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ABSTRACT  
In this paper, the standard susceptible, infectious, recovered (SIR) model of epidemic dynamics is 
considered to examine how vaccination in newborn affects equilibrium stability and infectious spread 
dynamics. This work includes the analysis of local and global stability at disease-free and endemic 
equilibrium points. Analytical and numerical methods are employed to demonstrate the increase in 
vaccination rate reduce infectious disease transmission. Our work addresses a literature gap and leads to 
better epidemic control methods.  An in-depth investigation of the model's local and global stability will 
help policymakers and health workers build immunization plans by revealing how the illness behaves in 
different situations. In summary, this work provides a straightforward, brief, and informative analysis of 
epidemic mobility with vaccination, essential for optimizing vaccination tactics to manage epidemics.  
 
Keywords : Vaccination, Stability analysis, Disease transmission dynamics, Newborn vaccination impact, 
Equilibrium point analysis, Local stability and Global stability. 
 
1. INTRODUCTION 
1.1 Background and Motivation 
The main strategy for containing, or managing epidemics has been vaccination, which has been based on 
the burden of infectious diseases. An epidemiological model assists us in forecasting epidemic dynamics 
and developing immunization programs when combined with the introduction of new illnesses (and the 
re-emergence of established ones). The SIR (containing populations susceptible, infectious, and 
recovered) model provides mathematical evidence for this. It can assist in tracking the spread of 
infectious diseases throughout the community based on these basic populations. 
This study motivated us to refine these models in light of new challenges and the increasing need for 
predictive tools that span the spectrum of human disease transmission from basic infection mechanisms 
through the influence of laboratory intervention technology and behavioural interventions to develop 
informed public health policies. Despite the considerable successes of vaccination technologies and 
widespread implementation, many essential aspects of how vaccination strengthens or destabilizes the 
dynamics of a disease within a population remain hidden in the black box of disease transmission, 
recovery rates, and immunity levels, the components of all models. 
Public health crises have long been the driving force behind infectious disease epidemiology. Classical 
models, such as those first proposed by W. O. Kermack and A. G. McKendrick [1] in 1927 and described by 
their SIR model, have greatly aided in our understanding of disease transmission and control. These 
models form the foundation of modern epidemiological modelling. 
Consequently, there is a widespread recognition that we should pair vaccination strategies with epidemic 
models to experimentally verify their effects. This could apply to diseases like measles, polio, and 
influenza. As disease dynamics became more complex, such as variable vaccination coverage, nonlinear 
incidence rates, and stochastic effects [6], mathematical modelling became more and more sophisticated, 
eventually becoming critical for guiding public health responses to the COVID-19 pandemic.. We use 
stability analysis to determine the eventual elimination of the infectious disease in the presence of 
vaccination, provided the disease-free equilibrium remains stable. Even more important, it's how we 
make vaccine dosage decisions to maximize their effectiveness and predict the long-term results of 
vaccination programs. 
We accomplish this by incorporating vaccination into the SIR model, which provides a local and global 
stability at the equilibrium points of infection dynamics. Additional encouragement comes from recent 
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worldwide outbreaks of diseases, which have underscored the necessity of predicting the evolution of an 
epidemic and the effectiveness of vaccination coverage in attempting to achieve herd immunity. A better 
appreciation of the stability of the SIR model under vaccination strategies could lead to constructive 
public health policies that can flexibly adapt and adapt to emerging and existing natural phenomena such 
as infectious diseases. This study contributes to the global effort of mitigating and preventing diseases by 
characterizing the impact of vaccination coverage on the evolution of disease spread and the asymptotic 
states of the population using mathematical modelling and simulation. 
 
