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ABSTRACT 

In this paper, athree-compartment SIR\
/ I
S

epidemic model with time delay  introduced in the interaction of 

susceptibleand infected individuals is considered and discussed local, global stability at its equilibrium 
points. Hopf bifurcation is used to identify the point at which system becomes unstable to stable. 
Numerical simulation is carried out to support the results using MATLAB. Numerical examples are 
presented in support of the increase in the transmission rate at a particular critical time delay parameter 
the system becomes unstable. Further, observed that due to increase in the additional transaction rate 
subject to fixed time delay, the system becoming unstable.   

 
Keywords: Re-infection rate, Additional transaction rate, Disease free equilibrium point, Endemic 
equilibrium point,Time Delay, Hopf  bifurcation. 
 
1. INTRODUCTION 
A collection of methods known as "epidemic modelling" involve the use of computational, statistical, and 
mathematical tools to investigate the transmission of infectious diseases within host populations. It makes 
use of information and theories to explain how diseases are transmitted, how populations change over 
time, and how they affect people's health [7]. Daniel Bernoulli began researching mathematical models of 
epidemics in 1766. Eventually, in 1927, Kermack and Mc Kendrick [8] used a system of differential 
equations to explain the dynamics of disease transmission. In epidemiology, mathematical modeling 
provides a broad understanding of the factors influencing the spread of a disease. Differential equations 
play a vital role in dealing the models and are useful tool for stability analysis. The population under 
consideration in an epidemiological model can be classified into many classes that vary over time 
(t).These fall into three categories:  susceptible (S(t)), infective (I(t)), and removable (R(t)).Those within 
the population who actively spread the sickness to others are considered infectious class. Populations that 
are susceptible are those who have not yet contracted the illness, while the removable class consists of 
those who have either recovered, were placed in isolation, or have passed away. The average number of 
new infections generated by each infected person is called the basic reproductive number and it is 
denoted by R0. The infection does not spread if R0 <  1 and if R0 >  1, the disease will spread. 
The most effective and thoroughly researched epidemiological models are the SIS and SIR models, among 
many others. Appa Rao D, Kalesha Vali S, et al. [1, 2, 3, 4, 5, 6] has been thoroughly examined the stability 
of these SIR models. Later, Divya kumari G, Kalesha Vali S et al.[13] has been studied the Stability Analysis 
of SIR Epidemic model under Vaccination Coverage on newborns with time delay in the interaction of 
Susceptible and Infected Individuals. More complexity can be added to the SIR model in several ways, 
including byage structure, regional heterogeneity, or several infection stages. One such extension is the 
SIRI model. These partial immunity models, also referred to as (Susceptible - infected - recovered - 
infected) SIRI models, are explored in the book "Population Biology and Criticality" [9,10]. In this model 
the recovered individuals Tudor was the one who initially developed the SIRI epidemiological model in a 
community [12]. Subsequently, an enormous number of mathematicians and scientists began working on 
SIRI epidemic models in an effort to comprehend the idea of disease transmission. Time delays are 
incorporated to provide for multiple factors that impact the disease's course within the population. The 
stability study of the SIRI epidemic model with reintroduction to susceptibles were discussed by Kanaka 
Maha Lakshmi E, Kalesha Vali S, et al. [11] under the assumption of the population is constant using 
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analytical techniques. Also, discussed delay dynamics of the same model by incorporating delay on 
susceptible individuals and presented that the increase in the transmission rate the system becomes 
unstable [14]. 

In this paper, a study is made to examine the stability of SIR\
/ I
S

epidemic model when time delay is 

introduced in the susceptible and infective populations. It is observed that the system is asymptotically 
stable at the endemic equilibrium point identified. Hopf bifurcation is used to identify the point at which 
system becomes unstable to stable. In support of the results numerical simulation is carried outusing 
MATLAB. 
 
2. Basic Equations Of The Model 

A three-compartment SIRI model with re-introduced susceptibles i.e., SIR\
/ I
S

 model [11] is considered 

inwith populations categorizes into three compartments: Susceptible (S), Infective (I),and Recovered (R). 
The susceptible compartment includes individuals who have not yet contacted the disease but are at risk 
of infection. These individuals transition to the infective compartment upon exposure to the pathogen. 
The infective compartment comprises individuals who have been infected and are capable of transmitting 
the disease to susceptible individuals. The size of this compartment varies based on the number of new 
infections and the rate at which infected individuals recover. The recovered compartment consists of 
individuals who have either recovered from the infection and gained immunity or poor/partial immunity. 
The individuals from the removable class or infective class may go to the susceptible class because of 
getting reinfection of poor immunity.  

