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ABSTRACT 
This study analyzed themass/heat transfer of the Oldroyd-B liquid model by peristaltic mechanism in the 
appearence of an electrically conductive magnetic parameter through a curved channel. The governing 
equation of the Oldroyd-B liquid model is formulated and lengthy equations are shortened by the 
considerations of long wavelengths and very small Reynolds number approximations. The exact results 
were calculated. The impact of various fluid parameters influid's velocity, concentration, temperature, 
Sherwood number, and Nusselt number are illustrated through the computational mathematical software 
Matlab, and the stream function is computed through Mathematica. The impact of important parameters 
of the relevant fluids was discussed. 
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1.  INTRODUCTION 
Peristaltic motion is a phenomenon where fluid motion occurs when a progressive wave of expansion or 
contraction of the area extends along the distensible tube or channel. This mechanism is widely used in 
biomedical, engineering, and other industries. Some of the applications in industries are plastics 
manufacturing, locomotion of worms, toxic liquid movement in the nuclear industry, ketchup, food 
processing, the performance of lubricants, sanitary fluid transportation, finger and roller pumps. In 
physiology, in the vasomotion of venules, urine movement to bladder from kidney, capillaries, and 
arterioles, swallowing food via the esophagus, etc.Latham [1] started the peristaltic flow of fluid motion in 
two-dimensional Cartesian coordinates in his thesis. Burns and Parkes [2], Shapiro et al. [3] both expand 
on this study. To simplify the governing equations, they used long wavelength and small Reynolds 
number assumptions. Asymmetric channels with Newtonian fluid were examined by Mishra and Rao [4]. 
The magnetic field of the peristaltic mechanism plays a major role in bio-engineering and medicine. Some 
of the applications are in the development of magnetic tracers, bleeding reductions during surgeries, drug 
transport, hyperthermia, magnetic devices built for cell separation, etc. Heat transfer of fluid transport 
through peristalsis works in numerous applications in oxygenation, food processing, tissue conduction, 
hemodialysis, and radiation between the environment and its surroundings.  Concentration (Mass) 
transfer involves important applications in the diffusion of chemical impurities, separation membrane 
and process of combustion, the study of warm salty springs in the ocean, etc. Some of the investigations 
based on the peristaltic transport of various liquid models with mass/heat transfer under the 
involvement of various body forces in different geometries are presented [5-23].Nevertheless, the 
majority of the previously described research on peristalsis use flat or straight channels, which may not 
be sufficient when considering flows through glandular and physiological conduits. We encounter curved 
geometries in physical and industrial processes, where curvilinear coordinates must be taken into 
account in order to counter challenging mathematical statements.  Sato et al. [24] initially explored the 
peristaltic motion of liquid particles in two-dimensional Cartesian coordinates through the curved 
channel. Some studies of related to curved channel presented in [25-40]. 
The present study aims to construct upon the investigations to analyze mass/heat transfer of Oldroyd-B 
fluid with a magnetic field under peristalsis. We have tried to construct a mathematical formulation to 
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provide a realistic manifestation of the blood flow. So, the fluid motion is taken into account in curved 
channels because many of the glandular ducts and arteries are curved. No investigations have been 
discussed yet by considering the Oldroyd-B fluid model with mass/heat transfer investigations under the 
impact of the magnetic field. Therefore, the relevant mathematical formulation is made based onthe flow 
pattern and the equations are abridged with the help of lubrication theory approximation.  Reduced 
equations of the velocity, energy and mass transfer equations are exactly solved. The results are 
discussed for various values of involved pertinent parameters through the graphs. 

 
2. Mathematical structure 
A2-dimensionalincompressible Oldroyd-Bliquid in a curved geometry with uniform half-width  a , center

O , and radius  . The deformable channel walls are propagated by sinusoidal waves with velocity c See 

Figure 1. 
 

 
Figure 1. Flow geometry of the curved channel. 

 
The shape of the wave is represented as [24] 
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where , ,t b are the wavelength, time, wave amplitude. 

