

gu, Yongin-si, Gyeonggi-do, 16890, Korea
Email address: kci206@hanmail.net

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

953 CHANG IL KIM 944-953



TOEPLITZ DUALS OF FIBONACCI SEQUENCE SPACES

KULDIP RAJ, SURUCHI PANDOH AND KAVITA SAINI

Abstract. In this paper we introduce and study some classes of almost strongly

convergent difference sequences of Fibonacci numbers defined by a sequence of modulus

functions. We also make an effort to study some topological properties and inclusion
relations between these classes of sequences. Further, we compute toeplitz duals of

theses classes and study matrix transformations on these classes of sequences.

1. Introduction and Preliminaries

Let w be the vector space of all real sequences. We shall write c, c0 and l∞ for the sequence
spaces of all convergent, null and bounded sequences. Moreover, we write bs and cs for
the spaces of all bounded and convergent series, respectively. Also, we use the conventions
that e = (1, 1, 1, ...) and e(n) is the sequence whose only non-zero term is 1 in the nth
place for each n ∈ N.
Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real numbers
ank, where n, k ∈ N. Then we say that A defines a matrix transformation from X into Y
and we denote it by writing A : X → Y if for every sequence x = (xk) ∈ X, the sequence
Ax = {An(x)} and the A-transform of x is in Y , where

(1.1) An(x) =
∞∑
k=0

ankxk (n ∈ N).

By (X,Y ) we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X,Y )
if and only if the series on the right-hand side of (1.1) converges for each n ∈ N and every
x ∈ X, and we have Ax ∈ Y for all x ∈ X. The matrix domain XA of an infinite matrix
A in a sequence space X is defined by

(1.2) XA = {x = (xk) ∈ w : Ax ∈ X}

which is a sequence space. By using the matrix domain of a triangle infinite matrix, so
many sequence spaces have recently been defined by several authors, (see [1], [2], [15],
[25]). In the literature, the matrix domain X∆ is called the difference sequence space
whenever X is a normed or paranormed sequence space, where ∆ denotes the backward
difference matrix ∆ = (∆nk) and ∆′ = (∆′nk) denotes the forward difference matrix (the
transpose of the matrix ∆), which are defined by

∆nk =

{
(−1)n−k, n− 1 ≤ k ≤ n,

0 , 0 ≤ k < n− 1 or k > n

∆′nk =

{
(−1)n−k, n ≤ k ≤ n+ 1,

0 , 0 ≤ k < n or k > n+ 1

2010 Mathematics Subject Classification. 11B39, 46A45, 46B45.
Key words and phrases. Fibonacci numbers, difference matrix, modulus function, paranorm space,

α−, β−, γ− duals, matrix transformations.
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for all k, n ∈ N respectively. The notion of difference sequence spaces was introduced by
Kızmaz [16], who defined the sequence spaces

X(∆) = {x = (xk) ∈ w : (xk − xk+1) ∈ X}

for X = l∞, c and c0. The difference space bνp, consisting of all sequences (xk) such that
(xk − xk−1) is in the sequence space lp, was studied in the case 0 < p < 1 by Altay and
Başar [3] and in the case 1 ≤ p ≤ ∞ by Başar and Altay [7] and Çolak et al. [9]. Kirişçi
and Başar [15] have been introduced and studied the generalized difference sequence spaces

X̂ = {x = (xk) ∈ w : B(r, s)x ∈ X}

where X denotes any of the spaces l∞, lp, c and c0, (1 ≤ p <∞) and B(r, s)x = (sxk−1 +
rxk) with r, s ∈ R\{0}. Following Kirişçi and Başar [15], Sönmez [31] have been examined
the sequence space X(B) as the set of all sequences whose B(r, s, t)-transforms are in
the space X ∈ {l∞, lp, c, c0}, where B(r, s, t) denotes the triple band matrix B(r, s, t) =
{bnk(r, s, t)} defined by

bnk(r, s, t) =


r, n = k
s, n = k + 1
t, n = k + 2
0, otherwise

for all k, n ∈ N and r, s, t ∈ R\{0}. Also in ([10-13], [26]) authors studied certain difference
sequence spaces.
A B-space is a complete normed space. A topological sequence space in which all co-
ordinate functionals πk, πk(x) = xk, are continuous is called a K-space. A BK-space is
defined as a K-space which is also a B-space, that is, a BK-space is a Banach space
with continuous coordinates. For example, the space lp(1 ≤ p < ∞) is a BK-space with

‖x‖p =
( ∞∑
k=0

|xk|p
) 1

p

and c0, c and l∞ are BK-spaces with ‖x‖∞ = sup
k
|xk|. The sequence

space X is said to be solid (see [17, p. 48]) if and only if

X̃ = {(vk) ∈ w : ∃(xk) ∈ X such that |vk| ≤ |xk| for all k ∈ N} ⊂ X.

A sequence (bn) in a normed space X is called a Schauder basis for X if for every
x ∈ X there is a unique sequence (αn) of scalars such that x =

∑
n αnbn, i.e., limm ‖x−

m∑
n=0

αnbn‖ = 0.

The following lemma (known as the Toeplitz Theorem) contains necessary and sufficient
condition for regularity of a matrix.

Lemma 1.1. (Wilansky, 1984): Matrix A = (ank)∞n,k=1 is regular if and only if the
following three conditions hold:
(1) There exists M > 0 such that for every n = 1, 2, ... the following inequality holds:

∞∑
k=1

|ank| ≤M ;

(2) lim
n→∞

ank = 0 for every k = 1, 2, ...

(3) lim
n→∞

∞∑
k=1

ank = 1.
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TOEPLITZ DUALS OF FIBONACCI SEQUENCE SPACES 3

The sequence {fn}∞n=0 of Fibonacci numbers is given by the linear recurrence relations
f0 = f1 = 1 and fn = fn−1 + fn−2, n ≥ 2. Fibonacci numbers have many interesting
properties and applications in arts, sciences and architecture. For example, the ratio se-
quences of Fibonacci numbers converges to the golden ratio which is important in sciences
and arts. Also, in [18] some basic properties of Fibonacci numbers are given as follows:

lim
n→∞

fn+1

fn
=

1 +
√

5

2
= φ (golden ratio),

n∑
k=0

fk = fn+2 − 1 (n ∈ N),

∑
k

1

fk
converges,

fn−1fn+1 − f2
n = (−1)n+1 (n ≥ 1) (Cassini formula).

Substituting for fn+1 in Cassini’s formula yields f2
n−1 + fnfn−1 − f2

n = (−1)n+1.

Now, let A = (ank) be an infinite matrix and list the following conditions:

(1.3) sup
n∈N

∑
k

∣∣∣ank∣∣∣ <∞
(1.4) lim

n→∞
ank = 0 for each k ∈ N

(1.5) ∃αk ∈ C 3 lim
n→∞

ank = αk for each k ∈ N

(1.6) lim
n→∞

∑
k

ank = 0

(1.7) ∃α ∈ C 3 lim
n→∞

∑
k

ank = α

(1.8) sup
k∈H

∑
n

∣∣∣ ∑
k∈K

ank

∣∣∣ <∞
where C and H denote the set of all complex numbers and the collection of all finite sub-
sets of N, respectively.
Now, we may give the following lemma on the characterization of the matrix transforma-
tions between some classical sequence spaces.

Lemma 1.2. The following statements hold:
(a) A = (ank) ∈ (c0, c0) if and only if (1.3) and (1.4) hold.
(b) A = (ank) ∈ (c0, c) if and only if (1.3) and (1.5) hold.
(c) A = (ank) ∈ (c, c0) if and only if (1.3), (1.4) and (1.6) hold.
(d) A = (ank) ∈ (c, c) if and only if (1.3), (1.5) and (1.7) hold.
(e) A = (ank) ∈ (c0, l∞) = (c, l∞) if and only if condition (1.3) holds.
(f) A = (ank) ∈ (c0, l1) = (c, l1) if and only if condition (1.8) holds.

Recently, Kara [19] has defined the sequence spaces lp(F̂ ) as follows:

lp(F̂ ) = {x ∈ w : F̂ x ∈ lp}, (1 ≤ p ≤ ∞)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

956 KULDIP RAJ 954-969



4 KULDIP RAJ, SURUCHI PANDOH AND KAVITA SAINI

where F̂ = (f̂nk) is the double band matrix defined by the sequence (fn) of Fibonacci
numbers as follows

f̂nk =


− fn+1

fn
, k = n− 1,

fn
fn+1

, k = n,

0 , 0 ≤ k < n− 1 or k > n

(k, n ∈ N).

Also, in [20] Kara et al. have characterized some classes of compact operators on the

spaces lp(F̂ ) and l∞(F̂ ), where 1 ≤ p <∞.

The inverse F̂−1 = (gnk) of the Fibonacci matrix F̂ is given by

gnk =

{
f2
n+1

fkfk+1
, 0 ≤ k ≤ n,

0 , k > n
(k, n ∈ N).

that is, 

1 0 0 0 0 0 ...
4
1

4
2 0 0 0 0 ...

9
1

9
2

9
6 0 0 0 ...

25
1

25
2

25
6

25
15 0 0 ...

64
1

64
2

64
6

64
15

64
40 0 ...

...
...

...
...

...
...

. . .


It is obvious that the matrix F̂ is a triangular matrix, that is, fnn 6= 0 and fnk = 0 for
k > n (n = 1, 2, 3...). Also, it follows by Lemma 1.1 that the method F̂ is regular.

In [8] Başarir et al. introduce the Fibonacci difference sequence spaces c0(F̂ ) and c(F̂ ) as

the set of all sequences whose F̂ -transforms are in the spaces c0 and c, respectively, i.e.,

c0(F̂ ) =

{
x = (xn) ∈ w : lim

n→∞

( fn
fn+1

xn −
fn+1

fn
xn−1

)
= 0

}
,

and

c(F̂ ) =

{
x = (xn) ∈ w : ∃l ∈ C 3 lim

n→∞

( fn
fn+1

xn −
fn+1

fn
xn−1

)
= l

}
.

Define the sequence y = (yn) by the F̂ -transform of a sequence x = (xn), i.e.,

(1.9) yn = F̂n(x) =

{
x0 , n = 0

fn
fn+1

xn − fn+1

fn
xn−1, n ≥ 1

(n ∈ N).

A linear functional L on l∞ is said to be a Banach limit if it has the following properties:
(1) L(x) ≥ 0 if n ≥ 0 (i.e. xn ≥ 0 for all n),
(2) L(e) = 1, where e = (1, 1, ...),
(3) L(Dx) = L(x),
where the shift operator D is defined by D(xn) = {xn+1} (see [6]).
Let B be the set of all Banach limits on l∞. A sequence x = (xk) ∈ l∞ is said to be almost
convergent if all Banach limits of x = (xk) coincide. In [22], it was shown that

ĉ =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

xk+s exits, uniformly in s

}
In ([23], [24]) Maddox defined strongly almost convergent sequences. Recall that a se-
quence x = (xk) is strongly almost convergent if there is a number l such that

lim
n→∞

1

n

n∑
k=1

|xk+s − l| = 0, uniformly in s.
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Let X be a linear metric space. A function p : X → R is called paranorm, if

(1) p(x) ≥ 0 for all x ∈ X,
(2) p(−x) = p(x) for all x ∈ X,
(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of

vectors with p(xn − x)→ 0 as n→∞, then p(λnxn − λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair
(X, p) is called a total paranormed space. It is well known that the metric of any linear
metric space is given by some total paranorm (see [33], Theorem 10.4.2, pp. 183).
A modulus function is a function f : [0,∞)→ [0,∞) such that

(1) f(x) = 0 if and only if x = 0,
(2) f(x+ y) ≤ f(x) + f(y), for all x, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0,∞). The modulus function may
be bounded or unbounded. For example, if we take f(x) = x

x+1 , then f(x) is bounded.

If f(x) = xp, 0 < p < 1 then the modulus function f(x) is unbounded. Subsequently,
modulus function has been discussed in ([4], [27], [28], [29], [30]) and references therein.
Let F = (Fk) be a sequence of modulus functions, p = (pk) be any bounded sequence of
positive real numbers and u = (uk) be a sequence of strictly positive real numbers. In this
paper we define the following sequence spaces:

c0(F̂ ,F , u, p) =

{
x = (xk) ∈ w : lim

n→∞

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk = 0

}
,

and

c(F̂ ,F , u, p) =

{
x = (xk) ∈ w : ∃l ∈ C 3 lim

n→∞

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk = l

}
.

If Fk(x) = x, for all k ∈ N. Then above sequence spaces reduces to c0(F̂ , u, p) and

c(F̂ , u, p).

By taking pk = 1 and uk = 1, for all k ∈ N, then we get the sequence spaces c0(F̂ ,F) and

c(F̂ ,F).

With the notation of (1.2), the sequence spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) can be
redefined as follows:

(1.10) c0(F̂ ,F , u, p) = {c0(F , u, p)}F̂ and c(F̂ ,F , u, p) = {c(F , u, p)}F̂ .

The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = H,
K = max(1, 2H−1) then

(1.11) |ak + bk|pk ≤ K{|ak|pk + |bk|pk}

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

In this paper, we introduce the sequence spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p). We in-
vestigate some topological properties of these new sequence spaces and establish some
inclusion relations between these spaces. Also we determine the α−, β− and γ− duals of
these spaces and construct the matrix transformation of the spaces (c0(F̂ ,F , u, p), X) and

(c(F̂ ,F , u, p), X), where X denote the spaces l∞, f, c, f0, c0, bs, fs and l1.
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2. Some topological properties of the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p)

Theorem 2.1. Let F = (Fk) be a sequence of modulus functions, p = (pk) be a bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly positive real

numbers. Then c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are linear spaces over the field R of real
numbers.

Proof. Let x = (xk), y = (yk) ∈ c0(F̂ ,F , u, p) and λ, µ ∈ C. Then there exist integers
Mλ and Nµ such that |λ| ≤ Mλ and |µ| ≤ Nµ. Using inequality (1.11) and definition of
modulus function, we have

1
n

n∑
k=1

[
ukFk

∣∣∣λ( fk
fk+1

xk −
fk+1

fk
xk−1

)
+ µ

( fk
fk+1

yk −
fk+1

fk
yk−1

)∣∣∣]pk

≤ 1

n

n∑
k=1

[
ukFk|λ|

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk +
1

n

n∑
k=1

[
ukFk|µ|

∣∣∣ fk
fk+1

yk −
fk+1

fk
yk−1

∣∣∣]pk

≤ K 1

n

n∑
k=1

[
ukFkMλ

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk +K
1

n

n∑
k=1

[
ukFkNµ

∣∣∣ fk
fk+1

yk−
fk+1

fk
yk−1

∣∣∣]pk

≤ KMH
λ

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk+KNH
µ

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

yk−
fk+1

fk
yk−1

∣∣∣]pk
→ 0 as n→∞.
Thus λx+ µy ∈ c0(F̂ ,F , u, p). This proves that c0(F̂ ,F , u, p) is a linear space. Similarly

we can prove that c(F̂ ,F , u, p) is a linear space over the real field R. �

Theorem 2.2. Let F = (Fk) be a sequence of modulus functions and p = (pk) be a bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly positive real

numbers. Then c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are paranormed space with the paranorm
defined by

g(x) = sup

(
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk) 1
M

where 0 ≤ pk ≤ sup pk = H, M = max(1, H).