The following assumptions were made to develop the model SIR\
/ I
S

. 

(a) The total human population is divided into three compartments susceptible (S), infectious (I), and 
removable / recovered (R). 

(b) The total population N is constant, that is, the sum of the individuals in the three compartments does 
not change. 

(c) Susceptible humans if interacted with infected humans will become infected and will go to infected 
class. 

(d) Some exposed humans having sufficient natural immunity will recover from the infection naturally 
and will go to recovered class. 

(e) The individuals from the removable class may go to the susceptible class because of getting 
reinfection The individuals from the removable class may go to the infected class because of poor 
immunity or not getting recovered fully from the infection. 

(f) Transmission rate from susceptible (S) to infectious (I) and re-infection rate from recovered (R) to 
infective (I) are same. 

Based on the model assumptions, the model flowchart is drawn as shown in Figure 1. This flow chart 
describes the flow of humans among the model compartments. 
 
 
 
 
 
 
 
 

Fig 1. Flowchart showing flow of humans among the model compartments 
 
The model variables and parameters description is detailed in the tables 1 and 2. 
 

Table 1. Description of model variables 
Variable Description 
S(t) Susceptible population at time t 
I(t) Infected population at time t 
R(t) Recovered population at time t 

 
 
 
 

S(t) I(t) R(t) 
β γ

γ 

β 

α 
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Table 2. Description of model parameters 
Parameter Description 
β Rate of transmission of infection / infection rate or Reinfection rate 
γ Rate of the infected individual recover or recovery rate  
α Additional transition rate from recovered (R) to susceptible (S) 

τ Time delay parameter 
τ0 Critical time delay parameter or Bifurcation point 

 
Based on the model assumptions, model flow chart and description of model variables and parameters, 
the system of model equations is constructed and presented in (1). The system is a group of three 
nonlinear ordinary differential equations 

dS

dt
= αR − βS t − τ I t − τ  

dI

dt
= βS t − τ I t − τ − γI + βRI 

dR

dt
= γI − αR − βRI                    (1) 

 
3. Equilibrium points 
In this section, the equilibrium points, namely a disease-free equilibrium point, and endemic equilibrium 
points are determined by solving the equations in (1) after equating them individually to zero 

 i.e.,  
dS

dt
= 0 ,

dI

dt
= 0 and 

dR

dt
= 0. 

The equilibrium points are  
E1 : Disease free equilibrium point is E1(S∗, I∗, R∗) = (N, 0,0)          (2) 

E2 : Endemic equilibrium point is E2(S∗, I∗, R∗) =  
α(βγN−γ2)

β(α+βN−γ)(βN−γ)
,

βN−γ

β
,

βNγ−γ2

β(α+βN−γ)
 (3)  

 Here, the basic reproduction rate of the system (1) is  identified as R0 =
βN

γ
. Also it is observed that if  

R0 >  1 , the endemic equilibrium point exist and if R0 <  1  the system has no feasible solution. 
 
4. Stability at equilibrium points 
In this section, we prove that the system (1) is asymptotically stable at the endemic equilibrium point E2 
subject to some constraints. Stability is studied even when time delay is introduced in the interaction of 
susceptible and infective individuals,identified the point at which the system becomes unstable to stable 
using Half bifurcation. 
 
Theorem 4.1:The system (1) is asymptotically stable at endemic equilibrium point E2(S∗, I∗, R∗)  
Proof :  The Jacobean matrix of the system (1) at endemic equilibrium point  E2(S∗, I∗, R∗) is  

J =  

−βe−λτI∗ −βS∗e−λτ α

βe−λτI∗ βS∗e−λτ − γ + βR∗ βI∗

0 γ − βR∗ −α − βI∗

 (4) 

The characteristic equation of (4) is given by  J − λI = 0,where λ  is a parameter is,  

λ3 + λ2 γ + α + βI∗ − βR∗ + λ(αγ − αβR∗) + e−λτ[λ2(βI∗ − βS∗) + λ(βγI∗ − β2R∗I∗ + αβI∗ + β2I∗2 − αβS∗