In the radial direction, the fluid particle is electrically conducting withan externally applied magnetic field

 B . 
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In which 
0B  isthe magnetic field strength, Ohm's law yields the subsequent expression. 
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Where ,J  are current density, electrical conductivity. 

The constitutive equations for the Oldroyd-B fluid model are given by[37] 

  pI S         (4) 

  2 2 1,1 1
d d

S A
dt dt

  
   
     
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    (5) 

   1

TA L L  , gradL V  

The component of the extra tense tensorScan be described as follows: 
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where I , , , p ,
1 2,  ,S  are the Identity tensor,Cauchy stress tensor, dynamic viscosity, pressure, 

relaxation and the retardation times, extra stress tensor, and 1A  is a first Rivlin Ericksen tensor. 

Theequations governingfor an Oldroyd-B fluid model is defined as 
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Here , , ,T C  are the density, kinematic viscosity, temperature, concentration, , , ,p s m tc C T  , , tD k are 

the specific heat, concentration susceptibility,mean fluid temperature,thermal conductivity, mass 

diffusivity coefficient, thermal diffusion ratio. Here gradL V . In the fixed frame  ,r x the fluid 

velocity is not steady. For steady flow analysis, the fixed frame is transformed into the wave frame  ,r x

using the Galilean transformations [40]. 
, , ,r r x x ct v v u u c          (11) 

We Introducing the following dimensionless quantities are                                                                                                                                                                      
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 And the dimensionless stream function 
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Applying Eq. (11) into Eqs. (6)-(10) and then with the help of Eqs. (12) and (13),consideration oftiny 
Reynolds number, long wavelength,Eq. (6) is satisfied and Eqs. (7)– (10) after removing (*) becomes 
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In above expressions, , , , , , , , ,Re E Br Sc Sr Du Pr H are Reynolds number, wave number, Eckert 

number,Brinkmann number, Schimdt number,Soret number,Dufour number Prandtl number, Hartmann 
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In the fixed frame the volume flow rate in the dimensional form as [26]
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the mean flow  in the fixed frame and q in the wave frame is defined as 
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Therefore, applyingeq. (25)into eq. (24) we get 

2F            (26) 
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3. Solution of the problem 
The solution of Eqs.(18), (16) and (17) with Eq.(20) we get. 
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Where constants appeared in the above equations arelengthy expressions. So, it is given in the appendix. 
 
 

The z  and Sh for both the walls are defined as[7] 
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4. RESULT AND DISCUSSION 

In this part, variations of velocity, , , ,z Sh  and streamlines are examined for the different values of the 

involved parameter. 
 
4.1.   Velocity distribution 
Velocity distributions are presented in Fig.2(a) and (b). The result of the variations of velocity for the 
curvature parameter is presented in Fig.2(a).  
 

 

 
Figure 2. Velocity Distribution 
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This graph indicates, the velocity profile seems asymmetric in the curved channel,for a larger  k the 

velocity profile is symmetric. Fig.2(b), presented for velocity variation of H .This figure shows, the 

velocity of the liquid reduces fora large value of H . Actually, Lorentz force produce resistance in the fluid 

flow field. Furthermore, increasing the magnetic field strength provides an obstruction for the high-
pressure gradient to travel inside the curved channel. Consequently, the magnetic field seems to be a 
delaying factor in the radial direction for fluid movement. Magnetic fields have an inverse behaviour and 
are beneficial in the treatment of disorders such as migraine headaches, joint difficulties, depression, 
cancer, etc. 
 
4.2. Temperature and concentration distribution 
In this subsection, we have analyzed the temperature distribution for involved fluid parameters like 

curvature parameter k , Brinkman number Br and H . The concluded results of 

Fig. 3(a)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Temperature Distribution 
 
manifest raises the temperature towards straight channel.The temperature of the liquid diminishes for 
the magnetic parameter boosts see Fig. 3(b). This could be due to the flow being affected by the ohmic 
heating of the magnetic field. Moreover, a strong magnetic field is produced for larger H, which cools the 
fluid by removing heat and generating current in the motors. Fig. 3(c). The temperature profile went up to 

large Brinkman number ( Br ) values. Taking into account that the Br suggests effects on viscous 
dissipation that cause heat to be produced inside the channel. 
 