1.2 Literature Review 
Studying the basic dynamics of infectious disease using mathematical models has a long history, going 
back to 1927 paper by the British mathematicians William Kermack and Anderson Grey McKendrick [1], 
who first described the classic SIR model of epidemics as a system of ordinary differential equations to 
understand the basic mechanisms of epidemic spread and control. Bayley [2] later applied mathematical 
theory to a broad range of infectious diseases, resulting in a framework known as the modelling of 
infectious diseases. Anderson and May [3] rounded out the topic with a two-part series exploring the 
population biology of infectious diseases, exhibiting the impact of various epidemiological parameters on 
disease dynamics. The framework for using mathematics in biology was formed by Kapoor [4], who 
provided an overview of the integration of mathematical modelling into biology and medicine 
 More recently, Appa Rao D, Kalesha Vali S et.al [9, 10, 14] worked extensively on epidemic models, 
discussed and analyzed the stability at the equilibrium points. Divya Kumari G, Kalesha Vali et.al, 
discussed stability analysis of SIR epidemic model under vaccination coverage on newborns with time 
delay on susceptible and infected individuals [15], Many researchers contributed their work on various 
epidemic models like SIRS and SIRI etc. Appa Rao D, Kalesha Vali et.al [11, 12, 13] worked on SIRS 
epidemic models with non linear incidence rates and Kanaka Mahalakshmi E, Kalesha Vali et.al, discussed 
stability analysis of SIRI model with reintroduced susceptible [16]. 
 
1.3 Objectives of the Study 
The primary objective of this study is to analyse the stability of the SIR epidemic model under varying 
levels of vaccination coverage on newborns. By examining both local and global stability at equilibrium 
points, we aim to determine the conditions under which vaccination on newborns can effectively control 
the spread of the disease and potentially eradicate it specifically, we seek to: 
1. Determine the disease-free equilibrium (DFE) and endemic equilibrium (EE) points. 
2. Analyse the local stability at the DFE and EE points using the Jacobian matrix and eigen 
3. value analysis. 
4. Investigate the global stability of the endemic equilibrium using Lyapunov functions. 
5.  Carry out numerical simulations to support the analytical findings and explore the impact of 

different vaccination rates on disease dynamics. 
6. Compare disease dynamics with and without vaccination interventions  

 
2. Mathematical Formulation of the SIR Model with Vaccination 
The SIR model is a foundational framework in epidemiology, widely utilized to comprehend and forecast 
the dynamics of infectious disease spread within a population. The model developed by Kermack and 
McKendrick in 1927, categorizes the population into three compartments: Susceptible (S), Infective (I), 
and Recovered (R). The susceptible compartment includes individuals who have not yet contracted the 
disease but are at risk of infection. These individuals transition to the infective compartment upon 
exposure to the pathogen. The infective compartment comprises individuals who have been infected and 
are capable of transmitting the disease to susceptible individuals. The size of this compartment varies 
based on the number of new infections and the rate at which infected individuals recover or die. The 
recovered compartment consists of individuals who have either recovered from the infection or gained 
immunity due to vaccination to the newborns. These individuals are no longer susceptible to the disease 
and cannot transmit it to other. 
In this section, various steps which are followed to build mathematical formulation of SIR epidemic model 
under vaccination coverage on newborns. These steps include (1) Model assumptions (2) Model diagram 
or flowchart, description of model variables and parameters (3) Formulation of model equations.  
 
2.1 Model Assumptions 
In this section, the following assumptions were made to develop the model with vaccination on 
newborns. 
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(a) The total human population is divided into three compartments susceptible (S), infectious (I), and 
removable / recovered (R)  

(b) The total population N is constant with respect to births and deaths over time, that is,  the sum of the 
individuals in the three compartments does not change 

(c) Humans are recruited into susceptible class with birth rate. 
(d) Humans of all classes will die with death rate due to unrelated background mortality 
(e) Susceptible humans if interacted with infected humans will become infected and will go to infected 

class. 
(f) Newborn susceptible humans if vaccinated will go to recovered/removable class. 
(g) Some exposed humans having sufficient natural immunity will recover from the infection naturally 

and will go to recovered class. 
(h) Humans of infected will die with disease induced death rate.  
 
2.2   Model diagram 
 Based on the model assumptions listed in section 2.1, the model diagram or model flowchart is drawn as 
shown in Figure 1. This flow chart describes the flow of humans among the model compartments. 

s 
Figure 1.Flowchart showing flow of humans among the model compartments 

 
The model variables and parameters description is detailed in the tables 1 and 2. 
 