− β2S∗I∗)] = 0 

i.e., φ λ, τ = λ3 + u1λ2 + u2λ + e−λτ v1λ2 + v2λ = 0      (5) 

Where 
u1 = γ + α + βI∗ − βR∗

 u2 = αγ − αβR∗ 
v1 = βI∗ − βS∗ 

v2 = βγI∗ − β2R∗I∗ + αβI∗ + β2I∗2 − αβS∗ − β2S∗I∗ 
To find the condition for existence of negative real roots of  (5), we get 
Case (i):For  τ = 0,the equation (5) becomes 

φ λ, 0 = λ  λ2 + λ γ + α + βI∗ + β(I∗ −  S∗ + R∗ ) 

+  αγ + βγI∗ + αβ I∗ −  S∗ + R∗  + β2I∗ I∗ −  S∗ + R∗    = 0                                       (6) 

Which gives that   
λ = 0 or 

λ2 + λ γ + α + βI∗ + β(I∗ −  S∗ + R∗ ) +  αγ + βγI∗ + αβ I∗ −  S∗ + R∗  + β2I∗ I∗ −  S∗ + R∗   = 0(7) 
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Thus, one of the roots of (6) is zero and the system is stable if equation (7) possesses negative real roots. 

Here 
− γ+α+βI∗+β(I∗− S∗+R∗ ) 

1
< 0 if 2I∗ > N  and  

 αγ+βγI∗+αβ I∗− S∗+R∗  +β2I∗ I∗− S∗+R∗   

1
> 0 if 2I∗ > N. 

Therefore, the system (1) is locally asymptotically stable at the endemic equilibrium point E2(S∗, I∗, R∗),  if 
2I∗ > N. 
Case (ii):For τ > 0, there exists a positiveτ0 such that the equation (5) has pair of purely imaginary roots, 
and  
can be taken as ±iω, ω > 0 
Since equation (5) is a transcendental equation, Routh – Hurwitz criterion cannot be applied to find the 
roots of the equation. So, by Rouche’s theorem, the transcendental equation shall have positive real part 
only when the equation has purely imaginary roots. 
Let λ = ±iω be a purely imaginary roots of the equation (5) 
Then (5) becomes iω 3 + u1 iω 2 + u2 iω + e−iωτ v1 iω 2 + 𝑣2(𝑖𝜔 ) = 0 
Which imply −𝜔2𝑢1 − 𝑣1𝜔2𝑐𝑜𝑠𝜔𝜏 + 𝑣2𝜔𝑠𝑖𝑛𝜔𝜏 + 𝑖 −𝜔3 + 𝜔𝑣2 + 𝑣2𝜔𝑐𝑜𝑠𝜔𝜏 + 𝑣1𝜔2𝑠𝑖𝑛𝜔𝜏 = 0

 
On collecting real and imaginary parts, we get 
𝑣2𝜔𝑠𝑖𝑛𝜔𝜏 − 𝑣1𝜔2𝑐𝑜𝑠𝜔𝜏 = 𝜔2𝑢1       (8) 
𝑣2𝜔𝑐𝑜𝑠𝜔𝜏 + 𝑣1𝜔2𝑠𝑖𝑛𝜔𝜏 = 𝜔3 − 𝜔𝑢2        (9) 
On adding, the above two equations after squaring, we get  
 𝑣1𝜔

2 2 + (𝑣2𝜔)2 = (𝜔2𝑢1)2 + (𝜔3 − 𝜔𝑢2)2

                           
(10)

 

i.e., 𝜔6 + 𝜔4 𝑢1
2 − 2𝑢2 − 𝑣1

2 + 𝜔2(𝑢2
2 − 𝑣2

2) = 0 
Let 𝜓 𝑡 = 𝑡3 + 𝑡2𝑀1 + 𝑡𝑀2 = 0, Where  𝑀1 = 𝑢1

2 − 2𝑢2 − 𝑣1
2, 𝑀2 = 𝑢2

2 − 𝑣2
2, 𝑡 = 𝜔2    (11) 

Thus, 𝜓 𝑡 = 0 
If  𝑀1 > 0, 𝑀2 > 0 then equation (11) will have no positive real roots 
Therefore, the equation (11) admits negative real roots. Hence, we can derive the conditions for existences 
of stability at endemic equilibrium point. 
 