Fig.4. (a-e) plotted for concentration profiles against the pertinent involved dimensionless parameters. 

From the above mentioned Figures, we noticed that reduction behavior of   concentration concluded 
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towards curvature parameter k see Fig.4(a), Hartmann number H  Fig.4(b) and Brinkmann number Br
Fig.4(c). 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Concentration Distribution 
 
Schmidt number Sc is the ratio between momentum and mass diffusivity. Therefore, it is perceivable from 

Fig. 4(d) that concentration reduces as Sc boosted. Similar trend concluded for greater  Sr values see 

Fig.4(e). 
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4.3.  Heat transfer coefficient and Sherwood number 

Fig. 5. (a-c) presented for the behavior of heat transfer coefficient against , , ,  k H Br Sc and Sr  From this 

diagram, we clarify that due to the peristaltic mechanism, the coefficient of thermal transfer profile is 
oscillatory behavior.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Variation of Heat Transfer Co-efficient z  
 
 

 The magnitude of heat transfer xh coefficient increases in the region (0.25 0.75)x  and 

(1.25 1.75)x  decreases in the region (0.75 1.25)x  . Similar behavior of xh concluding for 

Sherwood number. ie., oscillatory behavior. But increasing values of , , ,k H Br Sc and Sr  the Sherwood 

number reduces in the region (0.25 0.75)x  and (1.25 1.75)x  raises in the region 

(0.75 1.25)x  see the Figs.6.(a-e). 
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Figure 6. Sherwood Number Variation 

 
4.4.   Trapping Results 
The trapping pattern is another important mechanism to analyze the flow of fluid. Peristaltic transport 
can be investigated by examining a closed contour of streamlines at various wave amplitudes and average 
time flow rates. The process is known as trapping. From a physiological standpoint, fluids might become 
trapped as a result of continuous smooth border movements, which is good for adequately propelling the 
biological working fluid from one location to another. With the proper extension, the working organs can 
be kept alive for an extended period of time without complications. Therefore, trapping phenomena can 
be studied by displaying the stream functions relative to k and H. Fig. 7. (a-d) presented for streamlines 
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for k variation. It is concluded that the dimensions of the trapped bolus decrease in the upper peristaltic 

wall, also increase in the lower wall at high curvature, with the bolus disappearing in the upper wall to 
the curved to straight channel. Fig. 8. (a-d) depicts the size of the trapped bolus in the upper wall 

increases at the same time the lower wall decreases with the increasing amount of H . 
 
 
 
 

 a                                                                                                        (b) 

 
 

                                                                   c                                                                                   (d) 
 

Figure 7. Streamlines for        2, 4 6, 8a k b k c k d k     the other parameters are 

0.1, 1.8, 2, 0.1x Q H      
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Figure 8. Streamlines for        2, 3 4, 5a H b H c H d H     the other parameters are 

0.1, 1.8, 3, 0.1x Q k      

 
5. CONCLUSION 
In this paper we analyzed the mass and energy transfer of the Oldroyd-B liquid through a symmetrical 
curved channel under peristaltic mechanism. The key findings are presented below 
1. Parabolic nature concluded in the velocity profile and also symmetric in the planner channel, but 

non-symmetric in the curved channel. 

2. Reduces the velocity towards the massive quantity of  H  

3. The enhanced amount of , ,  k H Br temperature raises, but concentration reduces. The same 

reduction concluded for raising the values of  ,Sc Sr  

4. ,xh Sh Profiles are oscillatory behavior concluded. xh Increases but Sh decreases in the upper walls 

for small to large values  , ,k H Br and , , , ,k H Br Sc Sr respectively. 

5. Bolus size and number of streamlines lowered for the straight channel, but raises for H increases. 
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