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ABSTRACT 
In this paper, the maintenance model for a deteriorating system under partial sum process is studied. 
Whenever a failure arrives, the system operating time is reduced. Assuming that successive operating 
times after repairs form a decreasing Partial Sum Process and also consecutive repair times of the system 
after failures form an increasing Geometric Process, a replacement policy ,T  by which we replace the 

system whenever the working age of the system reaches ,T  is adopted. An explicit expression for the 

long run average cost rate per unit per unit time is derived. Optimality conditions are deduced. Numerical 
illustration is included to strengthen the theoretical results devolved. 
 
Keyeords: Partial Sum Process (PSP), Geometric Process (GP), Renewal Process (RP),Replacement policy. 
 
1. INTRODUCTION 
At initial stage the common assumption made after repair, in modelling the operating and repair times is 
that the system is as good as new, but this is not always true for a deteriorating system in a real situation 
due to accumulated wear and ageing effect. Barlow and Proschan [1975] introduced the minimal repair 
model in which failed item after repair will have the same failure rate and same effective age at the time 
of the failure. Lam Y., [1988a] presented a geometric process repair model to model a deteriorating 
system under some univariate replacement policy. 

 

Definition 1.Given two random variables X  and Y , X  is said to be stochastically smaller than Y  

(or Y  is stochastically greater than X ), if ( ) ( )P X a P Y a   , for real a . 

Definition 2. A stochastic process  , 1, 2,3, nX n  is said to be stochastically decreasing(or 

increasing)   1  n st st nX X   .  

Definition 3.Given a sequence of non-negative random variables  , 1, 2,3, ,   nX n they are 

independent and the cdf of nX  is given by  1kF a x
 for 1,2,3, , k  where a  is a positive 

constant, then  , 1, 2,3, nX n  is called a geometric process (GP).  

Definition 4. Let  , 1, 2,3, nX n  be a sequence of independent non negative random variables 

and let  F x  be the distribution of 
1.X  Then  , 1, 2,3, nX n  is called partial sum process, if 

the distribution of 1iX   is    1,2,3, ,  iF x i where i >0 are constants with 

0 1 2 1i i          and 
0 0   . 

Lemma 1. The partial sum process  , 1, 2,3, nX n  is stochastically decreasing and hence it is a 

monotone process.  

Lemma 2. Let   ,iE X  then for 1,2,3, i  1 12
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2. Model Assumptions 

Under the replacement policy T , the problem is to determine an optimal replacement policy 
*T  such 

that long run average cost is minimized. We make the following assumptions for the maintenance model 
of a deteriorating system. 
A1 : Initially a new system is installed. Whenever the system fails, it is either repairedor replaced by an 

identical new one.  

A2 : Let 1  X  be the operating time before the first failure and let  F x  be the distribution function 

of 1X .  1 0E X   . Let 
1iX 

 be the operating time after the i th failure, for 

1,2,3, . i  Then the distribution function of 
1iX 

 is  12iF x
, where 0     and 

 1 12
i i

E X



 

  for 1,2,3, . i  The successive operating times after repairs 

 , 1, 2,3, nX n  follow partial sum process. 

A3 : After the first failure, let 
1Y  be the repair time and let  G y  be the distribution of 

1Y . Assume 

that  1 0E Y   . Let nY  be the repair time and let the distribution function of nY

 1 ,nG a x where 0 1 a  is constant, that is, the successive repair times  , 1, 2,3, n nY  

form an increasing geometric process. By Lam Y., (1988a),   1
,




i i
E Y

a
1,2,3, . i  

A4 : The working age T  of a system at time t is the cumulative life time given by  

T(t)= 
1

1 1 1 1

  
,



   

    
 

   

n n n n n

n

n n n n n

t V U V t U V
T

U U V t U V
 

where, 
1


n

n k

k

U X  and 
1


n

n k

k

YV . 

A5 : The working times, repair times and replacement time are independent. 

A6 : The repair cost is ,c  the reward rate r and replacement cost is R . 

A7 : The replacement time is a random variable  E Z  . 

A8 : A cycle is completed, if the replacement is done. 
 

3. The Replacement Policy T  
A cycle is the time between two consecutive replacements. The successive cycles forms a renewal process. 
By the renewal reward theorem, the long run average cost per unit time under the replacement policy T is 
given by  

 
the  expected  cost  incurred  in  a  cycle  

the  expected  length  of   a  cycle  
C T   
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where   is a random variable denoting the number of failures before the working age of the system 

reaches .T  

Consider  
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Substituting the equations (2) and (3) in equation (1), we obtain 
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On differentiating equation (4), we obtain on simplification  
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Again differentiating equation (5) and using the equation (6), we obtain on simplification that 
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If  1'' 0C T  , then 
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For if  '

1 0C T   1,   '' 0C T  , then  1   C T attains its minimum . 

 
4. Numerical Example 

In this section, we give an example to strengthen the theoretical results. Assume that  ,    1  , 2,...iW i   

is a sequence of independent random variable and each iW , has an exponential distribution  exp i  

with i j   for i j . Then the probability density function of 
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Let the parameter values be 15c  , 0.956a  , 25  , 50r  , 1.054  , 12  , 10  , 
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50000R  . 

On substituting these values in equation (7) and passing over numerical calculations, we arrive at 
*      410,T   so that  TC  is minimum at 

*T  and the long run average cost 

      410       1452.746T   C C  monetary units. The value of  C T  for T ranging from 110 to 500 

in steps of 10 are given in Table 1. Further the tabulated values are plotted in Figure 1 
 

Table 1. Values of  C T  against T  

T      C T   T      C T   T      C T   T    C T  

110    1436.987    210    1145.783    310    1147.801      410   

120    1437.254    220    1145.846    320    1147.939    420    1451.023   

130    1438.723    230    1145.902    330    1147.972    430    1450.974   

140    1439.085    240    1147.143    340    1148.548    440    1450.257   

150    1439.156    250    1147.235    350    1148.697    450    1446.938   

160    1442.358    260    1147.357    360    1148.913    460    1445.845   

170    1442.456    270    1147.489    370    1149.216    470    1443.789   

180    1442.569    280    1147.504    380    1149.864    480    1442.971   

190    1442.631    290    1147.671    390    1149.265    490    1439.582   

200    1443.705    300    1147.738    400    1149.327    500    1435.768   

 

 

Figure 1. Graph of  C T  against T  

 
5. CONCLUSION 
In this paper, we have studied maintenance model for a deteriorating system under partial sum process. 
An explicit expression for the long run average cost per unit time under the replacement policy T is 
derived. Optimality conditions are determined analytically. Numerical example is given for verifying the 
theoretical result. 
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