Proof. Since the proof is similar for the space c(F̂ ,F , u, p), we consider only the space

c0(F̂ ,F , u, p). Clearly g(−x) = g(x), for all x ∈ c0(F̂ ,F , u, p). It is trivial that fk
fk+1

xk −
fk+1

fk
xk−1 = 0, for x = 0. Hence we get g(0) = 0. Since pk

M ≤ 1, using Minkowski’s

inequality, we have(
1
n

n∑
k=1

[
ukFk

∣∣∣( fk
fk+1

xk −
fk+1

fk
xk−1

)
+
( fk
fk+1

yk −
fk+1

fk
yk−1

)∣∣∣]pk) 1
M

≤

(
1
n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣+ ukFk

∣∣∣ fk
fk+1

yk −
fk+1

fk
yk−1

∣∣∣]pk) 1
M

≤

(
1
n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk) 1
M

+

(
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

yk−
fk+1

fk
yk−1

∣∣∣]pk) 1
M

.
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Now it follows that g(x) is subadditive. Finally to check the continuity of scalar multipli-
cation let us take any real number ρ. By definition of modulus function Fk, we have

g(ρx) = sup
k

(
1

n

n∑
k=1

[
ukFk

∣∣∣ρ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk) 1
M

≤ C
H
M
ρ g(x).

where Cρ is a positive integer such that |ρ| ≤ Cρ. Now, Let ρ → 0 for any fixed x with
g(x) = 0. By definition for |ρ| < 1, we have

(2.1)
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk < ε for n > N(ε).

Also for 1 ≤ n < N , taking ρ small enough. Since Fk is continuous, we have

(2.2)
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk < ε.

Now from equation (2.1) and (2.2), we have

g(ρx)→ 0 as ρ→ 0.

This completes the proof. �

Theorem 2.3. Let F = (Fk) be a sequence of modulus functions, u = (uk) be a sequence
of strictly positive real numbers. If p = (pk) and q = (qk) are bounded sequences of positive

real numbers with 0 ≤ pk ≤ qk <∞ for each k, then c0(F̂ ,F , u, p) ⊆ c(F̂ ,F , u, q).

Proof. Let x ∈ c0(F̂ ,F , u, p). Then

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

This implies that [
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk ≤ 1,

for sufficiently large values of k. Since Fk is increasing and pk ≤ qk we have

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]qk ≤ 1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk
−→ 0 as n→∞.

Hence x ∈ c(F̂ ,F , u, q). This completes the proof. �

Theorem 2.4. Let F = (Fk) be a sequence of modulus functions and % = lim
t→∞

Fk(t)

t
> 0.

Then c0(F̂ ,F , u, p) ⊆ c0(F̂ , u, p).

Proof. In order to prove that c0(F̂ ,F , u, p) ⊆ c0(F̂ , u, p). Let % > 0. By definition of %, we
have Fk(t) ≥ %(t), for all t > 0. Since % > 0, we have t ≤ 1

%Fk(t) for all t > 0.

Let x = (xk) ∈ c0(F̂ ,F , u, p). Thus, we have

1

n

n∑
k=1

[
uk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk ≤ 1

%n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk
which implies that x = (xk) ∈ c0(F̂ , u, p). This completes the proof. �
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Theorem 2.5. Let F ′ = (F ′k) and F ′′ = (F ′′k ) are sequences of modulus functions, then

c0(F̂ ,F ′, u, p) ∩ c0(F̂ ,F ′′, u, p) ⊆ c0(F̂ ,F ′ + F ′′, u, p).

Proof. Let x = (xk) ∈ c0(F̂ ,F ′, u, p) ∩ c0(F̂ ,F ′′, u, p). Therefore

1

n

n∑
k=1

[
ukF

′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

and

1

n

n∑
k=1

[
ukF

′′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

Then we have

1
n

n∑
k=1

[
uk(F ′k + F ′′k )

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk

≤ K

{
1

n

n∑
k=1

[
ukF

′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk}

+ K

{
1

n

n∑
k=1

[
ukF

′′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk}
−→ 0 as n→∞.

Thus 1
n

n∑
k=1

[
uk(F ′k + F ′′k )

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

Therefore x = (xk) ∈ c0(F̂ ,F ′ + F ′′, u, p) and this completes the proof. �

Theorem 2.6. Let F = (Fk) and F ′ = (F ′k) be two sequences of modulus functions, then

c0(F̂ ,F ′, u, p) ⊆ c0(F̂ ,FoF ′, u, p).

Proof. Let x = (xk) ∈ c0(F̂ ,F ′, u, p). Then we have

lim
n→∞

1

n

n∑
k=1

[
ukF

′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk = 0.

Let ε > 0 and choose δ > 0 with 0 < δ < 1 such that Fk(t) < ε for 0 ≤ t ≤ δ.

Write yk =

[
ukF

′
k

∣∣∣ fk
fk+1

xk − fk+1

fk
xk−1

∣∣∣] and consider

1

n

n∑
k=1

[Fk(yk)]pk =
1

n

∑
1

[Fk(yk)]pk +
1

n

∑
2

[Fk(yk)]pk

where the first summation is over yk ≤ δ and second summation is over yk ≥ δ. Since Fk
is continuous, we have

(2.3)
1

n

∑
1

[Fk(yk)]pk < εH

and for yk > δ, we use the fact that

yk <
yk
δ
≤ 1 +

yk
δ
.
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By the definition, we have for yk > δ

Fk(yk) < 2Fk(1)
yk
δ
.

Hence

(2.4)
1

n

∑
2

[Fk(yk)]pk ≤ max
(

1, (2Fk(1)δ−1)H
) 1

n

∑
k

[yk]pk .

From equation (2.3) and (2.4), we have

c0(F̂ ,F ′, u, p) ⊆ c0(F̂ ,FoF ′, u, p).

This completes the proof. �

Theorem 2.7. The sets c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are BK-spaces with the norm

‖x‖c0(F̂ ,F,u,p) = ‖x‖c(F̂ ,F,u,p) = ‖F̂ x‖∞.

Proof. Since (1.10) holds, c0 and c are the BK-spaces with respect to their natural norms

and the matrix F̂ is a triangle; Theorem 4.3.12 of Wilansky [33, p.63] gives the fact that the

spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are BK-spaces with the given norms. This completes
the proof. �

Remark 2.8. One can easily check that the absolute property does not hold on the spaces
c0(F̂ ,F , u, p) and c(F̂ ,F , u, p), that is, ‖x‖c0(F̂ ,F,u,p) 6= ‖|x|‖c0(F̂ ,F,u,p) and ‖x‖c(F̂ ,F,u,p) 6=
‖|x|‖c(F̂ ,F,u,p) for at least one sequence in the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p), and

this shows that c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are the sequence spaces of non-absolute
type, where |x| = (|xk|).

Theorem 2.9. The Fibonacci difference sequence spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p)
of non-absolute type are linearly isomorphic to the spaces c0 and c respectively, i.e.,
c0(F̂ ,F , p, u) ∼= c0 and c(F̂ ,F , p, u) ∼= c.

Proof. To prove this, we should show the existence of a linear bijection between the spaces
c0(F̂ ,F , u, p) and c0. Consider the transformation T defined with the notation of (1.9),

from c0(F̂ ,F , u, p) to c0 by x → y = Tx. The linearity of T is clear. Further it is trivial
that x = 0 whenever Tx = 0 and hence T is injective.
We assume that y = (yk) ∈ c0, for 1 ≤ p ≤ ∞ and defined the sequence x = (xk) by

xk =

k∑
j=0

f2
k+1

fjfj+1
yj , for all k ∈ N.

Then we have

lim
k→∞

{
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

k∑
j=0

f2
k+1

fjfj+1
yj −

fk+1

fk

k−1∑
j=0

f2
k

fjfj+1
yj

∣∣∣]pk} = lim
k→∞

yk = 0
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which shows that x ∈ c0(F̂ ,F , p, u). Additionally, we have for every x ∈ c0(F̂ ,F , p, u)
that

‖x‖c0(F̂ ,F,p,u) = sup
k∈N

∣∣∣∣∣ 1n
n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk ∣∣∣∣∣
= sup

k∈N

∣∣∣∣∣ 1n
n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

k∑
j=0

f2
k+1

fjfj+1
yj −

fk+1

fk

k−1∑
j=0

f2
k

fjfj+1
yj

∣∣∣]pk ∣∣∣∣∣
= sup

k∈N

(
|yk|pk

)
= ‖y‖∞ <∞.

Consequently, we see from here that T is surjective and norm preserving. Hence, T is a
linear bijection which shows that the spaces c0(F̂ ,F , u, p) and c0 are linearly isomorphic.

It is clear here that if the spaces c0(F̂ ,F , u, p) and c0 are respectively replaced by the

spaces c(F̂ ,F , u, p) and c, then we obtain the fact that c(F̂ ,F , p, u) ∼= c. This concludes
the proof. �

Now, we give some inclusion relations concerning with the space c0(F̂ ,F , u, p) and c(F̂ ,F , u, p).

Theorem 2.10. The inclusion c0(F̂ ,F , u, p) ⊂ c(F̂ ,F , u, p) strictly holds.

Proof. It is clear that the inclusion c0(F̂ ,F , u, p) ⊂ c(F̂ ,F , u, p) holds. Further, to show

that this inclusion is strict, consider the sequence x = (xk) =
k∑
j=0

f2
k+1

f2
j

. Then, we obtain

(1.9) for all k ∈ N that

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

k∑
j=0

f2
k+1

f2
j

− fk+1

fk

k−1∑
j=0

f2
k+1

f2
j

∣∣∣]pk =
1

n

n∑
k=1

[
ukFk

(fk+1

fk

)]pk

which shows that 1
n

n∑
k=1

[
ukFk

(fk+1

fk

)]pk
→ ϕ, as k →∞. This is to say that F̂ (x) ∈ c\c0.

Thus, the sequence x is in the c(F̂ ,F , u, p) but not in c0(F̂ ,F , u, p). Hence, the inclusion

c0(F̂ ,F , u, p) ⊂ c(F̂ ,F , u, p) is strict. �

Theorem 2.11. The space l∞ does not include the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p).

Proof. Let us consider the sequence x = (xk) = (f2
k+1). Since f2

k+1 → ∞ as k → ∞ and

F̂ (x) = e(0) = (1, 0, 0, ...), the sequence x is in the space c0(F̂ ,F , u, p) but is not in the

space l∞. This shows that the space l∞ does not include the space c0(F̂ ,F , u, p) and the

space c(F̂ ,F , u, p), as desired. �

Theorem 2.12. The inclusions c0 ⊂ c0(F̂ ,F , u, p) and c ⊂ c(F̂ ,F , u, p) strictly holds.

Proof. Let X = c0 or c. Since the matrix F̂ = (fnk) satisfies the conditions

sup
n∈N

∑
k

|fnk| = sup
n∈N

( fn
fn+1

+
fn+1

fn

)
= 2 +

1

2
=

5

2
,

lim
n→∞

fnk = 0,

lim
n→∞

∑
k

fnk = lim
n→∞

( fn
fn+1

− fn+1

fn

)
=

1

ϕ
− ϕ
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we conclude by parts (a) and (c) of Lemma 1.2 that (F̂ ,F , u, p) ∈ (X,X). This leads that

(F̂ ,F , u, p)x ∈ X for any x ∈ X. Thus, x ∈ X(F̂ ,F,u,p). This shows that X ⊂ X(F̂ ,F,u,p).

Now, let x = (xk) = (f2
k+1). Then, it is clear that x ∈ X(F̂ ,F,u,p)\X. This says that the

inclusion X ⊂ X(F̂ ,F,u,p) is strict. �

Theorem 2.13. The spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are not solid.

Proof. Consider the sequences r = (rk) and s = (sk) defined by rk = f2
k+1 and sk =

(−1)k+1 for all k ∈ N. Then, it is clear that r ∈ c0(F̂ ,F , u, p) and s ∈ l∞. Nevertheless

rs = {(−1)k+1f2
k+1} is not in the space c0(F̂ ,F , u, p), since

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

(−1)k+1f2
k+1 −

fk+1

fk
(−1)kf2

k

∣∣∣]pk

=
1

n

n∑
k=1

[
ukFk

(
2(−1)k+1fkfk+1

)]pk
for all k ∈ N.

This shows that the multiplication l∞c0(F̂ ,F , u, p) of the spaces l∞ and c0(F̂ ,F , u, p) is

not a subset of c0(F̂ ,F , u, p). Hence, the space c0(F̂ ,F , u, p) is not solid.

It is clear here that if the spaces c0(F̂ ,F , u, p) is replaced by the space c(F̂ ,F , u, p), then

we obtain the fact c(F̂ ,F , u, p) is not solid. This completes the proof. �

It is known from Theorem 2.3 of Jarrah and Malkowsky [14] that the domain XT of an
infinite matrix T = (tnk) in a normed sequence space X has a basis if and only if X has
a basis, if T is a triangle. As a direct consequence of this fact, we have

Corollary 2.14. Define the sequences c(−1) = {c(−1)
k }k∈N and c(n) = {c(n)

k }k∈N for every
fixed n ∈ N by

c
(−1)
k =

k∑
j=0

f2
k+1

fjfj+1
and c

(n)
k =

{
0 , 0 ≤ k ≤ n− 1
f2
k+1

fnfn+1
, k ≥ n

Then, the following statements hold:
(a) The sequence {c(n)}∞n=0 is a basis for the space c0(F̂ ,F , u, p) and every sequence x ∈
c0(F̂ ,F , u, p) has a unique representation x =

∑
n F̂n(x)c(n).

(b) The sequence {c(n)}∞n=−1 is a basis for the space c(F̂ ,F , u, p) and every sequence z =

(zn) ∈ c(F̂ ,F , u, p) has a unique representation z = lc(−1) +
∑
n[F̂n(z) − l]c(n), where

l = lim
n→∞

F̂n(z).

3. The α−, β− and γ− duals of the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) and
some matrix transformations

The α−, β− and γ− duals of the sequence space X are respectively defined by

Xα = {a = (ak) ∈ w : ax = (akxk) ∈ l1 for all x = (xk) ∈ X},
Xβ = {a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X}

and
Xγ = {a = (ak) ∈ w : ax = (akxk) ∈ bs for all x = (xk) ∈ X}

In this section, we determine α−, β− and γ− duals of the sequence spaces c0(F̂ ,F , u, p) and

c(F̂ ,F , u, p), and characterize the classes of infinite matrices from the spaces c0(F̂ ,F , u, p)
and c(F̂ ,F , u, p) to the spaces c0, c, l∞, f, f0, bs, fs, cs and l1, and from the space f to the
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spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p).
The following two lemmas are essential for our results.