Table 1. Description of model variables 
 
Variable 

Description 

S(t) Susceptible population size at time t 
I(t)   Infected population size at time t 
R(t) Recovered population size at time t 

                                                    
Table 2. Description of model parameters 

Parameter Description 
ϑ Rate of individuals joining susceptible class or birth rate 
β Rate of transmission of infection or infection rate 
γ Rate of the infected individual recover or recovery rate 
μ Rate of death which is the loss of the individual due to unrelated background 

mortality or death rate 
p Proportion of vaccination on newborn or vaccination rate 

 
2.3 Model equations 
Based on the model assumptions, model flow chart and description of model variables and parameters, 
the system of model equations is constructed and presented in (1). The system is a group of three 
nonlinear ordinary differential equations.  
dS

dt
= ϑ − pϑ −

βSI

N
− μS, 

dI

dt
=

βSI

N
− γI − μI, 

dR

dt
= γI − μR + ϑp                                       for 0 ≤  p ≤  1  (1) 

     S(t)         I(t)       R(t) 
𝜗 

𝛽     

S(t) 
𝛾 

 𝜇 𝜇 

   

  𝜇 

 

       p 
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The equation representing the rate of change in the susceptible population is obtained as ϑ represents the 
birth rate, introducing new individuals into the susceptible population, the term 𝑝 ϑ represents the 
fraction of new-borns that are vaccinated immediately after birth and thus move directly to the recovered 

compartment, β being the transmission rate, the term  
βSI

N
  models the rate at which susceptible 

individuals become infected through contact with infective individuals and μS represents the natural 
death of susceptible individuals. 

The equation representing the rate of change in the infected population is due to  
βSI

N
, the rate at which 

susceptible individuals become infected, γI, the infective individuals recover and move to the recovered 
compartment and μI, the natural death of infective individuals. 
The equation representing the rate of change in the removed class is because of γI, the individuals recover 
from infection,  μR, the natural death of recovered individuals and pϑ, the fraction of new-borns that are 
vaccinated and thus enter directly into the recovered compartment, by passing the susceptible stage. 
 
3. Equilibrium points and Stability analysis 
 The model equations show how the population transitions between compartments over time, influenced 
by the rates of infection, recovery, and vaccination. By examining these equations, researchers can gain 
insights into how different factors affect the spread of the disease and the effectiveness of vaccination 
programs in controlling epidemics. Understanding the equilibrium points of the model is crucial for 
determining the long-term behaviour of the disease within the population. An equilibrium point is a state 
where the number of individuals in each compartment remains constant over time. The disease-free 
equilibrium (DFE) occurs when there are no infective individual in the population, while the endemic 
equilibrium (EE) represents a state where the disease persists at a constant level. Local stability analysis 
assesses the behaviour of the system in the vicinity of the equilibrium points. This is done by linearizing 
the system around the equilibrium points and analyzing the Jacobian matrix. Global stability analysis 
ensures that the system will return to the equilibrium state from any initial condition within the state 
space. This is typically assessed using Lyapunov functions, which are scalar functions that decrease over 
time and serve as an energy-like measure for the system. 
In this section we identify equilibrium points viz, disease free and endemic equilibrium points and discuss 
local stability at its equilibrium points and global stability at endemic equilibrium point. 
 
3.1   Steady state / Equilibrium points 
Disease-free and endemic equilibrium points are obtained by solving the equations in (1) after equating 
the equations individually to zero that is, 
dS

dt
= 0,

dI

dt
= 0,   

dR

dt
= 0. 

The equilibrium points are,   

E1: Disease-free equilibrium point   E1 S∗, I∗, R∗  is  
ϑ−pϑ

μ
, 0,

ϑp

μ
                           (2) 

E2: Endemic equilibrium point  E2(S∗, I∗, R∗) is  
 μ+γ N

β
,
 ϑ−pϑ−μS∗ N

βS∗ ,
γI∗+ϑ p

μ
            (3) 

Here the basic reproduction rate (the number of new infections that an each infected individual generates 

on an average) R0 is 
β

(µ+γ)
  and the growth of the population is N∗ =

ϑ

μ
. 

If the basic reproduction rate, less than unity, the disease cannot spread in the population and therefore 
only the susceptible population remains. And if the basic reproduction rate is greater than unity, infection 
increases and confine with endemic equilibrium point [11]. 