Theorem 4.2: The system is locally asymptotically stable for all𝜏, at endemic equilibrium 𝐸2  if following 
conditions hold. 
(i). 𝑅0 > 1 
(ii).  𝑢1 + 𝑣1 > 0,  𝑢2 + 𝑣2 > 0 
(iii). 𝑀1 > 0, 𝑀2 > 0 
Proof: Let either of𝑀1 , 𝑀2is negative then equation (11) shall have a positive root 𝜔0  
From equation (10), we have 

𝑐𝑜𝑠𝜔𝜏 =
 

𝜔2𝑢1 𝑣2𝜔

𝜔3−𝜔𝑢2 𝑣1𝜔2 

 
−𝑣1𝜔2 𝑣2𝜔

𝑣2𝜔 𝑣1𝜔2 
 (by cramer’s rule) 

i.e., 𝑐𝑜𝑠𝜔𝜏 =
𝜔4 𝑣2−𝑢1𝑣1 −𝜔2𝑢2𝑣2

𝑣1
2𝜔4+𝑣2

2𝜔2  

or 𝜏𝑘 =
1

𝜔0
𝑐𝑜𝑠−1  

𝜔0
2 𝑣2−𝑢1𝑣1 −𝑢2𝑣2

𝑣1
2𝜔0

2+𝑣2
2  +

2𝑘𝜋

𝜔0
. Where k=0, 1, 2, 3 …….. 

 
5. Hopf bifurcation 
A critical point where the system stability switches, and periodic solution arise is called Hopf bifurcation. 
Generally, the system losses its stability due to unbounded periodic oscillations arise at this critical point. 
Hopf bifurcation takes place when a pair of complex conjugate eigen values cross the imaginary axis 
around the equilibrium points. Hopf bifurcation exists for the system when it is characterized by the 
system of ordinary differential equations.The following theorem establishes the existence of  Hopf 
bifurcation for the three-dimensional system with time delay. 

 
Theorem 5.1:  If  𝑅0 > 1 there exist a positive 𝜏0 such that the following results hold  
(i) If 0 < 𝜏 < 𝜏0, the system of equations (1)  is locally asymptotically stable at endemic equilibrium 

point 𝐸2  
(ii) The system (1) exhibits Hopf bifurcation  if 𝜏 > 𝜏0 
Proof: To obtain Hopf bifurcation, we need to check the transversal condition for the existence of complex 
eigen value at 𝜏 = 𝜏0 
i.e., the real part of 𝜆(𝜏) become positive when 𝜏 > 𝜏0.  At this stage,  the stable state become unstable. 
That is the system exhibits Hopf bifurcation when 𝜏crosses the critical value𝜏0. 
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Differentiating (5) w .r t. 𝜏,  

3𝜆2
𝑑𝜆

𝑑𝜏
+ 2𝑢1𝜆

𝑑𝜆

𝑑𝜏
+ 𝑢2

𝑑𝜆

𝑑𝜏
+ 𝑒−𝜆𝜏  2𝑣1𝜆

𝑑𝜆

𝑑𝜏
+ 𝑣2

𝑑𝜆

𝑑𝜏
 +  𝑣1𝜆2 + 𝑣2𝜆  −𝜆 − 𝜏

𝑑𝜆

𝑑𝜏
 𝑒−𝜆𝜏 = 0 

i.e., 
𝑑𝜆

𝑑𝜏
 3𝜆2 + 2𝑢1𝜆 + 𝑢2 + 𝑒−𝜆𝜏  2𝑣1𝜆 + 𝑣2 −  𝑣1𝜆2 + 𝑣2𝜆 𝜏𝑒−𝜆𝜏  =  𝑣1𝜆2 + 𝑣2𝜆 𝜆𝑒−𝜆𝜏  

 𝑜𝑟  
𝑑𝜆

𝑑𝜏
 
−1

=
 3𝜆2 + 2𝑢1𝜆 + 𝑢2 + 𝑒−𝜆𝜏  2𝑣1𝜆 + 𝑣2 −  𝑣1𝜆2 + 𝑣2𝜆 𝜏𝑒−𝜆𝜏  

 𝑣1𝜆
2 + 𝑣2𝜆 𝜆𝑒−𝜆𝜏

 