Lemma 3.1. [8] Let X be any of the spaces c0 or c and a = (an) ∈ w, and the matrix

B = (bnk) be defined by Bn = anF̂
−1
n , that is ,

bnk =

{
angnk, 0 ≤ k ≤ n,
0 , k > n

for all k, n ∈ N. Then a ∈ Xβ

F̂
if and only if B ∈ (X, l1).

Lemma 3.2 (5, Theorem 3.1). Let C = (cnk) be defined via a sequence a = (ak) ∈ w and
the inverse matrix V = (vnk) of the triangle matrix Z = (znk) by

cnk =

{ ∑n
j=k ajvjk, 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N. Then for any sequence space X,

Xγ
Z = {a = (ak) ∈ w : C ∈ (X, l∞)},

Xβ
Z = {a = (ak) ∈ w : C ∈ (X, c)}.

Combining Lemmas (1.2), (3.1), and (3.2), we have

Corollary 3.3. Consider the sets d1, d2, d3 and d4 defined as follows:

d1 =

{
a = (ak) ∈ w : sup

k∈H

∑
n

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣ ∑
k∈K

f2
n+1

fkfk+1
an

∣∣∣∣∣
]pk

<∞

}
,

d2 =

{
a = (ak) ∈ w : sup

n∈N

n∑
k=0

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣
n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣∣
]pk

<∞

}
,

d3 =

{
a = (ak) ∈ w : lim

n→∞

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣
n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣∣
]pk

exists for each k ∈ N

}
,

d4 =

{
a = (ak) ∈ w : lim

n→∞

n∑
k=0

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣
n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣∣
]pk

exists

}
.

Then the following statements hold:
(a) {c0(F̂ ,F , u, p)}α = {c(F̂ ,F , u, p)}α = d1.

(b) {c0(F̂ ,F , u, p)}β = d2 ∩ d3 and {c(F̂ ,F , u, p)}β = d2 ∩ d3 ∩ d4.

(c) {c0(F̂ ,F , u, p)}γ = {c(F̂ ,F , u, p)}γ = d2.

Theorem 3.4. Let X = c0 or c and Y be an arbitrary subset of w. Then, we have
A = (ank) ∈ (XF̂ , Y ) if and only if

(3.1) D(m) = (d
(m)
nk ) ∈ (X, c) for all n ∈ N,

(3.2) D = (dnk) ∈ (X,Y ),

where

d
(m)
nk =


1
n

n∑
k=1

(
ukFk

∣∣∣∣∣
m∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣∣
)pk

, 0 ≤ k ≤ m

0 , k > m
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and

dnk =
1

n

n∑
k=1

(
ukFk

∣∣∣∣∣
∞∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣∣
)pk

for all k,m, n ∈ N.

By changing the roles of the spaces XF̂ and X with Y in Theorem 3.4, we have

Theorem 3.5. Suppose that the elements of the infinite matrices A = (ank) and B = (bnk)
are connected with the relation

(3.3) bnk =
1

n

n∑
k=1

[
ukFk

∣∣∣− fn+1

fn
an−1,k +

fn
fn+1

ank

∣∣∣]pk
for all k, n ∈ N and Y be any given sequence space. Then, A ∈ (Y,XF̂ ) if and only if
B ∈ (Y,X).

Proof. Let z = (zk) ∈ Y . Then, by taking into account the relation (3.3) one can easily
derive the following equality

m∑
k=0

bnkzk =
m∑
k=0

(
1

n

n∑
k=1

[
ukFk

∣∣∣− fn+1

fn
an−1,k +

fn
fn+1

ank

∣∣∣]pk)zk for all m,n ∈ N

which yields as m → ∞ that (Bz)n = [F̂ (Az)]n. Therefore, we conclude that Az ∈ XF̂

whenever z ∈ Y if and only if Bz ∈ X whenever z ∈ Y . This completes the proof. �

By f0, f and fs we denote the spaces of almost null and almost convergent sequences and
series respectively. Now, the following two lemmas characterizing the strongly and almost
conservative matrices:

Lemma 3.6. (see [32]) A = (ank) ∈ (f, c) if and only if (1.3), (1.5), and (1.7) hold, and

(3.4) lim
n→∞

∑
k

∆(ank − αk) = 0

also holds, where ∆(ank − αk) = ank − αk − (an,k+1 − αk+1) for all k, n ∈ N.

Lemma 3.7. (see [21]) A = (ank) ∈ (c, f) if and only if (1.3) holds, and

(3.5) ∃αk ∈ C 3 f − lim ank = αk for each fixed k ∈ N,

(3.6) ∃α ∈ C 3 f − lim
∑
k

ank = α.

Now, we list the following conditions:

(3.7) sup
m∈N

m∑
k=0

∣∣∣d(n)
mk

∣∣∣ <∞
(3.8) ∃dnk ∈ C 3 lim

m→∞
d

(n)
mk = dnk for each k, n ∈ N

(3.9) sup
n∈N

∑
k

|dnk| <∞

(3.10) ∃αk ∈ C 3 lim
n→∞

dnk = αk for each k ∈ N
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(3.11) sup
N,K∈H

∣∣∣∑
n∈N

∑
k∈K

dnk

∣∣∣ <∞
(3.12) ∃βn ∈ C 3 lim

m→∞

m∑
k=0

d
(n)
mk = βn for each n ∈ N

(3.13) ∃α ∈ C 3 lim
n→∞

∑
k

dnk = α

It is trivial that Theorem 3.4 and Theorem 3.5 have several consequences. Indeed, com-
bining Theorem 3.4, 3.5 and Lemmas 1.1, 3.6 and 3.7 we derive the following results:

Corollary 3.8. Let A = (ank) be an infinite matrix and a(n, k) =
n∑
j=0

ajn for all k, n ∈ N.

Then, the following statements hold:
(a) A = (ank) ∈ (c0(F̂ ,F , u, p), c0) if and only if (3.7), (3.8), (3.9) hold and (3.10) also
holds with αk = 0 for all k ∈ N.
(b) A = (ank) ∈ (c0(F̂ ,F , u, p), cs0) if and only if (3.7), (3.8), (3.9) hold and (3.10) also
holds with αk = 0 for all k ∈ N with a(n, k) instead of ank.

(c) A = (ank) ∈ (c0(F̂ ,F , u, p), c) if and only if (3.7), (3.8), (3.9) and (3.10) hold.

(d) A = (ank) ∈ (c0(F̂ ,F , u, p), cs) if and only if (3.7), (3.8), (3.9) and (3.10) hold with
a(n, k) instead of ank.

(e) A = (ank) ∈ (c0(F̂ ,F , u, p), l∞) if and only if (3.7), (3.8) and (3.9) hold.

(f) A = (ank) ∈ (c0(F̂ ,F , u, p), bs) if and only if (3.7), (3.8) and (3.9) hold with a(n, k)
instead of ank.
(g) A = (ank) ∈ (c0(F̂ ,F , u, p), l1) if and only if (3.7), (3.8) and (3.11) hold.

(h) A = (ank) ∈ (c0(F̂ ,F , u, p), bv1) if and only if (3.7), (3.8) and (3.11) hold with
ank − an−1,k instead of ank.

Corollary 3.9. Let A = (ank) be an infinite matrix. Then, the following statements hold:

(a) A = (ank) ∈ (c(F̂ ,F , u, p), l∞) if and only if (3.7), (3.8), (3.9) and (3.12) hold.

(b) A = (ank) ∈ (c(F̂ ,F , u, p), bs) if and only if (3.7), (3.8), (3.9) and (3.12) hold with
a(n, k) instead of ank.

(c) A = (ank) ∈ (c(F̂ ,F , u, p), c) if and only if (3.7), (3.8), (3.9), (3.10), (3.12) and
(3.13) hold.

(d) A = (ank) ∈ (c(F̂ ,F , u, p), cs) if and only if (3.7), (3.8), (3.9), (3.10), (3.12) and
(3.13) hold with a(n, k) instead of ank.

(e) A = (ank) ∈ (c(F̂ ,F , u, p), c0) if and only if (3.7), (3.8), (3.9) and (3.10) hold with
αk = 0 for all k ∈ N, (3.12) and (3.13) also hold with α = 0.

(f) A = (ank) ∈ (c(F̂ ,F , u, p), cs0) if and only if (3.7), (3.8), (3.9) and (3.10) hold with
αk = 0 for all k ∈ N, (3.12) and (3.13) also hold with α = 0 with a(n, k) instead of ank.

(g) A = (ank) ∈ (c(F̂ ,F , u, p), l1) if and only if (3.7), (3.8), (3.11) and (3.12)hold.

(h) A = (ank) ∈ (c(F̂ ,F , u, p), bv1) if and only if (3.7), (3.8), (3.11) and (3.12) hold with
ank − an−1,k instead of ank..

Corollary 3.10. A = (ank) ∈ (c(F̂ ,F , u, p), f) if and only if (3.7), (3.8), (3.12) and
(3.13) hold, and (3.9), (3.10) also hold with dnk instead of ank.

Corollary 3.11. A = (ank) ∈ (c(F̂ ,F , u, p), f0) if and only if (3.7), (3.8), (3.12) and
(3.13) hold, and (3.9), (3.10) also hold with dnk instead of ank and αk = 0 for all k ∈ N.
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Corollary 3.12. A = (ank) ∈ (c(F̂ ,F , u, p), fs) if and only if (3.7), (3.8), (3.9), (3.10),
(3.12) and (3.13) hold with a(n, k) instead of ank and (3.9), (3.10) also hold with d(n, k)
instead of dnk.

Corollary 3.13. A = (ank) ∈ (f, c(F̂ ,F , u, p)) if and only if (1.3), (1.5), (1.7) and (3.8)
hold with bnk instead of ank, where b(n, k) is defined by (3.3) .

Corollary 3.14. A = (ank) ∈ (f, c0(F̂ ,F , u, p)) if and only if (1.3) and (1.7) hold, (1.5)
and (3.8) also hold with bnk instead of ank and αk = 0 for all k ∈ N, where b(n, k) is
defined by (3.3).
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[10] B. Choudhary and S. K. Mishra, A note on Köthe-Toeplitz duals of certain sequence spaces and their
matrix transformations, Internat. J. Math. Math. Sci., 18 (4) (1995) 681-688.

[11] M. Et, On some difference sequence spaces, Turkish J. Math., 17 (1993) 18-24.
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[20] E. E. Kara, M. Başarır and M.Mursaleen, Compact operators on the Fibonacci difference sequence

spaces lp(F̂ ) and l∞(F̂ ), 1st International Eurasian Conference on Mathematical Sciences and Ap-
plications, Prishtine-Kosovo, September 3-7, 2012.

[21] J. P. King, Almost summable sequences, Proc. Amer. Math. Soc., 17 (1966), 1219-1225.

[22] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
[23] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345-355.

[24] I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64.

[25] M. Mursaleen and A. K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J.
Math., 8(2) (2010) 311-329.

[26] M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl., 203 (3) (1996)

738-745.
[27] A. Alotaibi, K. Raj, A. H. Alkhaldi and S. A. Mohiuddine, Lacunary sequence spaces defined by Euler

transform and Orlicz functions, , J. Comput. Anal. Appl., 27 (2019), 770-780.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

968 KULDIP RAJ 954-969



16 KULDIP RAJ, SURUCHI PANDOH AND KAVITA SAINI

[28] R. Anand, C. Sharma and K. Raj, Seminormed double sequence spaces of four dimensional matrix

and Musielak-Orlicz function, J. Inequal. Appl., 2018, 2018:285.

[29] K. Raj, C. Sharma and A. Choudhary, Applications of Tauberian theorem in Orlicz spaces of double
difference sequences of fuzzy numbers, J. Intell. Fuzzy Systems, 35(2018), 2513-2524.

[30] A. Allotaibi, K. Raj and S. A. Mohiuddine, Some generalized spaces of sequences via infinite matrix

and modulus functions, J. Funct. Spaces, Vol 2015 Article ID 413850, 9 pages.
[31] A. Sönmez, Some new sequence spaces derived by the domain of the triple band matrix, Comput.

Math. Appl., 62 (2) (2011) 641-650.

[32] J. A. Sıddıqi, Infinite matrices summing every almost periodic sequences, Pac. J. Math., 39 (1)
(1971), 235.251.

[33] A. Wilansky, Summability through functional analysis, North-Holland Math. Stud., 85 (1984) Elsevier

Science publishers, Amsterdam: New York: Oxford.

School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J & K (India)

E-mail address: kuldipraj68@gmail.com

E-mail address: suruchi.pandoh87@gmail.com

E-mail address: kavitasainitg3@gmail.com

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.5, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

969 KULDIP RAJ 954-969



Completely monotonic functions involving Bateman’s
G−function

Mansour Mahmoud1, Ahmed Talat2,

Hesham Moustafa3 and Ravi P. Agarwal4

1,3Mansoura University, Faculty of Science, Mathematics Department, Mansoura 35516, Egypt.

2Port Said University, Faculty of Science, Mathematics and Computer Sciences Department,

Port Said, Egypt.

4Department of Mathematics, Texas A&M University-Kingsville, Texas 78363, USA

1mansour@mans.edu.eg, 2a−t−amer@yahoo.com , 3heshammoustafa14@gmail.com

4agarwal@tamuk.edu

.

.

Abstract

In this paper, we prove the complete monotonicity of some functions involving Bateman’s
G−function and show that

1

2x2 + α
< G(x)− 1

x
<

1

2x2 + β
, x > 0

where α = 1 and β = 0 are the best possible constants, which is a refinement of a recent
result. Then, we give a new proof of Slavić inequality about Wallis ratio Wm and provide
a new inequality for Wm. Our new inequality improves some recent related works. We also
present two inequalities for the hyperbolic tangent function.

2010 Mathematics Subject Classification: 26A48, 26D15, 33B15.

Key Words: Bateman’sG−function, completely monotonic, best possible constant, Bernoulli
numbers, Wallis ratio, hyperbolic tangent function.

1 Introduction

A function H : J → R is said to be completely monotonic (see [45] and [11]), if H(m)(x) exists
on J for all m ≥ 0 and

(−1)mH(m)(x) ≥ 0 x ∈ J ; m ≥ 0. (1)
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For x > 0, the necessary and sufficient condition for the function H(x) to be completely mono-
tonic is the convergence of the following integral

H(x) =

∫ ∞
0

e−xtdv(t), (2)

where v(t) is a nonnegative measure on t ≥ 0. The function H(x) is said to be strictly completely
monotonic if the inequality (1) is strict for all x ∈ J and m ≥ 0. The concept of completely
monotonic function is the continuous analogue of the totally monotone sequence presented by
Hausdorff in 1921 [15] (see also [45]). These functions find applications in several diverse fields
such as in the theory of special functions, asymptotic analysis, probability, physics, and the list
continues, see [2], [5], [6], [12] , [13], [32], [34], [35], [38], [44] and the references therein.

The Bateman’s G−function is defined by (see Erdélyi [10])

G(t) = ψ

(
t

2
+

1

2

)
− ψ

(
t

2

)
, t 6= 0,−1,−2, ... (3)

where ψ(t) is the digamma (Psi) function which is defined by

ψ(t) =
d

dt
ln Γ(t)

and Γ(z) is the classical Euler gamma function which is defined for Re(z) > 0 by

Γ(z) =

∫ ∞
0

e−wwz−1dw.