In the steady state, the growth of population is  N∗ =
ϑ

μ
, then the equilibrium point is, 

E2 S∗, I∗, R∗ =  
ϑ

μRo

,  
ϑ

μ
  

μ

 μ + γ 
  1 − p −

1

R0

 ,
ϑ

μ
− S∗ − I∗  

The fractions of the populations (susceptible, infected, and recovered) derived from the endemic 
equilibrium point are 
S∗

N∗
=

1

R0

,
I∗

N∗
=  

μ

 μ + γ 
  1 − p −

1

R0

 ,
R∗

N∗
=  1 −

S∗

N∗
−

I∗

N∗
 

The fraction of the susceptible individuals 
S∗

N∗  is independent of vaccination coverage. But the fraction of 

infected individuals  
I∗

N∗  depends on ‘p’ which is inversely proportional and reaches a point of elimination 

with increasing vaccination. The point at which the threshold coverage of vaccination needed to eliminate 

infection is called ‘Critical vaccination coverage’  pc  and is 1 −
1

R0
 . The percentage of the population that 
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must receive vaccinations in order to eradicate infection rises with the basic reproduction number. Even 
if not every member of the public receives vaccinations, an epidemic disease can be contained. Herd 
immunity refers to a population's ability to fade off infection as a result of increased immunity or 
immunization rates. 
 
3.2 Local stability at disease free equilibrium (DFE) point 

Theorem: At the DFE point E1, the system is locally asymptotically stable provided, 
βS∗

N
<  μ + γ   

Proof: The variational matrix for the system (1) at the DFE  E1 S∗, I∗, R∗  is given by  

J =

 
 
 
 
 −μ −β

ϑ 1−p 

Nμ
0

0 β
ϑ 1−p 

Nμ
−  μ + γ 0

0 γ −μ 
 
 
 
 

                                             4                        

The characteristic equation of (4)  given by  J − λI = 0,  where λ is a parameter is  

(µ + λ)2  β
ʋ 1−p 

Nµ
−  µ + γ − λ =0 

The roots of the characteristic equation are  λ1 = −μ, λ2 = −μ, λ3 =  
βS∗

N
−  µ + γ .

 
Here, the roots λ1 , λ2  are negative and the root  λ3  is negative if  

βS∗

N
<  μ + γ . 

Thus, at DFE point E1 S∗, I∗, R∗ , the system is asymptotically stable provided   

 
βS∗

N
<  μ + γ . 

 
3.3 Local stability at endemic equilibrium (EE) point 
Theorem: At the EE point E2(S∗, I∗, R∗), the system is locally asymptotically stable provided,                
 I ∗ > S∗ 
Proof:  The variational matrix for the system (1) at EE point E2(S∗, I∗, R∗) is  

J =

 
 
 
 −

βI∗

N
− μ −β

S∗

N
0

β
I∗

N
β

S∗

N
− (μ + γ) 0

0 γ −μ 
 
 
 

                                               (5) 

The characteristic equation of (5) is given by   J − λI = 0, where λ is a parameter is,  

 μ + λ  λ2 − λ  
βS∗

N
−

βI∗

N
− 2μ − γ −  

βS∗μ

N
−

βI∗μ

N
−

βI∗γ

N
− μ2 − μγ  = 0        (6)             

Which implies  λ + μ = 0 and  

 λ2 − λ  
βS∗

N
−

βI∗

N
− 2μ − γ −  

βS∗μ

N
−

βI∗μ

N
−

βI∗γ

N
− μ2 − μγ  = 0     

From equation (6)   we have λ = −μ and    

  λ2 + λ  
β

N
 I∗ − 𝑆∗ + 2𝜇 + 𝛾 +  

𝛽𝜇

𝑁
 𝐼∗ − 𝑆∗ +

𝛽𝐼∗𝛾

𝑁
+ 𝜇(𝜇 + 𝛾  = 0                (7) 

It is clear that one of the roots of the equation (6) is negative and two of the roots of the equation (7)  are 
negative if sum of the roots of (7) (trace of the matrix) is negative and product of the roots of (7) 
(determinant of the matrix) is positive. 

Here the trace  − (
𝛽

𝑁
(𝐼∗ − 𝑆∗)  +  2µ +  𝛾)  is negative if  𝐼 ∗ > 𝑆∗and the  

determinant,  (
𝛽µ

𝑁
(𝐼∗ − 𝑆∗)  +

𝛽𝛾 𝐼∗

𝑁
+  µ(µ + 𝛾))  is positive if  𝐼 ∗ > 𝑆∗ 

 Thus, at the endemic equilibrium point 𝐸2 𝑆
∗, 𝐼∗, 𝑅∗ , the system is asymptotically stable provided I*> S*. 