At 𝜆 = 𝑖𝜔0 

 
𝑑𝜆

𝑑𝜏
 
−1

=
1

𝜔0

 
−3𝜔0

2 + 2𝑖𝑢1𝜔0 + 𝑢2

(−𝜔0
3 + 𝑢2𝜔0 + 𝑖 𝑢1𝜔0

2 
+

 2𝑖𝑣1𝜔0 + 𝑣2 

−𝑣2𝜔0 + 𝑖 −𝑣1𝜔0
2 

+ 𝑖𝜏  

Now, real part of  
𝑑𝜆

𝑑𝜏
 
−1

=
1

𝜔0
 
 −3𝜔0

2+𝑢2  −𝜔0
3+𝑢2𝜔0 +2𝑢1𝜔0 𝑢1𝜔0

2 

 −𝜔0
3+𝑢2𝜔0 2+ 𝑢1𝜔0

2 2 +
 −𝑣2

2𝜔0+2𝑣1𝜔0 −𝑣1𝜔0
2  

 𝑣2𝜔0 2+ 𝑣1𝜔0
2 2   

𝑖. 𝑒. ,  𝑣1𝜔0
2 2 + (𝑣2𝜔0)2 = (𝜔0

2𝑢1)2 + (−𝜔0
3 + 𝜔0𝑢2)2 

Which imply real part of   
𝑑𝜆

𝑑𝜏
 
−1

=
1

𝜔0
 

3𝜔0
5+𝜔0

3 2𝑢1
2−𝑢2−3𝑢2−2𝑣1

2 + 𝑢2
2−𝑣2

2 𝜔0

 𝑣2𝜔0 2+ 𝑣1𝜔0
2 2   

 

𝑜𝑟  
𝑑

𝑑𝜏
𝑅𝑒(𝜆) =  𝑅𝑒  

𝑑𝜆

𝑑𝜏
 

−1

 
𝜆=𝑖𝜔0

=  
3𝜔0

4 + 𝜔0
2 2𝑢1

2 − 4𝑢2 − 2𝑣1
2 +  𝑢2

2 − 𝑣2
2 

 𝑣2𝜔0 2 +  𝑣1𝜔0
2 2

  

If𝑢1
2 − 2𝑢2 − 𝑣1

2 > 0 𝑎𝑛𝑑 𝑢2
2 − 𝑣2

2 > 0,

 then 
𝑑

𝑑𝜏
𝑅𝑒(𝜆) 

𝜆=𝑖𝜔0

> 0

 Therefore, the transversal condition holds and Hopfbifurcation exists at𝜏 = 𝜏0 i.e., the system switches 
unstable to stable at 𝜏0. This𝜏0 is called critical time delay parameter. 
 
6. Numerical simulation  
 In this section, numerical simulation for different sets of parametric values is carried out using MATLAB. 
Twenty-four examples (6.1 to 6.24) are considered to analyse and ascertain our results. Each example 
consists of two types of graphical representations: Time series responses (Figure A) and Phase Portraits 
(Figure B). These plots show how the populations susceptible, infective, and recovered individuals change 
over time and phase portraits provide a phase-space representation of the dynamics, illustrating the 
trajectories of the system in the (S, I) or (I, R) planes. Time series responses and phase portraits help to 
visualize the stability and convergence behaviour of the model. For all the examples, S, I, R values are fixed 
and considered N=60, 𝑆 =  25, 𝐼 = 31, 𝑅 =  4. 
The following examples (6.1-6.12) illustrates the existence of the critical time delay parameter 
𝜏0(bifurcation point) for three sets of parametric values in which the transmission rate 𝛽, recovery rate 𝛾 
varies separately or both at a time subject to the assumption, all the parameters remaining are fixed 
constant. 
 
Example 6.1: For the parametric values𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.7, 𝜏 = 3.97 > 𝜏0 = 3.3. 

The system is unstable when  𝜏 > 𝜏0 . 
 
 

  
                            Fig.6.1-A                                 Fig.6.1-B 
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Example 6.2: For the parametric values,𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.7, 𝜏 = 3.38 > 𝜏0 = 3.3. 

  
                            Fig.6.2-A                                 Fig.6.2-B 

The system is unstable when  𝜏 > 𝜏0 . 
 
Example 6.3:  For the parametric values,𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.7. 

  
                            Fig.6.3-A                                 Fig.6.3-B 

The critical time delay parameter 𝜏0 is 3.3 
Example 6.4: For the parametric values,𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.7, 𝜏 = 3.24 < 𝜏0 = 3.3. 