For more details on bounds, identities, properties and applications of Bateman’s G−function,
refer to [10], [21]-[25], [31], [39] and the references therein. The following relations hold for the
function G(x) [10]:

G(x+ 1) = −G(x) + 2x−1, (4)

G(x) =

∫ ∞
0

2e−xv

1 + e−v
dv, x > 0 (5)

G(x) = x−1
2F1

(
1, 1; 1 + x;

1

2

)
, (6)

where

lFm(v1, ..., vl;w1, ..., wm; z) =
∞∑
k=0

(v1)k...(vl)k
(w1)k...(wm)k

zk

k!

is the generalized hypergeometric function [3] defined for l,m ∈ N, vj, wj ∈ C, wj 6= 0,−1,−2, ...
and

(v)0 = 1 and (v)n =
Γ(v +m)

Γ(v)
, n ∈ N.

Qiu and Vuorinen [39] established the inequality

(6− 4 ln 4)

x2
< G(x)− 1

x
<

1

2x2
, x > 1/2 (7)
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and Mortici [25] improved the inequality (7) to the double inequality

0 < ψ(x+ h)− ψ(x) ≤ ψ(h) + γ − h+ h−1, x ≥ 1; h ∈ (0, 1) (8)

where γ is the Euler constant. Mahmoud and Agarwal [21] deduced the following asymptotic
formula for x→∞

G(x)− 1

x
∼

∞∑
k=1

(22k − 1)B2k

k
x−2k, (9)

where Bm
′s are the Bernoulli numbers [17] and they also presented the following inequality

1

2x2 + 3
2

< G(x)− x−1 <
1

2x2
, x > 0 (10)

which improves the lower bound of the inequality (7) for x >
(

9−12 ln 2
16 ln 2−11

)1/2
. In [22] Mahmoud

and Almuashi proved the following inequality

2m∑
n=1

(22n − 1)

n
B2nx

−2n < G(x)− x−1 <

2m−1∑
n=1

(22n − 1)

n
B2nx

−2n, m ∈ N (11)

where (22n−1)
n

B2n are the best possible constants. Also, Mahmoud, Talat and Moustafa [23]
studied the following family of approximations of Bateman’s G−function

χ(ρ, x) = ln

(
1 +

1

x+ ρ

)
+

2

x(x+ 1)
, 1 ≤ ρ ≤ 2; x > 0

which is asymptotically equivalent to the function G(x) for x→∞.

Recently, Mahmoud and Almuashi [24] presented some identities, functional equations and
an asymptotic expansion of the generalized Bateman’s G−function Gσ(x) defined by

Gσ(x) = ψ

(
x+ σ

2

)
− ψ

(x
2

)
, x 6= −2r,−2r − σ; σ ∈ (0, 2); for r = 0, 1, 2, ... .

Also, they presented the double inequality

ln

(
1 +

σ

x+ φ

)
< Gσ(x)− 2σ

x(x+ σ)
< ln

(
1 +

σ

x+ θ

)
, x > 0; σ ∈ (0, 2)

where φ = σ

eγ+
2
σ+ψ(σ2 )−1

and θ = 1 are the best possible constants.

In this paper, we will study the complete monotonicity of some functions involving the func-
tion G(x) and as a consequence, we will deduce a double inequality of it. Also, we will prove
that the function

q(x) =
1

G(x)− 1
x

− 2x2, x > 0

is strictly increasing and present a refinement of the lower bound of the inequality (10). We will

apply our results to present a new proof of Slavić inequality about Wallis ratio Wm = Γ(m+1/2)√
π Γ(m+1)

for m ∈ N. We will also present a new inequality of Wm, which improves some recent results.
Further, we will present two inequalities involving the hyperbolic tangent function.
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2 Main Results

We begin by proving some auxiliary results involving Bernoulli numbers.

Lemma 2.1. For any positive integer s ≥ 1, we have

B2s =
1

2(22s − 1)

[
1− 1

2s+ 1

s−1∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k

]
(12)

and

B2s =
1

2(22s − 1)

[
s−

s−1∑
k=1

(22k − 1)
(

2s
2k

)
B2k

]
. (13)

Proof. The identity [30]

Bm =
1

2(1− 2m)

m−1∑
j=0

2j
(
m
j

)
Bj, m ∈ N (14)

can be rewritten as

Bm =
1

2(1− 2m)
[1−m+

[m−1
2

]∑
j=1

22j
(
m
2j

)
B2j], m ≥ 1

where B2r+1 = 0 for r ∈ N and hence

s∑
k=1

22k
(

2s+1
2k

)
B2k = 2s, s ≥ 1 (15)

s−1∑
k=1

22k
(

2s
2k

)
B2k = (2s− 1) + 2(1− 22s)B2s, s ≥ 2. (16)

Also, Bernoulli numbers satisfy [4]

s− 1

2
=

s∑
k=1

(
2s+1
2k

)
B2k, s ≥ 1 (17)

s− 1 =
s−1∑
k=1

(
2s
2k

)
B2k, s ≥ 2. (18)

From the two identities (15) and (17), we get

s∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k = 2s+ 1 s ≥ 1 (19)

and the two identities (16) and (18) give us

2(22s − 1)B2s +
s−1∑
k=1

(22k − 1)
(

2s
2k

)
B2k = s s ≥ 1. (20)
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Lemma 2.2. For v = 2, 3, 4, · · ·, Bernoulli numbers satisfy

(22v+2 − 1)

(22v − 1)
π2 <

|B2v|
|B2v+2|

(2v + 1)(2v + 2) <
(22v+2 − 1)

(22v − 1)
(π2 + 1). (21)

Proof. The function

f(x) = x(8x− (9 + 3π2)) + 1, x ≥ 9 + 3π2 +
√

49 + 54π2 + 9π4

16
≈ 4.80006...

is increasing and positive, and hence

22v−1(22v+2 − (9 + 3π2)) + 1 > 0, v ≥ 2.

Then
(π2 + 1)(22v+2 − 1)(22v−1 − 1)− π2(22v+1 − 1)(22v − 1) > 0, v ≥ 2

or
(22v+1 − 1)

(22v−1 − 1)
π2 <

(22v+2 − 1)

(22v − 1)
(π2 + 1), v ≥ 2. (22)

From the Qi’s result [36]

(22v+2 − 1)

(22v − 1)

π2

(2v + 1)(2v + 2)
<
|B2v|
|B2v+2|

<
(22v+1 − 1)

(22v−1 − 1)

π2

(2v + 1)(2v + 2)
, v ≥ 1 (23)

and the inequality (22), we complete the proof.

Now we will prove the complete monotonicity of some functions involving the function G(x).

Lemma 2.3. For a positive integer m, the function

F (x) = G(x)− 1

x
−

2m∑
k=1

(22k − 1)B2k

kx2k
, x > 0 (24)

is strictly completely monotonic.

Proof. Using the formula [1]

1

xk
=

1

(k − 1)!

∫ ∞
0

tk−1e−xtdt, k ∈ N (25)

and the integral representation of G(x), we get

F (x) =

∫ ∞
0

[
et − 1− (1 + et)

2m∑
k=1

(22k − 1)B2kt
2k−1

k(2k − 1)!

]
e−xt

1 + et
dt

=

∫ ∞
0

ϕ(t)
e−xt

1 + et
dt,

where

ϕ(t) = et − 1− (1 + et)
2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1. (26)
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Now

ϕ(t) =
∞∑
r=1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
r=0

tr+2k−1

r!

=
∞∑
r=1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
s=2k−1

ts

(s− 2k + 1)!

=
4m∑
r=1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

4m∑
s=2k−1

ts

(s− 2k + 1)!

+
∞∑

r=4m+1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
s=4m+1

ts

(s− 2k + 1)!
.

Rewrite infinite summations from 0 and split finite summations by even and odd power of t we
obtain

ϕ(t) =
2m∑
s=1

t2s−1

(2s− 1)!
−

2m∑
s=1

2(22s − 1)B2s

(2s)!
t2s−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

2m∑
s=k

t2s−1

(2s− 2k)!

+
2m∑
s=1

t2s

(2s)!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!

2m∑
s=k

t2s

(2s− 2k + 1)!
+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

−
∞∑
s=0

2m∑
k=1

2(22k − 1)B2k

(2k)!(s+ 4m− 2k + 2)!
ts+4m+1,

which can be rewritten as

ϕ(t) =
2m∑
s=1

t2s−1

(2s− 1)!
−

2m∑
s=1

2(22s − 1)B2s

(2s)!
t2s−1 −

2m∑
s=1

1

(2s)!

s∑
k=1

2(22k − 1)(2s!)B2k

(2k)!(2s− 2k)!
t2s−1

+
2m∑
s=1

t2s

(2s)!
−

2m∑
s=1

1

(2s+ 1)!

s∑
k=1

2(22k − 1)((2s+ 1)!)B2k

(2k)!(2s− 2k + 1)!
t2s +

∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

−
∞∑
s=0

m∑
k=1

(
2(24k − 1)B4k

(4k)!(s+ 4(m− k) + 2)!
+

2(24k−2 − 1)B4k−2

(4k − 2)!(s+ 4(m− k) + 4)!

)
ts+4m+1

=
2m∑
s=1

[
2s− 4(22s − 1)B2s −

s−1∑
k=1

2(22k − 1)
(

2s
2k

)
B2k

]
t2s−1

(2s)!

+
2m∑
s=1

[
2s+ 1−

s∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k

]
t2s

(2s+ 1)!
+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

−
∞∑
s=0

m∑
k=1

[(
1 +

(24k−2 − 1)(4k)(4k − 1)B4k−2

(24k − 1)(s+ 4(m− k) + 3)(s+ 4(m− k) + 4)B4k

)
2(24k − 1)ts+4m+1B4k

(4k)!(s+ 4(m− k) + 2)!

]
.
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Using the identities (12) and (13) with the relation

(−1)r+1B2r > 0, r ∈ N (27)

we obtain

ϕ(t) =
∞∑
s=0

m∑
k=1

[(
1− (24k−2 − 1)(4k)(4k − 1)|B4k−2|

(24k − 1)(s+ 4(m− k) + 3)(s+ 4(m− k) + 4)|B4k|

)
2(24k − 1)|B4k|ts+4m+1

(4k)!(s+ 4(m− k) + 2)!

]
+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!
.

For s ≥ 0 and m ≥ k ≥ 1, we have

(s+ 4(m− k) + 3)(s+ 4(m− k) + 4) ≥ (s+ 3)(s+ 4) ≥ 12

and then

ϕ(t) ≥
∞∑
s=0

m∑
k=1

2(24k − 1)|B4k|
(4k)!(s+ 4(m− k) + 2)!

(
1− (24k−2 − 1)(4k)(4k − 1)|B4k−2|

12(24k − 1)|B4k|

)
ts+4m+1

+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

≥
∞∑
s=0

m∑
k=2

2(24k − 1)|B4k|
(4k)!(s+ 4(m− k) + 2)!

(
1− (24k−2 − 1)(4k)(4k − 1)|B4k−2|

12(24k − 1)|B4k|

)
ts+4m+1

+
∞∑
s=0

30|B4|
(4!)(s+ 4m− 2)!)

(
1− |B2|

5|B4|

)
ts+4m+1 +

∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!
.

Using inequality (21) with v = 2k − 1 for k ∈ N, we get

ϕ(t) >
∞∑
s=0

m∑
k=2

2(24k − 1)|B4k|
(4k)!(s+ 4(m− k) + 2)!

(
1− π2 + 1

12

)
ts+4m+1 +

∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!
> 0,

which complete the proof.

Lemma 2.4. For a positive integer m, the function

M(x) =
1

x
−G(x) +

2m−1∑
k=1

(22k − 1)B2k

kx2k
, x > 0 (28)

is strictly completely monotonic.

Proof. Using the formula (25) and the integral representation of G(x), we have

M(x) =

∫ ∞
0

[
(1 + et)

2m−1∑
k=1

(22k − 1)B2kt
2k−1

k(2k − 1)!
− (et − 1)

]
e−xt

1 + et
dt

=

∫ ∞
0

µ(t)
e−xt

1 + et
dt,
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where

µ(t) = (1 + et)
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 − (et − 1).

Now

µ(t) =
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
r=0

tr+2k−1

r!
−
∞∑
r=1

tr

r!
µ(t)

=
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
s=2k−1

ts

(s− 2k + 1)!
−
∞∑
r=1

tr

r!

=
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

4m−2∑
s=2k−1

ts

(s− 2k + 1)!
−

4m−2∑
r=1

tr

r!

+
∞∑

s=4m−1

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

ts

(s− 2k + 1)!
−

∞∑
r=4m−1

tr

r!
.

Rewrite infinite summations from 0 and split finite summations by even and odd power of t, we
obtain

µ(t) =
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

2m−1∑
s=k

t2s−1

(2s− 2k)!
−

2m−1∑
r=1

t2r−1

(2r − 1)!

+
2m−1∑
k=1

2(22k − 1)B2k

(2k)!

2m−1∑
s=k

t2s

(2s− 2k + 1)!
−

2m−1∑
r=1

t2r

(2r)!

+
∞∑
s=0

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

ts+4m−1

(s+ 4m− 2k)!
−
∞∑
r=0

tr+4m−1

(r + 4m− 1)!
,

which can be rewritten as

µ(t) =
2m−1∑
s=1

2(22s − 1)B2s

(2s)!
t2s−1 +

2m−1∑
s=1

1

(2s)!

s∑
k=1

2(22k − 1)(2s!)B2k

(2k)!(2s− 2k)!
t2s−1 −

2m−1∑
s=1

t2s−1

(2s− 1)!

+
2m−1∑
s=1

1

(2s+ 1)!

s∑
k=1

2(22k − 1)(2s+ 1)!B2k

(2k)!(2s− 2k + 1)!
t2s −

2m−1∑
s=1

t2s

(2s)!

+
∞∑
s=0

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

ts+4m−1

(s+ 4m− 2k)!
−
∞∑
s=0

ts+4m−1

(s+ 4m− 1)!

=
2m−1∑
s=1

[
2(22s − 1)B2s − s+

s−1∑
k=1

(22k − 1)
(

2s
2k

)
B2k

]
2t2s−1

(2s)!

+
2m−1∑
s=1

[
−(2s+ 1) +

s∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k

]
t2s

(2s+ 1)!

+
∞∑
s=0

[
1

2

s+ 4m− 3

(s+ 4m− 1)!
+

2m−1∑
k=2

2(22k − 1)B2k

(2k)!(s+ 4m− 2k)!

]
ts+4m−1.
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Using the identities (12) and (13) with the relation (27), µ(t) satisfies

µ(t) >
∞∑
s=0

m−1∑
k=1

(
2(24k − 1)B4k

(4k)!(s+ 4(m− k))!
+

2(24k+2 − 1)B4k+2

(4k + 2)!(s+ 4(m− k)− 2)!