This implies that the disease will persist in the population at a constant level if the number of infective 
individuals is greater than the number of susceptible individuals at equilibrium. 
 
3.4. Global stability at endemic equilibrium (EE) point:  
Theorem: At the EE point  𝐸2(𝑆∗, 𝐼∗, 𝑅∗), the system is globally asymptotically stable.  
Proof: Let the Lyapunov function be 
𝑉 𝑡 = (𝑆 − 𝑆∗)2 + (𝐼 − 𝐼∗)2 + (𝑅 − 𝑅∗)2                                                                       (8)                                                            

Then, 𝑉 ′ 𝑡 = 2 𝑆 − 𝑆∗ 
𝑑𝑆

𝑑𝑡
+ 2 𝐼 − 𝐼∗ 

𝑑𝐼

𝑑𝑡
+ 2 𝑅 − 𝑅∗ 

𝑑𝑅

𝑑𝑡
                                             (9) 

By proper choice of   

 1 − 𝑝 𝜗 − 𝛽 
𝑆 𝐼

𝑁
=  µ 𝑆∗, 𝛽 

𝑆 𝐼

𝑁
=  (µ + 𝛾)𝐼∗ and  𝛾 𝐼 +  𝑝 ʋ =  µ 𝑅∗from (1), 𝑉′(𝑡) 

Becomes, 
𝑉′(𝑡)  =  2(𝑆 − 𝑆∗)µ(𝑆∗ − S)  +  2(I − I∗)(µ + γ)( I∗ − I)  +  2(R − R∗)µ(R∗ − R) 
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i.e., V′ t =  −2(S − S∗)2µ −  2 I − I∗ 2 µ + γ −  2(R − R∗)2µ < 0. 
Hence, at its EE point, the system is globally asymptotically stable. 
 
4. Numerical Simulation 
Numerical simulations are performed to validate the analytical results and to explore the dynamics of the 
model under various parameter settings. Using software tools like MATLAB, the model equations are 
simulated with different values of β, γ, p to observe the impact of vaccination on disease spread. 
Simulations provide visual insights into how changes in vaccination coverage affect the susceptible, 
infective, and recovered populations over time. Phase portraits and time series plots help illustrate the 
convergence to equilibrium points and the stability of the system under different scenarios. Despite the 
extensive research on epidemic models and vaccination strategies, there remains a significant gap in the 
quantitative understanding of how vaccination affects the temporal stability of disease transmission. 
Most of the previous studies focused on the basic reproduction number R0 and the long-term behaviour 
of the epidemic without delving into the stability conditions under varying vaccination rates. This study 
addresses this gap by providing a comprehensive analysis of the stability of the SIR model with 
vaccination, offering insights into the critical vaccination coverage required to achieve herd immunity and 
control the epidemic. To emphasise the importance of vaccination, numerical examples are considered. 
Comparative analysis of disease dynamics with and without vaccination interventions also presented for 
different examples tabulated in Table 3. From the table one can observe that the disease reduces as the 
proportion of vaccination rate increases.  
The simulations aim to observe changes in the susceptible (S), infective (I), and removable (R) 
populations in response to variations in specific parameters, while keeping other parameters constant. 
The primary focus is on examining how recovery rate (γ), transmission rate (β), vaccination rate (p) 
influence the dynamics of the populations. Total of nine examples (labelled as 4.1 to 4.9) are considered 
to study these effects under vaccination coverage. Each example consists of two types of graphical 
representations: Time series responses (Figure A) and Phase Portraits (Figure B). These plots show how 
the populations susceptible, infective, and recovered individuals changes over time and phase portraits 
provide a phase-space representation of the dynamics, illustrating the trajectories of the system in the (S, 
I) or (I, R) planes. Time series responses and phase portraits help to visualize the stability and 
convergence behaviour of the model. For all the examples, S, I, R values are fixed and considered S=50, 
I=30, R=20 to observe the change in population by varying one at a time of β,  γ, p and keeping remaining 
parameters fixed. The graphs are  
 
Example 4.1: For ϑ =  10, β =  1, γ =  0.5, µ =  0.1, N =  100, p =  0.1. 

 
The system is stable asymptotically and converges to E(60, 5, 35).  
 