  
                            Fig.6.4-A                                 Fig.6.4-B 

 
Here, the system is asymptotically stable and converges to the fixed equilibrium point 𝐸 12,35,13  at 
𝜏 = 3.24 < 𝜏0 = 3.3. Thus, the examples 6.1-6.4, illustrates the existence of the critical time delay 
parameter  𝜏0  and it is identified as3.3. 
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Example 6.5: For the parametric values𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.7, 𝜏 = 2.9 > 𝜏0 = 2.39. 

  
                            Fig.6.5-A                                 Fig.6.5-B 

The system is unstable when𝜏 > 𝜏0. 
 
Example 6.6: For the parametric values𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.7, 𝜏 = 2.65 > 𝜏0 = 2.39. 

  
                            Fig.6.6-A                                 Fig.6.6-B 

The system is unstable when  𝜏 > 𝜏0 . 
 
Example 6.7: For the parametric values𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.7. 

  
                            Fig.6.7-A                                 Fig.6.7-B 

The critical time delay parameter 𝜏0 is 2.39. 
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Example 6.8: For the parametric values,𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.7, 𝜏 = 2.36 < 𝜏0 = 2.39. 

  
                            Fig.6.8-A                                 Fig.6.8-B 

 
The system is asymptotically stable and converges to the fixed equilibrium point 𝐸 8,43,9  at 
𝜏 = 2.36 < 𝜏0 = 2.39.  Thus, the examples 6.5- 6.8, illustrates the existence of the critical time delay 
parameter  𝜏0  and it is identified as 2.39. 
 
Example 6.9: For the parametric values 𝛽 = 0.02, 𝛾 = 0.3, 𝛼 = 0.7, 𝜏 = 2.5 > 𝜏0 = 1.99. 

  
                            Fig.6.9-A                                 Fig.6.9-B 

The system is unstable when  𝜏 > 𝜏0 . 
 
Example 6.10: For the parametric values  𝛽 = 0.02, 𝛾 = 0.3, 𝛼 = 0.7, 𝜏 = 2.1 > 𝜏0 = 1.99. 

  
                            Fig.6.10-A                                 Fig.6.10-B 
The system is unstable when  𝜏 > 𝜏0 . 
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Example 6.11: For the parametric values 𝛽 = 0.02, 𝛾 = 0.3, 𝛼 = 0.7. 
 

  
                            Fig.6.11-A                                 Fig.6.11-B 

The critical time delay parameter 𝜏0 is 1.99. 
 
Example 6.12: For the parametric values, 𝛽 = 0.02, 𝛾 = 0.3, 𝛼 = 0.7, 𝜏 = 1.9 < 𝜏0 = 1.99. 

  
                            Fig.6.12-A                                 Fig.6.12-B 

The system is asymptotically stable and converges to the fixed equilibrium point 𝐸 7,45,8  at  
𝜏 = 1.9 < 𝜏0 = 1.99. Thus, the examples 6.9-6.12, illustrates the existence of the critical time delay 
parameter  𝜏0  and is identified as 1.99. 
 
The parametric values and the corresponding critical time delay parameters 𝜏0 (bifurcation points) are 
tabulated in the table 3. 
 

Table 3. critical time delay parameters for different set of parametric values 

 
For the above three sets of parametric values, the critical time delay parameter τ0 evaluated theoretically 
and validated with the simulated values and observed that they are very closure. Validation of theoretical 
findings through and numerical simulation of critical time delay parameter 𝜏0is shownin the table 4. 

S. No Example                          Parametric values Critical   Bifurcation 
Parameter  (𝜏0) 

1 6.1-6.4 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.7  𝜏0 = 3.3 
2 6.5–6.8 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.7 𝜏0 = 2.39 

3 6.9-6.12 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛽 = 0.02, 𝛾 = 0.3, 𝛼 = 0.7 𝜏0 = 1.99 
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Table 4. Validation of theoretical finding through and numerical simulation of critical time delay parameter 

τ0  
 
In the following examples (6.13-6.18), considered two sets of parametric values in which the transmission 
rate 𝛽 is varied to ascertain the unstability of the system at fixed critical time delay parameter 𝜏0. 
 
Example 6.13: For the parametric values 𝛽 = 0.018, 𝛾 = 0.4, 𝛼 = 0.5. 

  
                            Fig.6.13-A                                 Fig.6.13-B 

The critical time delay parameter is 𝜏0 = 2.9. 
 