)
ts+4m−1

>

[
∞∑
s=0

m−1∑
k=1

(
1− (24k − 1)(4k + 1)(4k + 2)|B4k|

(24k+2 − 1)(s+ 4(m− k)− 1)(s+ 4(m− k))|B4k+2|

)
2(24k+2 − 1)|B4k+2|ts+4m−1

(4k + 2)!(s+ 4(m− k)− 2)!

]
.

For s ≥ 0 and m− k ≥ 1, we have

(s+ 4(m− k)− 1)(s+ 4(m− k)) ≥ (s+ 3)(s+ 4) ≥ 12

and then µ satisfies

µ(t) >
∞∑
s=0

m−1∑
k=1

(
1− π2 + 1

12

)
2(24k+2 − 1)|B4k+2|ts+4m−1

(4k + 2)!(s+ 4(m− k)− 2)!
> 0,

which complete the proof.

From the complete monotonicity of the two functions F (x) and M(x) with the asymptotic
expansion (9), we get the following double inequality which posed as a conjecture in [21].

Lemma 2.5. The following double inequality holds

2m∑
k=1

(22k − 1)B2k

k
x−2k < G(x)− x−1 <

2l−1∑
k=1

(22k − 1)B2k

k
x−2k, l,m ∈ N ; x > 0. (29)

From the positivity of the two functions ϕ(t) and µ(t) in the proofs of Lemmas 2.3 and 2.4,
we obtain the following result:

Lemma 2.6. The following double inequality holds

2m∑
k=1

22k(22k − 1)B2k

(2k)!
x2k−1 ≤ tanh(x) ≤

2l−1∑
k=1

22k(22k − 1)B2k

(2k)!
x2k−1, l,m ∈ N ; x ≥ 0 (30)

and the inequality is reversed if x ≤ 0. Equality holds if x = 0.

Remark 1. In the case |x| < π
2

and l or m = tends to ∞, in the inequality (30) in fact equality
holds, since

tanh(x) =
∞∑
k=1

22k(22k − 1)B2k

(2k)!
x2k−1, |x| < π

2
.

Elbert and Laforgia established the following lemma to study the monotonicity of some
functions involving gamma function [9] (see also [48]).
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Lemma 2.7. Let K be a real-valued function defined on x > a, a ∈ R with limx→∞K(x) = 0.
Then K(x) > 0, if K(x) > K(x + 1) for all x > a and K(x) < 0, if K(x) < K(x + 1) for all
x > a.

To present our next result, we can easily prove the following simple modification on Lemma
2.7:

Corollary 2.8. Let K be a real-valued function defined on x > a, a ∈ R with limx→∞K(x) = 0.
Then for m ∈ N, K(x) > 0, if K(x) > K(x+m) for all x > a and K(x) < 0, if K(x) < K(x+m)
for all x > a.

Proof. For m ∈ N, if we have K(x) > K(x+m) and limx→∞K(x) = 0, then

K(x) > K(x+m) > ... > K(x+ rm) > ... > lim
r→∞

K(x+ rm) = lim
y→∞

K(y) = 0.

The other case is similarly treated.

Lemma 2.9. The function

q(x) =
1

G(x)− 1
x

− 2x2, x > 0 (31)

is strictly increasing.

Proof. For x > 0, we have

q′(x) =
L(x)

[G(x)− 1
x
]2
,

where

L(x) = −G′(x)− 4xG2(x) + 8G(x)− (4x+ 1)

x2
.

Now,

L(x+ 1)− L(x) = G′(x)−G′(x+ 1) + 4x
[
G2(x)−G2(x+ 1)

]
− 4G2(x+ 1)

− 8 [G(x)−G(x+ 1)] +
4x2 + 6x+ 1

x2(x+ 1)2

and using equation (4) and its derivative, we get

L(x+ 1)− L(x) = 2G′(x)− 4G2(x+ 1) +
6x2 + 10x+ 3

x2(x+ 1)2
, L1(x).

Consider the difference

L1(x+ 2)− L1(x) = 2 [G′(x+ 2)−G′(x)]− 4
[
G2(x+ 3)−G2(x+ 1)

]
− 4 (27 + 135x+ 220x2 + 158x3 + 51x4 + 6x5)

x2(x+ 1)2(x+ 2)2(x+ 3)2
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and using equation (4) and its derivative, we obtain

L1(x+ 2)− L1(x) =
16

(x+ 1)(x+ 2)

{
G(x+ 1)− 4x5 + 34x4 + 98x3 + 99x2 + 3x− 9

4x2(x+ 1)(x+ 2)(x+ 3)2

}
,

16

(x+ 1)(x+ 2)
L2(x).

Using equation (4), the function L2(x) satisfies

L2(x+ 2)− L2(x) = − 3(7x+ 15)(7x+ 20)

2x2(x+ 1)(x+ 2)2(x+ 3)2(x+ 4)(x+ 5)2
< 0.

From the asymptotic formula (9) and its derivative

G′(x) ∼ − 1

x2
−
∞∑
k=1

2(22k − 1)B2k

x2k+1
, x→∞ (32)

we have
lim
x→∞

L(x) = lim
x→∞

L1(x) = lim
x→∞

L2(x) = 0.

Hence, using Corollary 2.8, we get that L(x) > 0 for all x > 0 which completes the proof.

As a consequence of the monotonicity of the function q(x) with the asymptotic expansion
(9), we obtain the following inequality:

Lemma 2.10. The following double inequality holds

1

2x2 + α
< G(x)− 1

x
<

1

2x2 + β
, x > 0 (33)

where α = 1 and β = 0 are the best possible constants.

Remark 2. The double inequality (33) is a refinement of the double inequality (10).

Lemma 2.11. The function

U(x) = G(x)− 1

x
− 1

2x2 + 1
, x > 0 (34)

is strictly completely monotonic.

Proof. Using the formula (25), the integral representation of G(x) and the Laplace transform of
sine function, we have

U(x) =

∫ ∞
0

λ(t)e−xtdt,

where

λ(t) =
et − 1

et + 1
− 1√

2
sin

(
t√
2

)
.
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Since sin z < 1, we get

λ(t) >
et − 1

et + 1
− 1√

2
> 0, t > ln

(√
2 + 1√
2− 1

)
≈ 1.76275 .

Also, from the generalization of Redheffer-Williams’s inequality [40], [41], [42], [46]

π2 − x2

π2 + x2
≤ sinx

x
≤ 12− x2

12 + x2
, 0 < x ≤ π

and the inequality (30) for m = 4, we obtain λ(t) > t5(2352−240t2−17t4)
40320(24+t2)

> 0 for 0 < t <√
4
√

3399−120
17

≈ 2.58051.

As a consequence of the Lemma 2.11, we get

Lemma 2.12.

1. For odd positive integer r , we have

G(r)(x) < − r!

xr+1
+

r!(
√

2)r

(2x2 + 1)r+1

r+1
2∑
l=1

(−1)l
(
r+1
2l−1

)
(
√

2x)r−2l+2 x > 0 (35)

2. For even positive integer r , we have

G(r)(x) >
r!

xr+1
+

r!(
√

2)r

(2x2 + 1)r+1

r
2

+1∑
l=1

(−1)l+1
(
r+1
2l−1

)
(
√

2x)r−2l+2 x > 0 (36)

Also, as a consequence of the proof of Lemma 2.11, we obtain the following inequality:

Lemma 2.13. The following double inequality holds

tanh(x) ≥ 1√
2

sin(
√

2x), x ≥ 0. (37)

Equality holds iff x = 0.

3 Applications: Some inequalities of Wallis ratio

The Wallis ratio

Wm =
1.3.5...(2m− 1)

2.4.6...(2m)
=

Γ(m+ 1/2)√
π Γ(m+ 1)

, m ∈ N (38)

plays an important role in mathematics especially in special functions, combinatorics, graph
theory and many other branches. For further details about its history and applications, we refer
to [7], [16], [18], [20], [26]-[29].
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Guo, Xu and Qi [14] deduced the inequality

C1

m

(
1− 1

2m

)m√
m− 1 < Wm ≤

C2

m

(
1− 1

2m

)m√
m− 1, m ≥ 2 (39)

with the best possible constants C1 =
√

e
π

and C2 = 4
3
.

Recently, Qi and Mortici [37] presented the following improvement of the double inequality
(39)√

e

π m

[
1− 1

2(m+ 1/3)

]m+1/3

< Wm <

√
e

π m

[
1− 1

2(m+ 1/3)

]m+1/3

e
1

144m3 , m ∈ N.

(40)
Also, Zhang, Xu and Situ [47] presented the inequality

1√
eπm

(
1 +

1

2m

)m− 1
12m

< Wm ≤
1√
eπm

(
1 +

1

2m

)m− 1
12m+16

, m ∈ N. (41)

Recently, Cristea [8] improved the upper bound of the inequality (41) by

Wm ≤
1√
eπm

(
1 +

1

2m

)m− 1
12m

+ 1
48m2−

1
2880m3

, m ∈ N (42)

which is better than the upper bound of the inequality (40).

3.1 New proof of Slavić inequality

Slavić [43] presented the following double inequality

1√
x

exp

(
2l−1∑
k=1

(1− 2−2k)B2k

k(1− 2k)x2k−1

)
<

Γ(x+ 1/2)

Γ(x+ 1)
<

1√
x

exp

(
2m∑
k=1

(1− 2−2k)B2k

k(1− 2k)x2k−1

)
, (43)

where x > 0 and l,m ∈ N . In the following sequel, we will present a new proof of Slavić
inequality (43). Consider the two functions

SL(x) =
Γ(x+ 1/2)

Γ(x+ 1)

√
x exp

(
2l−1∑
k=1

(1− 2−2k)B2k

k(2k − 1)x2k−1

)
, l ∈ N

and

SU(x) =
Γ(x+ 1/2)

Γ(x+ 1)

√
x exp

(
2m∑
k=1

(1− 2−2k)B2k

k(2k − 1)x2k−1

)
, m ∈ N.

Using Lemma 2.5, we obtain

S ′L(x)

SL(x)
= G(2x)− 1

2x
−

(
2l−1∑
k=1

(1− 2−2k)B2k

kx2k

)
< 0, l ∈ N
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and
S ′U(x)

SU(x)
= G(2x)− 1

2x
−

(
2m∑
k=1

(1− 2−2k)B2k

kx2k

)
> 0, m ∈ N.

Then the function SL(x) is decreasing and the function SU(x) is increasing and using the asymp-
totic expansion of the ratio of two gamma functions [19]

Γ(x+ a)

Γ(x+ b)
∼ xa−b

[
1 +

(a− b)(a+ b− 1)

2x
+O(x−2)

]
, a, b ≥ 0 (44)

as x→∞, we have
lim
x→∞

SL(x) = lim
x→∞

SU(x) = 1.

Hence we get
SL(x) > 1 and SU(x) < 1,

which complete the proof of Slavić inequality (43).

Remark 3. In the case of l = 1, m = 1 and x = m, the inequality (43) will gives

e
−1
8m

√
πm

< Wm <
e
−1
8m

+ 1
192m3

√
πm

, m ∈ N (45)

which is better than inequality (40) of Qi and Mortici [37].

3.2 New upper bound of Wn

Consider the function

ML(x) =
Γ(x+ 1/2)

Γ(x+ 1)

√
xe

−1
2
√
2
[tan−1(2

√
2x)−π

2 ], x > 0.

Using the inequality (33), we get

M ′
L(x)

ML(x)
= G(2x)− 1

2x
− 1

8x2 + 1
> 0

and using the expansion (44), we have limx→∞ML(x) = 1. Then

ML(x) < 1

and we obtain the following result:

Lemma 3.1. The following double inequality holds

Γ(x+ 1/2)

Γ(x+ 1)
<
e

1
2
√
2
[tan−1(2

√
2x)−π

2 ]
√
x

, x > 0. (46)

Remark 4. In the case of x = m in the inequality (46), we have

Wm <
e

1
2
√
2
[tan−1(2

√
2m)−π

2 ]
√
πm

, m ∈ N (47)

which is better than inequality (42) of Cristea [8].
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Abstract

In this paper, we present the following new asymptotic formula of factorial n

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− U(n), n→∞

where U(n) =
(
240
11 n+ 9480

847 + 919466
65219 n + 1455925

5021863 n2 − 639130140029
92804028240 n3 + ...

)−1
depending on Ra-

manujan’s approximation formula for n! and we deduce the following upper bound for

gamma function Γ(x+ 1) <
√
π (x/e)x

[
8x3 + 4x2 + x+ 1

30 + 1
240x
11

+ 9480
847

]1/6
, x > 0.

2010 Mathematics Subject Classification: 41A60, 41A25, 33B15.
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1 Introduction.

In many science branches, we need estimations of big factorials. Stirling’s formula

n! ∼
√

2πn
(n
e

)n
, n→∞

is the most well known and used approximation formula for factorial n, which is satisfactory in
many branches such as statistical physics and statistics but we need more precise estimates in
many pure mathematics studies. For more details about Stirling’s formula refinements and its
related inequalities, we refer to [2], [12], [22].

Other known formula for estimating n! for large values of n is Ramanujan formula:

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
, (1)
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which is a refinement of Stirling’s formula and was recorded in the book ”The lost notebook
and other unpublished papers” as a conjecture of Srinivasa Ramanujan based on some numerical
evidence. For more details please refer to [1], [4], [13], [24], [29].

Starting from Ramanujan formula (1), Karatsuba presented the following asymptotic formula
[13]

Γ(x+ 1) ∼
√
π (x/e)x

[
8x3 + 4x2 + x+

1

30
− 11

240x
+

79

3360x2
+

3539

201600x3
+ ...

]1/6
, (2)

where Γ(x) =
∫∞
0
e−rrx−1dr, x > 0 is the ordinary gamma function and n! = Γ(n+ 1) for n ∈ N .

Mortici [23] improve the Ramanujan formula by establishing the following asymptotic formula:

Γ(x+ 1) ∼
√
π (x/e)x

[
8x3 + 4x2 + x+

1

30

]1/6
exp

[
− 11

11520x4
+

13

3440x5
+

1

691200x6
+ ...

]
,

(3)
which is faster than formula (2).

Dumitrescu and Mortici [9] introduced the following class of approximations:

Γ(x+ 1) ∼
√

2πx (x/e)x 6

√
1 +

1

2(x− δ)
+

α

2(x− δ)2
+

β

2(x− δ)3
, α, β, δ ∈ R (4)

which is a generalization of the Ramanujan’s formula (1) at δ = 0, α = 1/8 and β = 1/240.

More various results involving approximations for the gamma function and the factorial can
be found in [7], [8], [15], [16], [25], [26], [30] and the references therein.

In sequel, we need the following important Lemma, which is due to Mortici in 2010 and is a
very useful tool for constructing asymptotic expansions and measuring the convergence rate of
a family of null sequences [19]:

Lemma 1.1. If {σm}m∈N is a null sequence and there is s ∈ R and n > 1 such that

lim
m→∞

mn(σm − σm+1) = s, (5)

then we have
lim
m→∞

mn−1σm =
s

n− 1
.

From Lemma (1.1), we can conclude that the convergence rate of the sequence {σm}m∈N will
increase with the increasing of the value of n in relation (5). Several approximations, formulas
and inequalities have been produced using the technique developed by this Lemma. For more
details please refer to [5], [6], [11], [14], [17], [20], [21], [28] and the references therein.