 
 
 
 

  
                         Fig 4.1 - (A)                             Fig 4.1 - (B) 
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Example 4.2: For ϑ =  10, β =  2, γ =  0.5, µ =  0.1, N =  100, p =  0.1. 
 

  
                         Fig 4.2 - (A)                            Fig 4.2 - (B) 

 
The system is stable asymptotically and converges to E( 30, 10, 60). 
 
Example 4.3: For ϑ =  10, β =  3, γ =  0.5, µ =  0.1, N =  100, p =  0.1. 

                        Fig 4.3 - (A)                             Fig 4.3 - (B) 

 
The system is stable asymptotically and converges to E( 20, 12, 68). 
Examples 4.1 to 4. 3, illustrates that the system converges to the equilibrium points. Also observed that, 
infective and removable individuals increases when there is an increase in the transmission rate (β) and 
remaining parameters are fixed constant. 
 
Example 4.4: For ϑ =  10, β =  4, γ =  1, µ =  0.1, N =  100, p =  0.1. 

  

                  Fig 4.4 - (A)                             Fig 4.4 - (B) 
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The system is stable asymptotically and converges to E( 27, 6, 67). 
 
Example 4.5: For ϑ =  10, β =  4, γ =  2, µ =  0.1, N =  100, p =  0.1. 

  
                  Fig 4.5 - (A)                          Fig 4.5 - (B) 
 
The system is stable asymptotically and converges to E( 52, 2, 46). 
 
Example 4.6: For ϑ =  10, β =  4, γ =  4, µ =  0.1, N =  100, p =  0.1. 

  
                      Fig 4.6 - (A)                              Fig 4.6 – (B) 

 
The system is stable asymptotically and converges to E(90,0,10). 
Examples 4.4 to 4.6,  illustrates that the system converges to the equilibrium points and also observed 
that, susceptible individuals increases with the increase in the recovery rate (γ) and the remaining 
parameters are fixed constant.  
 
Example 4.7: For ϑ =  10, β =  2, γ =  1, µ =  0.1, N =  100, p =  0.1. 

  
                     Fig 4.7 - (A)                        Fig 4.7- (B) 

The system is stable asymptotically and converges to E( 55, 3, 42). 
 
 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 24                                                   Divya Kumari Gummala et al 16-28 

Example 4.8: For ϑ =  10, β =  2, γ =  1, µ =  0.1, N =  100, p =  0.4.  

  
                      Fig 4.8 - (A)                            Fig 4.8 - (B) 

The system is stable asymptotically and converges to E( 55, 0, 45). 
 
Example 4.9: For ϑ =  10, β = 2, γ =  1, µ =  0.1, N =  100, p =  0.6.  

 
 

                           Fig 4.9 - (A)                       Fig 4.9 - (B) 

 
The system is stable asymptotically and converges to E( 40, 0, 60). 
Examples 4.7 to 4.9, illustrates that the system converges to the equilibrium points and also observed 
that, infective individuals almost vanish with the increase in the proportion of vaccination on newborns 
(p) keeping all the remaining parameters as fixed constant. To compare the disease dynamics with 
vaccination intervention same numerical examples are considered and numerical simulation is carried 
out for the model without vaccination (Examples 4.10 - 4.16). 
 
Example 4.10: For ϑ =  10, β =  1, γ =  0.5, µ =  0.1, N =  100, p =  0. 

 
 

                   Fig 4.10 -  (A)                           Fig 4.10 - (B) 

The system is stable asymptotically and converges to E( 60, 7, 33). 
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Example 4.11: For ϑ =  10, β =  2, γ =  0.5, µ =  0.1, N =  100, p = 0. 

  

                         Fig 4.11 - (A)                          Fig 4.11- (B) 

The system is stable asymptotically and converges to E( 30, 12, 58). 
 
Example 4.12: For ϑ =  10, β =  3, γ =  0.5, µ =  0.1, N =  100, p =  0. 

  
                        Fig 4.12 - (A)                           Fig 4.12- (B) 

The system is stable asymptotically and converges to E( 20, 13, 67). 
 
Example 4.13: For ϑ =  10, β =  4, γ =  1, µ =  0.1, N =  100, p = 0. 

 
 

                           Fig 4.13 - (A)                         Fig 4.13 - (B) 

The system is stable asymptotically and converges to E( 27, 7, 66). 
 