Example 6.14: For the parametric values 𝛽 = 0.019, 𝛾 = 0.4, 𝛼 = 0.5, 𝜏0 = 2.9. 
 

 
 
 
 

Parameter values  𝑁 = 60, 𝑆 = 12, 𝐼 = 35, 𝑅
= 13, 𝛽
= 0.02,
𝛾 = 0.5, 𝛼
= 0.7 

𝑁 = 60, 𝑆 = 8, 𝐼 = 43, 𝑅 = 9, 𝛽
= 0.018,
𝛾 = 0.3, 𝛼
= 0.7 

𝑁 = 60, 𝑆 = 7, 𝐼 = 45, 𝑅 = 8, 𝛽
= 0.02,
𝛾 = 0.3, 𝛼
= 0.7 

𝑢1 1.64 1.612 1.74 
𝑢2 0.168 0.0966 0.098 
𝑣1  0.46 0.63 0.76 
𝑣2  0.812 1.035432 1.342 
𝑁1 2.142 2.008444 2.254 
𝑁2 -0.63112 -1.062788 -1.79136 
𝜔0  0.513 0.6595 0.7891 

𝜏0 (Theoretical) 3.39 2.49 2.06 
𝜏0 (Graphical) 3.3 2.39 1.99 

 
 

                            Fig.6.14-A                                 Fig.6.14-B 
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The system becomes unstable. 
 
Example 6.15: For the parametric values  𝛽 = 0.02, 𝛾 = 0.4, 𝛼 = 0.5, 𝜏0 = 2.9.  
 

  
                            Fig.6.15-A                                 Fig.6.15-B 

The system becomes unstable. 
From the examples (6.13-6.15), it is understood that due to the increase in transmission rate (𝛽) at critical 
time delay parameter𝜏0 = 2.9,  the system becomes unstable. 
 
Example 6.16: For the parametric values 𝛽 = 0.015, 𝛾 = 0.3, 𝛼 = 0.7. 

  
                            Fig.6.16-A                                 Fig.6.16-B 

The critical time delay parameter is 𝜏0 =3.46 
 
Example 6.17: For the parametric values 𝛽 = 0.016, 𝛾 = 0.3, 𝛼 = 0.7,𝜏0 =3.46. 
. 

  

                            Fig.6.17-A                                 Fig.6.17-B 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 969                                            Kanaka Maha Lakshmi E et al 958-972 

The system becomes unstable . 
 
Example 6.18: For the parametric values  𝛽 = 0.017, 𝛾 = 0.3, 𝛼 = 0.7,𝜏0 =3.46. 
. 

 
 

                            Fig.6.18-A                                 Fig.6.18-B 

The system becomes unstable. 
From the examples (6.16-6.18), it is understood that due to increase in the transmission rate (𝛽) at critical 
time delay parameter𝜏0 = 3.46,  the system becomes unstable. 
The effects of volatile transmission rate on delay for different sets of parametric values are presented in 
the table 5.  
 

Table 5: Effect of transmission rate on delay 
S. No Example Parametric values 𝛽 Observation 
1 6.13 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛾 =

0.4, 𝛼 = 0.5,𝜏0 =2.9 
 

0.018 𝜏0 = 2.9 

2 6.14 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛾 =
0.4, 𝛼 = 0.5,𝜏0 =2.9 

0.019 The system becomes unstable  

3 6.15 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛾 =
0.4, 𝛼 = 0.5,𝜏0 =2.9 
 

0.02 The system becomes unstable. 

4 6.16 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛾 =
0.3, 𝛼 = 0.7,𝜏0 =3.46. 

 

     0.015 𝜏0 = 3.46 

5 6.17 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛾 =
0.3, 𝛼 = 0.7,𝜏0 =3.46. 
 

0.016 The system becomes unstable. 

6 6.18 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛾 =
0.3, 𝛼 = 0.7,𝜏0 =3.46. 
 

0.017 The system becomes unstable. 

 
Two sets of parametric values are considered in which the additional transaction rate 𝛼 is varied to 
ascertain the unstability of the system at fixed critical time delay parameter 𝜏0 in the examples (6.21-6.26).  

 
Example 6.19: For the parametric values  𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.3. 

  
                            Fig.6.19-A                                 Fig.6.19-B 
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The critical time delay parameter is 𝜏0 = 2.68. 
 
Example 6.20: For the parametric values𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.5,𝜏0 = 2.68. 