In the rest of this paper, we will present a new asymptotic formula of n! depending on
Ramanujan’s asymptotic formula (1) and we deduce a new upper bound for the ordinary gamma
function related to our new asymptotic formula.
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2 Main results.

In our first step, we will try to find the best possible constants k1 and k2 in the approximation
formula

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

k1n+ k2
, n→∞ (6)

by defining a sequence An satisfies

n! =
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

k1n+ k2
eAn , n ≥ 1.

Then

An − An+1 =

(
1

12k1
− 11

2880

)
1

n5
+

(
− 5k2

48k21
− 25

96k1
+

29

2016

)
1

n6

+

(
−9031k31 + 158200k21 + 100800k1k2 + 33600k22

268800k31

)
1

n7
+O(n−8).

If
(

1
12k1
− 11

2880

)
6= 0 and

(
− 5k2

48k21
− 25

96k1
+ 29

2016

)
6= 0, then the sequence An − An+1 has a rate of

worse than n−6. So, we will consider{
1

12k1
− 11

2880
= 0

− 5k2
48k21
− 25

96k1
+ 29

2016
= 0

that is, k1 = 240
11

and k2 = 9480
847

. Now by Lemma (1.1), we obtain the following result:

Lemma 2.1. The sequence

An = lnn!− ln
√
π − n lnn− n− 1

6
lnn

(
8n3 + 4n2 + n+

1

30
− 1

240
11
n+ 9480

847

)
(7)

has a rate of convergence equal to n−6, where

lim
n→∞

n7(An − An+1) =
459733

124185600
.

In our second step, we will try to find the best possible constants T1, T2 and T3 in the
approximation formula

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

240
11
n+ 9480

847
+ T1

n
+ T2

n2 + T3
n3

, n→∞ (8)

by defining a sequence Bn satisfies

n! =
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

240
11
n+ 9480

847
+ T1

n
+ T2

n2 + T3
n3

eBn , n ≥ 1.
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Hence

Bn −Bn+1 =
(919466− 65219T1)

248371200 n7
+

(45457643T1 − 10043726T2 − 637955952)

32784998400 n8

+
1

265066712064000 n9
(4253517961T 2

1 − 1277759560770T1 + 466430635440T2

− 92804028240T3 + 16394247383595)

+
1

54427031543808000 n10
(−5933657555595T 2

1 + 1965125297982T1T2

+ 750735798062481T1 − 361540539736530T2 + 118464342048360T3

− 8420494064916176)

+
1

301743462878871552000 n11
(−277410187898459T 3

1 + 143136026144382810T 2
1

− 79155247002714960T1T2 + 12105171835569120T1T3

− 10550047712231492850T1 + 6052585917784560T 2
2 + 6180552136457196960T2

− 2679997511635567200T3 + 101393364617835255540)

+ O(n−12).

To obtain the best possible values of the constants T1, T2 and T3, we put
65219T1 = 919466

45457643T1 − 10043726T2 = 637955952
4253517961T 2

1 − 1277759560770T1 + 466430635440T2 − 92804028240T3 = −16394247383595
,

that is, T1 = 919466
65219

, T2 = 1455925
5021863

and T3 = −639130140029
92804028240

. Hence by Lemma (1.1), we get the
following result:

Lemma 2.2. The sequence

Bn = lnn!− ln
√
π − n lnn− n− 1

6
lnn

(
8n3 + 4n2 + n+

1

30

− 1
240
11
n+ 9480

847
+ 919466

65219 n
+ 1455925

5021863 n2 − 639130140029
92804028240 n3

)
(9)

has a rate of convergence equal to n−9, where

lim
n→∞

n10(Bn −Bn+1) =
142970656174139

108854063087616000
.

In our third step, we can follow the same technique to get the following result:

Lemma 2.3. The sequence Cn defined by

n! =
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− V (n) eCn ,

where

V (n) =
1

240
11
n+ 9480

847
+ 919466

65219 n
+ 1455925

5021863 n2 − 639130140029
92804028240 n3 + T4

n4 + T5
n5 + T6

n6

,
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converges to zero as n−12 with the best possible constants T4 = 142970656174139
42875461046880

, T5 = 288878734012247231
22009403337398400

and T6 = −5422052608484409095873
396565429333244371200

since

lim
n→∞

n13(Cn − Cn+1) = − 384377015548794481311979

19141959578859903385600000
.

Hence, we get the asymptotic formula

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− U(n), n→∞ (10)

where

U(n) =

(
240

11
n+

9480

847
+

919466

65219 n
+

1455925

5021863 n2
− 639130140029

92804028240 n3
+

142970656174139

42875461046880 n4

+
288878734012247231

22009403337398400 n5
− 5422052608484409095873

396565429333244371200 n6
+ ...

)−1
.

3 An inequality of Gamma function.

In this section, we will follow a method presented by Elbert and Laforgia in their paper [10] (see
also, [3], [27], [32] and its simple modification in [18]):

Corollary 3.1. Let T (t) be a real-valued function defined on t > t0 ∈ R with limt→∞ T (t) = 0.
Then T (t) > 0, if T (t) > T (t+ 1) for all t > t0 and T (t) < 0, if T (t) < T (t+ 1) for all t > t0.

Now, Consider the following function

F (x) = −1

6
ln

(
8x3 + 4x2 + x+

1
240x
11

+ 9480
847

+
1

30

)
+x−x ln(x)+ln Γ(x+1)− ln(

√
π), x > 0

which satisfies
lim
x→∞

F (x) = 0.

F (x)− F (x+ 1) =
−1

6
ln

(
8x3 + 4x2 + x+

847

18480x+ 9480
+

1

30

)
− x ln(x) + x ln(x+ 1)

+
1

6
ln

(
8(x+ 1)3 + 4(x+ 1)2 + x+

847

18480x+ 27960
+

31

30

)
− 1

+ H(x)

The function H(x) satisfies

H ′′(x) =
H1(x)

H2(x)
< 0, x > 0
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where

H1(x) = − 1.84724× 1029x16 − 2.37023× 1030x15 − 1.39723× 1031x14 − 5.01631× 1031x13

− 1.22596× 1032x12 − 2.15964× 1032x11 − 2.83269× 1032x10 − 2.81806× 1032x9

− 2.14586× 1032x8 − 1.25283× 1032x7 − 5.57791× 1031x6 − 1.86841× 1031x5

− 4.59618× 1030x4 − 7.9786× 1029x3 − 9.149× 1028x2 − 6.15185× 1027x

− 1.83421× 1026 < 0

and

H2(x) = 3x(x+1)2(154x+79)2(154x+233)2
(
147840x4 + 149760x3 + 56400x2 + 10096x+ 1163

)2
(
147840x4 + 741120x3 + 1392720x2 + 1163536x+ 365259

)2
.

Then H(x) is strictly concave function satisfies

lim
x→0

H(x) =
1

6

(
log

(
28855461

270979

)
− 6

)
< 0

and
lim
x→∞

H(x) = 0.

So, F (x) < 0 for x > 0 and hence we get the following inequality

Lemma 3.2.

Γ(x+ 1) <
√
π (x/e)x

[
8x3 + 4x2 + x+

1

30
+

1
240x
11

+ 9480
847

]1/6
, x > 0. (11)

Remark 1. In 2018, Yang and Tian [31] presented the inequality

Γ(x+ 1) <

(
x2 + 6γ

π2−12γ

x+ 6γ
π2−12γ

) 6γ2

π2−12γ

, 0 < x < 1 (12)

which is not included in inequality (11).

Remark 2. From the spirit of the previous inequality (11), we can suggest the following inequality:

Γ(x+ 1) >
6

√
9480

1163
(x/e)x

[
8x3 + 4x2 + x+

1

30
+

1
240x
11

+ 9480
847

]1/6
, x > 0
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Abstract

In this paper, we propose an algorithm by combining an inertial term with the extragradient
subgradient method for finding some solutions of bilevel equilibrium problems in a real Hilbert
space. Then, we establish a strongly convergent theorem of the proposed algorithm under some
sufficient assumptions on the bifunctions involving pseudomonotone and Lipschitz-type conditions.
Some numerical experiments are tested to illustrate the advantage performance of our algorithm.

Keywords: Bilevel equilibrium problem; Extragradient subgradient method; Inertial method;
Strong convergence

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H, and let f and g be
bifunctions from H ×H to R such that f(x, x) = 0 and g(x, x) = 0 for all x ∈ H. The equilibrium
problem associated with g and C is denoted by EP (C, g) : Find x∗ ∈ C such that

g(x∗, y) ≥ 0 for every y ∈ C, (1.1)

which was considered by Blum and Oettli [4]. The solution set of problem (1.1) is denoted by Ω.
It can be seen that the equilibrium problem is related to science in various fields and is very

important because many problems arise in applied areas such as the fixed point problem, the
(generalized) Nash equilibrium problem in game theory, the saddle point problem, the variational
inequality problem, the optimization problem and others.

The simple basic method for solving some monotone equilibrium problems is the proximal point
method (see [20, 22, 27]). In 2008, Tran et al. [37] proposed the extragradient algorithm for solving
the equilibrium problem by using the strongly convex minimization problem to solve at each iter-
ation. Furthermore, Hieu [16] introduced subgradient extragradient methods for pseudomonotone
equilibrium problem and the other methods (see the details in [1, 12, 21, 23, 31, 39]).

In this paper, we consider the bilevel equilibrium problems, that is, the equilibrium problem
whose constraints are the solution sets of equilibrium problems: Find x∗ ∈ Ω such that

f(x∗, y) ≥ 0 for every y ∈ Ω. (1.2)

The solution set of problem (1.2) is denoted by Ω∗.

∗Corresponding author. Tel.:+66 55963250; fax:+66 55963201.
Email addresses: kasamsuku@nu.ac.th (Kasamsuk Ungchittrakool), Jiraprapa56@hotmail.com
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The bilevel equilibrium problems were introduced by Chadli et al. [7] in 2000. This kind of
problems is very important and interesting because it is a generalization class of problems such
as optimization problems over equilibrium constraints, variational inequality over equilibrium con-
straints, hierarchical minimization problems, and complementarity problems. Furthermore, the
particular case of the bilevel equilibrium can be applied to a real word model such as the varia-
tional inequality over the fixed point set of a firmly nonexpansive mapping applied to the power
control problem of CDMA networks which were introduced by Iiduka [18]. For more on the relation
of bilevel equilibrium with particular cases, see [10, 19, 30].

Methods for solving bilevel equilibrium problems have been studied extensively by many authors.
In 2010, Moudafi [28] introduced a simple proximal method and proved the weak convergence
to a solution of problem (1.2). In 2014, Quy [33] introduced the algorithm by combining the
proximal method with the Halpern method for solving bilevel monotone equilibrium and fixed point
problem. For more details and most recent works on the methods for solving bilevel equilibrium
problems, we refer the reader to [2, 8, 36]. The authors considered the method for monotone and
pseudoparamonotone equilibrium problem. If a bifunction is more generally monotone, we cannot
use the above methods for solving bilevel equilibrium problem, for example, the pseudomonotone
property.

In 2018, Yuying et. al [40] proposed a method for finding the solution for bilevel equilibrium
problems where f is strongly monotone and g is pseudomonotone and Lipschitz-type continuous.
They obtained the convergent sequence by combining an extragradient subgradient method with
the Halpern method.

On the other hand, an inertial-type algorithm was first proposed by Polyak [32] as an acceleration
process in solving a smooth convex minimisation problem. An inertial-type algorithm is a two-step
iterative method in which the next iterate is defined by making use of the previous two iterates. It
is well known that incorporating an inertial term in an algorithm speeds up or accelerates the rate
of convergence of the sequence generated by the algorithm. Consequently, a lot of research interest
is now devoted to the inertial-type algorithm(see e.g. [5, 13, 24] and the references contained in
them).

Motivated and inspired by the research work in this direction, in this work, we provide an algo-
rithm which is generated by an inertial term and the extragradient subgradient method for solving
bilevel equilibrium problems in a real Hilbert space. Then, the strong convergence theorem of the
proposed algorithm are established under some sufficient assumptions on the bifunctions involv-
ing pseudomonotone and Lipschitz-type conditions. The numerical experiments are investigated to
illustrate the advantage performance together with some improvement of our algorithm.

2. Preliminaries

Throughout this paper, H is a real Hilbert space, C is a nonempty closed convex subset of
H. Denote that xn ⇀ x and xn → x are the weak convergence and the strong convergence of a
sequence {xn} to x, respectively. For every x ∈ H, there exists a unique element PCx defined by

PCx = argmin{‖x− y‖ : y ∈ C},

which can be found, e.g., in [[6], Sect. 1.2.2, Theorem 1.7], [[11], Theorem 3.4(2)], [[14], Theorem
7.43], [[17], Chap. III, Sect. 3.1] or [[29], Theorem 8.25].

Lemma 2.1 ([15]). The metric projection PC has the following basic properties:

(i) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 for all x ∈ H and y ∈ C;
(ii) 〈x− PCx, PCx− y〉 ≥ 0 for all x ∈ H and y ∈ C;
(iii) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ for all x, y ∈ H.
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We now recall the concept of proximity operator introduced by Moreau [26]. For a proper,
convex and lower semicontinuous function g : H → (−∞,∞] and γ > 0, the Moreau envelope of g

of parameter γ is the convex function

γg(x) = inf
y∈H

{
g(y) +

1
2γ
‖y − x‖2

}
∀x ∈ H.

For all x ∈ H, the function y 7→ g(y)+ 1
2γ ‖y−x‖2 is proper, strongly convex and lowe semicontinuous,

thus the infimum is attained, i.e. γg : H → R.
The unique minimum of y 7→ g(y) + 1

2γ ‖y − x‖2 is called proximal point of g at x and it is
denoted by proxg(x). The operator

proxg(x) : H → H

x 7→ arg min
y∈H

{
g(y) +

1
2γ
‖y − x‖2

}

is well-defined and is said to be the proximity operator of g. When g = iC (the indicator function
of the convex set C), one has

proxiC
(x) = PC(x)

for all x ∈ H.
We also recall that the subdifferential of g : H → (−∞,∞] at x ∈ domg is defined as the set of

all subgradient of g at x

∂g(x) := {w ∈ H : g(y)− g(x) ≥ 〈w, y − x〉 ∀y ∈ H}.

The function g is called subdifferentiable at x if ∂g(x) 6= ∅, g is said to be subdifferentiable on
a subset C ⊂ H if it is subdifferentiable at each point x ∈ C, and it is said to be subdifferentiable,
if it is subdifferentiable at each point x ∈ H, i.e., if dom(∂g) = H.

The normal cone of C at x ∈ C is defined by

NC(x) := {q ∈ H : 〈q, y − x〉 ≤ 0, ∀y ∈ C}.

Definition 2.2 ([34, 35]). A bifunction ψ : H ×H → R is called:

(i) β-strongly monotone on C if there exists β > 0 such that

ψ(x, y) + ψ(y, x) ≤ −β‖x− y‖2 ∀x, y ∈ C;

(ii) monotone on C if

ψ(x, y) + ψ(y, x) ≤ 0 ∀x, y ∈ C;

(iii) pseudomonotone on C if

ψ(x, y) ≥ 0 ⇒ ψ(y, x) ≤ 0 ∀x, y ∈ C.