 
 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 26                                                   Divya Kumari Gummala et al 16-28 

Example 4.14: For ϑ =  10, β =  4, γ =  2, µ =  0.1, N =  100, p =  0. 

 

 

                     Fig 4.14 - (A)                       Fig 4.14 - (B)  

The system is stable asymptotically and converges to E( 52, 3, 45). 
 
Example 4.15: For ϑ =  10, β =  4, γ = 4, µ =  0.1, N =  100, p = 0. 

  
                       Fig 4.15 - (A)                     Fig 4.15 - (B) 

The system is stable asymptotically and converges to E( 100, 0, 0). 
 
Example 4.16: For ϑ =  10, β =  2, γ =  1, µ =  0.1, N =  100, p = 0.  

  
                     Fig 4.16 - (A)                    Fig 4.16 - (B) 

The system is stable asymptotically and converges to E( 55, 4, 41). 
Comparative analysis of disease dynamics with and without vaccination interventions presented for 
different examples are tabulated in Table 3. 
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Table 3. Comparative analysis of disease dynamics with and without vaccination interventions 
S. No Parameters Without Vaccination 

  (p=0) 
With Vaccination 

1 ϑ=10, β = 1, γ = 0.5, μ = 0.1  E(60,07,33) E(60,05,35)    when  p=0.1 
2 ϑ=10, β = 2, γ = 0.5, µ= 0.1  E(30,12,58) E(30,10,60)   when p=0.1 
3 ϑ=10, β = 3, γ = 0.5, µ= 0.1  E(20,13,67) E(20,12,68)   when p=0.1 
4 ϑ=10, β = 4, γ = 01, µ= 0.1  E(27,07,66) E(27,06,67)   when p=0.1 
5 ϑ=10, β = 4, γ = 02, µ= 0.1 E(52 ,03,45) E(52,02,46)   when p=0.1 
6 ϑ=10, β = 4, γ =04, µ= 0.1   E(100,00,0) E(90,00,10)   when p=0.1 
7 ϑ=10, β =2, γ = 01, µ= 0.1  E(55,04,41) E(55,03,42)   when p=0.1 
8 ϑ=10, β = 2, γ = 01, µ= 0.1 E(55,04,41) E(55,00,45)   when p=0.4 
9 ϑ=10, β = 2, γ = 01, µ= 0.1 E(55,04,41) E(40,00,60)   when p=0.6 

It is understood from the tabulated values that the increase in the proportion of vaccination, there is a 
significant downfall in infective population. 
 
5. RESULTS AND DISCUSSIONS 
Examined the SIR (containing susceptible, infectious, and removable populations) epidemic model's 
stability under vaccination coverage with an assumption of total population (N) is constant with respect 
to births and deaths. The model is represented by nonlinear ordinary differential equations. It is observed 
that if the basic reproduction rate R0 is more than one, the system possesses endemic equilibrium point 
and a disease-free equilibrium point if it is less than one. It is established that the system is globally 
asymptotically stable at the endemic equilibrium point, and it is locally asymptotically stable if  I ∗ >
S∗.Whereas the system is locally asymptotically stable at the disease free equilibrium point if  
βS∗

 N
<  μ + γ . It is observed by the way of numerical simulation that due to increase in the transmission 

rate  (β) , there is an increase in the infective and removable populations .Also due to increase  in the 
recovery rate of the infected individuals (γ) there is an increase in susceptible populations. Also, because 
of increase in proportion of vaccination of newborn (p) the infective population almost vanish. The 
system is consistent if  ϑ = μN∗. If the rate of transmission of the infection β is equal to the recovery rate 
of the infected individuals γ i.e., β =  γ, then the infective population almost vanish. If the rate of 
transmission of the infection β is less than the recovery rate of the infected individuals γ i.e., β < γ then 
there is a significant growth in susceptible population. If the rate of transmission of the infection β is 
greater than the recovery rate of the infected individual γ i.e., β >  γ then there is a significant growth in 
infective and removable populations. 
 
6. CONCLUSIONS 
The paper examines the SIR model's stability under vaccination coverage to emphasise the importance of 
vaccination as one of the control methods in infectious disease management. Under certain 
circumstances, the model demonstrates local and global stability, emphasising the need to reduce 
transmission or increase recovery in order to limit outbreaks. High vaccination rates could eradicate the 
disease, demonstrating that vaccination reduces infective cases proportionally.  
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