  
                            Fig.6.20-A                                 Fig.6.20-B 

The system converges to the fixed equilibrium point𝐸(10,35,15). 
 
Example 6.21: For the parametric values  𝛽 = 0.02, 𝛾 = 0.5, 𝛼 = 0.7,𝜏0 = 2.68. 
 

  
                            Fig.6.21-A                                       Fig.6.21-B 

 
The system converges to the fixed equilibrium point  𝐸(13,35,12). 
From the examples (6.19-6.21), it is observed that due to increase in the additional transaction rate (𝛼)at 
critical time delay parameter𝜏0 = 2.68,  the system is asymptotically stable and there is significant growth 
in susceptible population. 
Example 6.22: For the parametric values  𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.05. 
 

 
 

                            Fig.6.22-A                                 Fig.6.22-B 

The critical time delay parameter is 𝜏0 = 2 
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Example 6.23:  For the parametric values 𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.1,𝜏0 = 2. 
 

  
                            Fig.6.23-A                                 Fig.6.23-B 

The system converges to the fixed equilibrium point 𝐸(2,43,15). 
Example 6.24:  For the parametric values  𝛽 = 0.018, 𝛾 = 0.3, 𝛼 = 0.15,𝜏0 = 2. 
 

  
                            Fig.6.24-A                                 Fig.6.24-B 

The system converges to the fixed equilibrium point  𝐸(3,43,14). 
From the examples (6.22-6.24), it is observed that due to increase in the additional transaction rate (𝛼)at 
critical time delay parameter𝜏0 = 2,  the system is asymptotically stable and there is significant growth in 
susceptible population. 
The effects of volatile additional transaction rate (𝛼) on delay for different sets of parametric values and 
are presented in the table 6.  
 

Table 6. Effect of  additional transaction rate (α) on delay 
S. No Example Parametric values 𝛼 Observation 
1 6.18 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛽 =

0.02, 𝛾 = 0.5,𝜏0 = 2.68 
 

0.3 𝜏0 = 2.68 

2 6.19 𝑁 = 60, 𝑆 = 25, 𝐼 = 31, 𝑅 = 4, 𝛽 =
0.02, 𝛾 = 0.5,𝜏0 = 2.68 

 

0.5 The system converges to the 
fixed equilibrium point  
E(10,35,15). 
 

3 6.21 N = 60, S = 25, I = 31, R = 4, β =
0.02, γ = 0.5,τ0 = 2.68 
 

0.7 The system converges to the 
fixed equilibrium point 
E(13,35,12). 
 

4 6.22 N = 60, S = 25, I = 31, R = 4, β =
0.018, γ = 0.3,τ0 = 2 

 

        0.05 τ0 = 2 
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5 6.23 N = 60, S = 25, I = 31, R = 4, β =
0.018, γ = 0.3,τ0 = 2 
 

0.1 The system converges to the 
fixed equilibrium 
pointE(2,43,15). 
 

6 6.24  N = 60, S = 25, I = 31, R = 4, β =
0.018, γ = 0.3,τ0 = 2 
 
 

0.15 The system converges to the 
fixed equilibrium 
pointE(3,43,14). 
 

 
7. RESULTS AND CONCLUSIONS 

A three compartment SIR\
/ I
S

epidemic model with time delay in the interaction of susceptible and infective 

individuals is considered. It is observed that the model admits a disease free equilibrium point if the basic 
reproductive rate is less than one and the system is locally asymptotically stable if γ > βN. Also, the 
system admits an endemic equilibrium point, if the basic reproductive rate is greater than one and the 
system is locally asymptotically stable if 2 I ∗> N. Numerical simulation is carried out to support the results 
using MATLAB. Obtained bifurcation points for three different sets of parametric values subject to 
variation in the transmission rate βand recovery rate γ independently subject to the condition that all the 
parameters fixed constant. Also considered two sets of parametric values to observe the effect of 
transmission rate β on delay and observed that due to change in the transmission rate β is varied the 
system is becoming unstable at fixed critical time delay parameter τ0.Further, considered two sets of 
parametric values to observe the effect of additional transaction rate αand observed that due to increase 
in the additional transaction rate α the system is becoming stable at fixed critical time delay parameter τ0 
and there is significant growth in the susceptible individuals. Further, validated the theoretical values of 
critical time delay parameter τ0 through numerical simulation. 
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