(iv) β-strongly pseudomonotone on C if there exists β > 0 such that

ψ(x, y) ≥ 0 ⇒ ψ(y, x) ≤ −β‖x− y‖2 ∀x, y ∈ C.

It is easy to see from the aforementioned definitions that the following implications hold,

(i) ⇒ (ii) ⇒ (iii) and (i) ⇒ (iv) ⇒ (iii)

The converses in general are not true.
In this paper, we consider the bifunctions f and g under the following conditions.

Condition A
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(A1) f(x, ·) is convex, weakly lower semicontinuous and subdifferentiable on H for every fixed
x ∈ H.

(A2) f(·, y) is weakly upper semicontinuous on H for every fixed y ∈ H.
(A3) f is β-strongly monotone on H ×H.
(A4) For each x, y ∈ H, there exists L > 0 such that

‖w − v‖ ≤ L‖x− y‖, ∀w ∈ ∂f(x, ·)(x), v ∈ ∂f(y, ·)(y).

(A5) The function x 7→ ∂f(x, ·)(x) is bounded on the bounded subsets of H.

Condition B

(B1) g(x, ·) is convex, weakly lower semicontinuous and subdifferentiable on H for every fixed
x ∈ H.

(B2) g(·, y) is weakly upper semicontinuous on H for every fixed y ∈ H.
(B3) g is pseudomonotone on C with respect to Ω, i.e.,

g(x, x∗) ≤ 0, ∀x ∈ C, x∗ ∈ Ω.

(B4) g is Lipschitz-type continuous, i.e., there exist two positive constants L1, L2 such that

g(x, y) + g(y, z) ≥ g(x, z)− L1‖x− y‖2 − L2‖y − z‖2, ∀x, y, z ∈ H.

(B5) g is jointly weakly continuous on H × H in the sense that, if x, y ∈ H and {xn}, {yn} ∈ H

converge weakly to x and y, respectively, then g(xn, yn) → g(x, y) as n → +∞.

Example 2.3 ([40]). Let f, g : R× R→ R be defined by f(x, y) = 5y2 − 7x2 + 2xy and g(x, y) =
2y2 − 7x2 + 5xy. It follows that f and g satisfy Condition A and Condition B, respectively.

Lemma 2.4 ([3], Propositions 3.1, 3.2). If the bifunction g satisfies Assumptions (B1), (B2), and
(B3), then the solution set Ω is closed and convex.

Remark 2.5. Let the bifunction f satisfy Condition A and the bifunction g satisfy Condition B.
If Ω 6= ∅, then the bilevel equilibrium problem (1.2) has a unique solution, see the details in [33].

Lemma 2.6 ([9]). Let φ : C → R be a convex, lower semicontinuous, and subdifferentiable function
on C. Then x∗ is a solution to the convex optimization problem

min{f(x) : x ∈ C}

if and only if
0 ∈ ∂φ(x∗) + NC(x∗).

The following lemmas will be used in the proof of the convergence result.

Lemma 2.7 ([38]). Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence in
(0, 1), and {ξn} be a sequence in R satisfying the condition

an+1 ≤ (1− αn)an + αnξn, ∀n ≥ 0,

where
∑∞

n=0 αn = ∞ and lim supn→∞ ξn ≤ 0. Then limn→∞ an = 0.

Lemma 2.8 ([25]). Let {an} be a sequence of real numbers that does not decrease at infinity, in
the sense that there exists a subsequence {anj

} of {an} such that

anj < anj+1 for all j ≥ 0.
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Also consider the sequence of integers {τ(n)}n≥n0 defined, for all n ≥ n0, by

τ(n) = max{k ≤ n | ak < ak+1}.
Then {τ(n)}n≥n0 is a nondecreasing sequence verifying

lim
n→∞

τ(n) = ∞,

and, for all n ≥ n0, the following two estimates hold:

aτ(n) ≤ aτ(n)+1 and an ≤ aτ(n)+1.

Lemma 2.9 ([40]). Suppose that f is β-strongly monotone on H and satisfies (A4). Let 0 < α < 1,
0 ≤ η ≤ 1− α, and 0 < µ < 2β

L2 . For each x, y ∈ H, w ∈ ∂f(x, ·)(x), and v ∈ ∂f(y, ·)(y), we have

‖(1− η)x− αµw − [(1− η)y − αµv]‖ ≤ (1− η − ασ)‖x− y‖,
where σ = 1−

√
1− µ(2β − µL2) ∈ (0, 1].

3. Main Result

In this section, we propose the algorithm for finding the solution of a bilevel equilibrium problem
under the strong monotonicity of f and the pseudomonotonicity and Lipschitztype continuous
conditions on g.

Algorithm 3.1. Initialization: Choose x0, x1 ∈ H, 0 < µ < 2β
L2 , θ ∈ [0, 1), the sequences

{αn} ⊂ (0, 1), {εn} ⊂ [0,+∞) and {ηn} are such that




limn→∞αn = 0,
∑∞

n=0
αn = ∞,

0 ≤ ηn ≤ 1− αn ∀n ≥ 0, limn→∞ηn = η < 1,
∑∞

n=0
εn < ∞.

Select initial x0, x1 ∈ C and set n ≥ 1.
Step 1.: Given xn−1 and xn (n ≥ 1), choose θn such that 0 ≤ θn ≤ θ̄n, where

θn =





min
{

θ,
εn

‖xn − xn−1‖
}

if xn 6= xn−1,

θ if otherwise.
(3.1)

Choose {λn} such that

0 < λ
−
≤ λn ≤ λ̄ < min

(
1 + θn

2L1
,
1 + θn

2L2

)
.

Compute

sn = xn + θn(xn − xn−1),

yn = arg min
y∈C

{
λng(xn, y) +

1
2
‖y − sn‖2

}
,

zn = arg min
y∈C

{
λng(yn, y) +

1
2
‖y − xn‖2

}
.

Step 2. Compute wn ∈ ∂f(zn, ·)(zn) and

xn+1 = ηnxn + (1− ηn)zn − αnµwn.

Set n := n + 1 and return to Step 1.
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Remark 3.2. Some remarks on the algorithm are in order now.

(1) Evidently, we have from (3.1) that
∑∞

n=0
θn‖xn − xn−1‖ < ∞, (3.2)

due to θn‖xn − xn−1‖ ≤ θ̄n‖xn − xn−1‖ ≤ εn.
(2) When θn = 0, Algorithm 3.1 reduces to Algorithm 1 of [40].

Theorem 3.3. Let bifunctions f and g satisfy Condition A and Condition B, respectively. Assume
that Ω 6= ∅. Then the sequence {xn} generated by Algorithm 3.1 converges strongly to the unique
solution of the bilevel equilibrium problem (1.2).

Proof. Under assumptions of two bifunctions f and g, we get the unique solution of the bilevel
equilibrium problem (1.2), denoted by x∗.

Step 1: Show that

‖zn−x∗‖2 ≤ ‖xn−x∗‖2−(1+θn−2λnL1)‖xn−yn‖2−(1+θn−2λnL2)‖yn−zn‖2−θn‖xn−xn−1‖2.
(3.3)

The definition of yn and Lemma 2.6 imply that

0 ∈ ∂

{
λng(xn, y) +

1
2
‖y − sn‖2

}
(yn) + NC(yn).

There are w ∈ ∂g(xn, ·)(yn) and w̄ ∈ NC(yn) such that

λnw + yn − sn + w̄ = 0. (3.4)

Since w̄ ∈ NC(yn), we have

〈w̄, y − yn〉 ≤ 0 for all y ∈ C. (3.5)

By using (3.4) and (3.5), we obtain λn〈w, y − yn〉 ≥ 〈sn − yn, y − yn〉 for all y ∈ C. Since zn ∈ C,
we have

λn〈w, zn − yn〉 ≥ 〈sn − yn, zn − yn〉. (3.6)

It follows from w ∈ ∂g(xn, ·)(yn) that

g(xn, y)− g(xn, yn) ≥ 〈w, y − yn〉 for all y ∈ H. (3.7)

By using (3.6) and (3.7), we get

λn{g(xn, zn)− g(xn, yn)} ≥ 〈sn − yn, zn − yn〉. (3.8)

Similarly, the definition of zn implies that

0 ∈ ∂

{
λng(yn, y) +

1
2
‖y − xn‖2

}
(zn) + NC(zn).

There are u ∈ ∂g(yn, ·)(zn) and ū ∈ NC(x) such that

λnu + zn − xn + ū = 0. (3.9)

Since ū ∈ NC(zn), we have

〈ū, y − zn〉 ≤ 0 for all y ∈ C. (3.10)
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By using (3.9) and (3.10), we obtain λn〈u, y − zn〉 ≥ 〈xn − zn, y − zn〉 for all y ∈ C. Since x∗ ∈ C,
we have

λn〈u, x∗ − zn〉 ≥ 〈xn − zn, x∗ − zn〉 (3.11)

It follows from u ∈ ∂g(yn, ·)(zn) that

g(yn, y)− g(yn, zn) ≥ 〈u, y − zn〉 for all y ∈ H. (3.12)

By using (3.11) and (3.12), we get

λn{g(yn, x∗)− g(yn, zn)} ≥ 〈xn − zn, x∗ − zn〉.

Since x∗ ∈ Ω, we have g(x∗, yn) ≥ 0. If follows from the pseudomonotonicity of g on C with respect
to Ω that g(yn, x∗) ≤ 0. This implies that

〈xn − zn, zn − x∗〉 ≥ λng(yn, zn). (3.13)

Since g is Lipschitz-type continuous, there exist two positive constants L1, L2 such that

g(yn, zn) ≥ g(xn, zn)− g(xn, yn)− L1‖xn − yn‖2 − L2‖yn − zn‖2. (3.14)

By using (3.13) and (3.14), we get

〈xn − zn, zn − x∗〉 ≥ λn{g(xn, zn)− g(xn, yn)} − λnL1‖xn − yn‖2 − λnL2‖yn − zn‖2.

From (3.8) and the above inequality, we obtain

2〈xn − zn, zn − x∗〉 ≥ 2〈sn − yn, zn − yn〉 − 2λnL1‖xn − yn‖2 − 2λnL2‖yn − zn‖2. (3.15)

By the definition of sn, we have that

2〈sn − yn, zn − yn〉 = 2〈xn + θn(xn − xn−1)− yn, zn − yn〉
= −2〈xn − yn, yn − zn〉+ 2θn〈xn − xn−1, zn − yn〉.

We know that

2〈xn − zn, zn − x∗〉 = ‖xn − x∗‖2 − ‖zn − xn‖2 − ‖zn − x∗‖2
−2〈xn − yn, yn − zn〉 = −‖xn − zn‖2 + ‖xn − yn‖2 + ‖yn − zn‖2

2θn〈xn − xn−1, zn − yn〉 = θn(‖xn − yn‖2 − ‖xn − xn+1‖2 − ‖yn − zn‖2).

From (3.15), we can conclude that

‖zn−x∗‖2 ≤ ‖xn−x∗‖2−(1+θn−2λnL1)‖xn−yn‖2−(1+θn−2λnL2)‖yn−zn‖2−θn‖xn−xn−1‖2.
(3.16)

Step 2: The sequences {xn}, {wn}, {yn} and {zn} are bounded.
Since 0 < λn < a, where a = min

{
1+θn

2L1
, 1+θn

2L2

}
, we have

(1 + θn − 2λnL1) > 0 and (1 + θn − 2λnL2) > 0.

It follows from (3.3) and the above inequalities that

‖zn − x∗‖ ≤ ‖xn − x∗‖ for all n ∈ N. (3.17)
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By Lemma 2.9 and (3.17), we obtain

‖xn+1 − x∗‖ = ‖ηnxn + (1− ηn)zn − αµwn − x∗ + ηnx∗ − ηnx∗ + αnµv − αnµv‖
= ‖(1− ηn)zn − αnµwn − (1− ηn)x∗ + αnµv + ηn(xn − x∗)− αnµv‖
≤ ‖(1− ηn)zn − αnµwn − [(1− ηn)x∗ + αnµv]‖+ ηn‖xn − x∗‖+ αnµ‖v‖
≤ (1− ηn − αnσ)‖zn − x∗‖+ ηn‖xn − x∗‖+ αnµ‖v‖
≤ (1− ηn − αnσ)‖xn − x∗‖+ ηn‖xn − x∗‖+ αnµ‖v‖

= (1− αnσ)‖xn − x∗‖+ αnτ

(
µ‖v‖

σ

)
, (3.18)

where wn ∈ ∂f(zn, ·)(zn) and v ∈ ∂f(x∗, ·)(x∗). This implies that

‖xn+1 − x∗‖ ≤ max
{
‖xn − x∗‖, µ‖v‖

σ

}
.

By induction, we obtain

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, µ‖v‖

σ

}
.

Thus the sequence {xn} is bounded. By using (3.17), we have {zn}, and using Condition (A5), we
can conclude that {wn} is also bounded.

Step 3: Show that the sequence {xn} converges strongly to x∗.
Since x∗ ∈ Ω∗, we have f(x∗, y) ≥ 0 for all y ∈ Ω. Note that f(x∗, x∗) = 0. Thus x∗ is a minimum

of the convex function f(x∗, ·) over Ω. By Lemma 2.6, we obtain 0 ∈ ∂f(x∗, ·)(x∗) + NΩ(x∗). Then
there exists v ∈ ∂f(x∗, ·)(x∗) such that

〈v, z − x∗〉 ≥ 0 for all z ∈ Ω. (3.19)

Note that

‖x− y‖2 ≤ ‖x‖2 − 2〈y, x− y〉 for all x, y ∈ H. (3.20)

From Lemma 2.9 and (3.20), we obtain

‖xn+1 − x∗‖2
= ‖ηnxn + (1− ηn)zn − αµwn − x∗‖2
= ‖(1− ηn)zn − αnµwn − [(1− ηn)x∗ + αnµv] + ηn(xn − x∗)− αnµv‖2
≤ ‖(1− ηn)zn − αnµwn − [(1− ηn)x∗ + αnµv] + ηn(xn − x∗)‖2 − 2αnµ〈v, xn+1 − x∗〉
≤ {‖(1− ηn)zn − αnµwn − [(1− ηn)x∗ + αnµv] + ηn(xn − x∗)‖2}− 2αnµ〈v, xn+1 − x∗〉
≤ [(1− ηn − αnσ)‖zn − x∗‖+ ηn‖xn − x∗‖]2 − 2αnµ〈v, xn+1 − x∗〉
≤ (1− ηn − αnσ)‖zn − x∗‖2 + ηn‖xn − x∗‖2 − 2αnµ〈v, xn+1 − x∗〉
≤ (1− ηn − αnσ)‖xn − x∗‖2 + ηn‖xn − x∗‖2 − 2αnµ〈v, xn+1 − x∗〉
= (1− αnσ)‖xn − x∗‖2 − 2αnµ〈v, xn+1 − x∗〉 (3.21)

It follows that

‖xn+1 − x∗‖2 ≤ (1− αnσ)‖xn − x∗‖2 + 2αnµ〈v, x∗ − xn+1〉. (3.22)

Let us consider two cases.
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Case 1: There exists n0 such that ‖xn − x∗‖ is decreasing for n ≥ n0. Therefore the limit of
sequence ‖xn − x∗‖ exists. By using (3.17) and (3.22), we obtain

0 ≤ ‖xn − x∗‖2 − ‖zn − x∗‖2

≤ − αnσ

1− ηn
‖zn − x∗‖2 − 2αnµ

1− ηn
〈v, xn+1 − x∗〉

+
1

1− ηn
(‖xn − x∗‖2 − ‖xn+1 − x∗‖2).

Since limn→∞ = ηn < 1, limn→∞ αn = 0 and the limit of ‖xn − x∗‖ exists, we have

lim
n→∞

(‖xn − x∗‖2 − ‖zn − x∗‖2) = 0. (3.23)

From 0 < λn < a and inequality (3.3), we get

(1 + θn − a)‖xn − yn‖2 ≤ (1 + θn − 2λnL1)‖xn − yn‖2 ≤ ‖xn − x∗‖2 − ‖zn − x∗‖2.

By using (3.23), we obtain limn→∞ ‖xn − yn‖ = 0. Next, we show that

lim sup
n→∞

〈v, x∗ − xn+1〉 ≤ 0. (3.24)

Take a subsequence {xnk
} of {xn} such that

lim sup
n→∞

〈v, x∗ − xn+1〉 = lim sup
k→∞

〈v, x∗ − xnk
〉.

Since {xnk
} is bounded, we may assume that {xnk

} converges weakly to some x̄ ∈ H. Therefore

lim sup
n→∞

〈v, x∗ − xn+1〉 = lim sup
k→∞

〈v, x∗ − xnk
〉 = 〈v, x∗ − x̄〉. (3.25)

Since limn→∞ ‖xn − yn‖ = 0 and xnk
⇀ x̄, we have ynk

⇀ x̄. Let us consider that

lim
n→∞

‖sn − yn‖ ≤ lim
n→∞

‖sn − xn‖+ lim
n→∞

‖xn − yn‖.

By the definition of sn, we have that

lim
n→∞

‖sn − xn‖ = lim
n→∞

‖xn − θn(xn − xn−1)− xn‖
= lim

n→∞
θn‖xn − xn−1‖.

Using the assumption
∑∞

n=1 θn‖xn−xn−1‖ < ∞, it implies that limn→∞ θn‖xn−xn−1‖ = 0. Thus
limn→∞ ‖sn − xn‖ = 0. Since limn→∞ ‖sn − xn‖ = 0 and xnk

⇀ x̄, we have snk
⇀ x̄. Since C is

closed and convex, it is also weakly closed and thus x̄ ∈ C. Next, we show that x̄ ∈ Ω. From the
definition of {yn} and Lemma 2.6, we obtain

0 ∈ ∂

{
λng(xn, y) +

1
2
‖sn − y‖2

}
(yn) + NC(yn).

There exist w̄ ∈ NC(yn) and w ∈ ∂g(xn, ·)(yn) such that

λnw + yn − sn + w̄ = 0. (3.26)

Since w̄ ∈ NC(yn), we have 〈w̄, y − yn〉 ≤ 0 for all y ∈ C. From (3.26), we obtain

λn〈w, y − yn〉 ≥ 〈sn − yn, y − yn〉 for all y ∈ C. (3.27)
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Since w ∈ ∂g(xn, ·)(yn), we have

g(xn, y)− g(xn, yn) ≥ 〈w, y − yn〉 for all y ∈ H. (3.28)

Combining (3.27) and (3.28), we get

λn{g(xn, y)− g(xn, yn)} ≥ 〈sn − yn, y − yn〉 for all y ∈ C. (3.29)

Taking n = nk and k →∞ in (3.29), the assumption of λn and (B5), we obtain g(x̄, y) = 0 for all
y ∈ C. This implies that x̄ ∈ Ω. By inequality (3.19), we obtain 〈v, x̄ − x∗〉 ≥ 0. It follows from
(3.25) that

lim sup
n→∞

〈v, x∗ − xn+1〉 ≤ 0. (3.30)

We can write inequality (3.22) in the following form:

‖xn+1 − x∗‖2 ≤ (1− αnσ)‖xn − x∗‖2 + αnσξn,

where ξn = 2µ
σ 〈v, x∗ − xn+1〉. It follows from (3.30) that lim supn→∞ ξn ≤ 0. By Lemma 2.7, we

can conclude that limn→∞ ‖xn − x∗‖2 = 0. Hence xn → x∗ as n →∞.
Case 2: There exists a subsequence {xnj} of {xn} such that ‖xnj − x∗‖ ≤ ‖xnj+1 − x∗‖ for all

j ∈ N. By Lemma 2.8, there exists a nondecreasing sequence {τ(n)} of N such that limn→∞ τ(n) =
∞, and for each sufficiently large n ∈ N, we have

‖xτ(n) − x∗‖ ≤ ‖xτ(n)+1 − x∗‖ and ‖xn − x∗‖ ≤ ‖xτ(n)+1 − x∗‖. (3.31)

Combining (3.18) and (3.31), we have

‖xτ(n) − x∗‖ ≤ ‖xτ(n)+1 − x∗‖
≤ (1− ητ(n) − ατ(n)σ)‖zτ(n) − x∗‖+ ητ(n)‖xτ(n) − x∗‖+ ατ(n)µ‖v‖. (3.32)

From (3.17) and (3.32), we get

0 ≤ ‖xτ(n) − x∗‖ − ‖zτ(n) − x∗‖ ≤ − ατ(n)σ

1− ητ(n)
‖zτ(n)−x∗‖+

ατ(n)σ

1− ητ(n)
‖v‖. (3.33)

Since limn→∞ αn = 0, limn→∞ ηn = η < 1, {zn} is bounded, and (3.33), we have limn→∞(‖xτ(n) −
x∗‖ − ‖zτ(n) − x∗‖) = 0. It follows from the boundedness of {xn} and {zn} that

lim
n→∞

(‖xτ(n) − x∗‖2 − ‖zτ(n) − x∗‖2) = 0. (3.34)

By using the assumption of {λn}, we get the following two inequalities:

1 + θn − 2λτ(n)L1 > 1 + θn − 2aL1 > 0 and 1 + θn − 2λτ(n)L2 > 1 + θn − 2aL2 > 0.

From (3.3), we obtain

‖zτ(n) − x∗‖2 ≤ ‖xτ(n) − x∗‖2 − (1 + θn − 2λτ(n)L1)‖xτ(n) − yτ(n)‖2
− (1 + θn − 2λτ(n)L2)‖yτ(n) − zτ(n)‖2

≤ ‖xτ(n) − x∗‖2 − (1 + θn − 2aL1)‖xτ(n) − yτ(n)‖2
− (1 + θn − 2aL2)‖yτ(n) − zτ(n)‖2.

This implies that

0 < (1 + θn − 2aL1)‖xτ(n) − yτ(n)‖2 + (1 + θn − 2aL2)‖yτ(n) − zτ(n)‖2
≤ ‖xτ(n) − x∗‖2 − ‖zτ(n) − x∗‖2.
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It follows from (3.34) and the above inequality that

lim
n→∞

‖xτ(n) − yτ(n)‖ = 0 and lim
n→∞

‖yτ(n) − zτ(n)‖ = 0. (3.35)

Note that ‖xτ(n) − zτ(n)‖ ≤ ‖xτ(n) − yτ(n)‖+ ‖yτ(n) − zτ(n)‖. From (3.35), we have

lim
n→∞

‖xτ(n) − zτ(n)‖ = 0. (3.36)

By using the definition of xn+1 and Lemma 2.9, we obtain

‖xτ(n)+1 − xτ(n)‖2 = ‖ητ(n)xτ(n) + (1− ητ(n))zτ(n) − ατ(n)µtτ(n) − xτ(n)‖
= ‖(1− ητ(n))zτ(n) − ατ(n)µtτ(n)

− [(1− ητ(n))xτ(n) − ατ(n)wτ(n)]− ατ(n)wτ(n)‖
≤ ‖(1− ητ(n))zτ(n) − ατ(n)tτ(n)

− [(1− ητ(n))xτ(n) − ατ(n)wτ(n)]‖+ ατ(n)‖wτ(n)‖
≤ (1− ητ(n) − ατ(n)σ)‖zτ(n) − xτ(n)‖+ ατ(n)‖wτ(n)‖
≤ ‖zτ(n) − xτ(n)‖+ ατ(n)‖wτ(n)‖,

where tτ(n) ∈ ∂f(zτ(n), ·)(zτ(n)) and wτ(n) ∈ ∂f(xτ(n), ·)(xτ(n)). Since limn→∞ αn = 0, the bound-
edness of {wτ(n)} and (3.36), we have limn→∞ ‖xτ(n)+1 − xτ(n)‖ = 0. As proved in the first case,
we can conclude that

lim sup
n→∞

〈v, x∗ − xτ(n)+1〉 = lim sup
n→∞

〈v, x∗ − xτ(n)〉 ≤ 0. (3.37)

Combining (3.22) and (3.31), we obtain

‖xτ(n)+1 − x∗‖2 ≤ (1− αn(τ)σ)‖xτ(n) − x∗‖2 + 2αn(τ)µ〈v, x∗ − xτ(n)+1〉
≤ (1− αn(τ)σ)‖xτ(n)+1 − x∗‖2 + 2αn(τ)µ〈v, x∗ − xτ(n)+1〉.

By using (3.31) again, we have

‖xn − x∗‖2 ≤ ‖xτ(n)+1 − x∗‖2 ≤ 2µ

σ
〈v, x∗ − xτ(n)+1〉.

From (3.37), we can conclude that lim supn→∞ ‖xn − x∗‖2 ≤ 0. Hence xn → x∗ as n → ∞. This
completes the proof. ¥

4. Numerical example

In this section, we provide a numerical example to test our algorithm. All Matlab colds were
performed on a computer with CPU Intel Core i7-7500U, up to 3.5GHz, 4GB of RAM under
version MATLAB R2015b. In the following example, we use the standard Euclidean norm and
inner product.

Example 4.1. We compare our algorithm with Algorithm 1 proposed in Yuying et al. [40]. Let
us consider a problem when H = Rn and C = {x ∈ Rn : −5 ≤ xi ≤ 5,∀i ∈ {1, 2, ..., n}}. Let the
bifunction g : Rn × Rn → R be defined by

g(x, y) = 〈Px + Qy, y − x〉 for all x, y ∈ Rn,

where P and Q are randomly symmetric positive semidefinite matrices such that P −Q is positive
semidefinite. Then g is pseudomonotone on Rn. Next, we obtain that g is Lipschitz-type continuous
with L1 = L2 = 1

2‖P −Q‖. Furthermore, we define the bifunction f : Rn × Rn → R as

f(x, y) = 〈Ax + By, y − x〉 for all x, y ∈ Rn,
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Table 1: Comparison: proposed Algorithm 3.1 and Yuying et al. [40] with x0 = x1 ∈ {x ∈ Rn : xi = 1, ∀i =
1, 2, ..., n}.

n

Algorithm 3.1 Yuying et al. Algorithm
θ = 0.6 θ = 0.9

No. of Iter. CPU (Time) No. of Iter. CPU (Time) No. of Iter. CPU (Time)
5 29 1.0015 28 1.0178 34 1.3618
10 43 1.7310 38 1.3645 54 1.9099
50 90 4.3222 88 4.6822 98 5.5028

Table 2: Comparison: proposed Algorithm 3.1 and Yuying et al. [40] with x0 = x1 ∈ {x ∈ Rn : xi = i, ∀i =
1, 2, ..., n}.

n

Algorithm 3.1 Yuying et al. Algorithm
θ = 0.6 θ = 0.9

No. of Iter. CPU (Time) No. of Iter. CPU (Time) No. of Iter. CPU (Time)
5 32 1.1074 30 1.0388 37 1.3528
10 50 1.8239 45 1.8472 61 2.3260
50 108 6.6858 105 6.5254 116 6.7247

with A and B being positive definite matices defined by

B = NT N + nIn and A = B + MT M + nIn, (4.1)

where M, N are randomly n× n matrices and In is the identity matrix.
Moreover, ∂f(x, ·)(x) = {(A+B)x} and ‖(A+B)x− (A+B)y‖ ≤ ‖A+B‖‖x−y‖ for all x, y ∈ Rn.
Thus the mapping x → ∂f(x, ·)(x) is bounded and ‖A+B‖-Lipschitz continuous on every bounded
subset of H.

It is easy to see that all the conditions of Theorem 3.3 and of Theorem 3.1 in [40] are satisfied.
New, we compare the performance of our algorithm and algorithm of Yuying et al. [40], we take

λk =
1

k + 5
, αk =

1
k + 4

, ηk =
k + 1

3(k + 4)
, µ =

2
‖A + B‖2 , the same starting point x0 = x1 ∈ {x ∈

Rn : xi = 1, ∀ i = 1, 2, ..., n} and x0 = x1 ∈ {x ∈ Rn : xi = i, ∀ i = 1, 2, ..., n} for all the algorithms.

For Algorithm 3.1, we choose εk =
1

k1.1
, θ ∈ [0, 1) and θk such that 0 ≤ θk ≤ θ̄k, where

θk =





min
{

θ,
1

k1.1 ‖xk − xk−1‖
}

if xk 6= xk−1,

θ if otherwise.

To terminate the algorithm, we used the stopping criteria ‖xk+1 − xk‖ < ε with ε = 10−6 is
a tolerance. The results are reported in the Table 1 and Table 2, we can see that the number of
iterations (No. of Iter.) by Algorithm 3.1 with different inertial parameters (θ = 0.6 and θ = 0.9)
is less than that of Yuying et al. Algorithm [40], for two different starting points, we can see
that in this example the starting points x0 = x1 ∈ {x ∈ Rn : xi = 1, ∀ i = 1, 2, ..., n} give better
performance than x0 = x1 ∈ {x ∈ Rn : xi = i, ∀ i = 1, 2, ..., n}. Moreover, Figure 1 and Figure 2
illustrate the numerical behavior of both algorithms. In these figures, the value of errors ‖xk+1−xk‖
is represented by the y-axis, number of iterations is represented by the x-axis.
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Figure 1: Comparison of proposed Algorithm 3.1 and Yuying et al. [40] with x0 = (1, 1, ...., 1)T and n=50.
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Figure 2: Comparison of proposed Algorithm 3.1 and Yuying et al. [40] with x0 = (1, 2, ...., 50)T and n=50.

5. Conclusions

In this article, we introduced an iterative algorithm for finding the solution of a bilevel equi-
librium problem in real Hilbert space. Under some suitable conditions imposed on parameters, we
proved the strong convergence of the algorithm. We showed the efficiency of the proposed algorithm
is verified by a numerical experiment and preliminary comparison. These numerical results have
also confirmed that the algorithm with inertial effects seems to work better than without inertial
effects.
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