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In this work, we investigate solutions for the local fractional Helmholtz and
Laplace equations on Cantor set having importance in electrostatics, gravita-
tion and fluid dynamics. To find exact solutions, the q-local fractional homo-
topy analysis transform method (q-LFHATM) has been used. The numerical
results computed with the aid of the applied scheme shows that it is an efficient
and accurate tool to solve differential equations with local fractional derivatives.
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1 Introduction

The concept of local fractional calculus (LFC) has been used to model and
analyze numerous fractal equations some of which are Fokker-Planck equation
[1, 2], fractal wave equations [3], fractal-time dynamical systems [4, 5], the local
fractional stress strain relations [6], the local fractional heat conduction model
[7], local fractional Tricomi equation [8], local fractional Laplace equations [9],
the Helmholtz equation associated with local fractional operator [10], fractal
signals [11, 12], fractal Fourier analysis [13], Yang Fourier transform [14, 15,
16], Yang-Laplace transform [15, 17], fractal vehicular traffic flow [18], local
fractional modelling in growths of population [19], and Boussinesq equation
containing local fractional operator [20], etc. Some recent outcomes of different
authors on local fractional methods involving local fractional integral transforms
can be seen in a series of articles [21, 22, 23].
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This work presents a very useful scheme known as the q-local fractional ho-
motopy analysis transform method (q-LFHATM), which is a combination of
q-HAM and the local fractional Laplace transform (LFLT). The proposed q-
LFHATM is implemented to analyze the local fractional Helmholtz and Laplace
equations. The merger of q-HAM and LFLT resulted in lesser C.P.U time
(RAM-1 GB or more and Processor 2.65 GHz or more) while solving fractional-
order nonlinear problems. The ability of the proposed method to achieve the
series solution of local fractional Helmholtz and Laplace equations over a vast
domain by picking approximate values for parameters is one of its advantages.
El-Tavil & Huseen proposed the q-HAM [24, 25] which is a smooth generaliza-
tion of the HAM. The HAM was first proposed and used by Liao [26, 27] to
solve several problems found in engineering, science and finance.
The rest of the article is organized as follows: Section 2 reports basic defini-
tions and formulae of LFC and LFLT. Section 3, the working of q-LFHATM
is explained. The q-LFHATM is utilized to derive the solutions of local frac-
tional Helmholtz and Laplace equations under different fractal conditions in
Section 4. Section 5 presents the glimpse of numerical simulation for fractal
order ρ = ln 2/ ln 3. At the end, conclusion is reported in Section 6.

2 Preliminaries

Here, we provide certain important concepts of LFC and LFLT.
Definition 2.1. If we have a relation [12, 28]

|θ (t)− θ (t0) | < εα, 0 < α ≤ 1, (1)

with |θ (t)− θ (t0) | < δ , for ε, α ∈ R, then the function θ (t) is said to be local
fractional continuous (LFC) at t = t0 and is indicated by lim

t→t0
θ (t) = θ (t0) .

Here, θ (t) is called LFC on (a, b) and is expressed as

θ (t) ∈ Cα (a, b) . (2)

Definition 2.2. A function θ (t) is a nondifferentiable function of exponentα
(0 < α ≤ 1) if it satisfies the Hölder function of the exponent α. Then for
t, s ∈ T , we have [12, 28]

|θ (t)− θ (s)| < C |t− s|α . (3)

Definition 2.3. θ (t) is said to be continuous of α, 0<α ≤ 1, or α continuous
if there exists the following condition [12] |θ (t)− θ (t0) | < εα,

θ (t)− θ (t0) = o ((t− t0)
α

) . (4)

In view of (4), Eq. (1) presents the standard form of local fractional continuity.
Definition 2.4. If θ (t) ∈ Cα (a, b), then local fractional derivative (LFD) of
θ (t) of order α at x = x0 is written as [12, 28]:

θ(α) (t0) =
dα

dtα
θ (t) |t=t0 = lim

t→t0

∆α (θ (t)− θ (t0))

(t− t0)
α , (5)
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where ∆α (θ (t)− θ (t0)) ∼= Γ (α+ 1) (θ (t)− θ (t0)).
For any t ∈ (a, b), we have θ(α) (t) = Dα

t θ (t) . The LFD of mα order is expressed
as:

θ(mα) ≡
m times︷ ︸︸ ︷

Dα
t ....D

α
t θ (t),

whereas the local fractional partial derivative (LFPD) of mα order is expressed
as:

∂mαθ (t)

∂tmα
≡

m times︷ ︸︸ ︷
∂α

∂tα
....

∂α

∂tα
θ (t) .

Definition 2.5. Let 1
Γ(1+α)

∫∞
0
|θ (t)| (dt)α < m <∞. Then the Yang-Laplace

(YL) transform [29, 30] of θ (t) is defined as:

Lα {θ (t)} = θL,αs (s) =
1

Γ (1 + α)

∫ ∞
0

Eα (−sαtα) θ (t) (dt)
α
, 0 < α ≤ 1. (6)

Here, the latter integral converges and sα ∈ Rα.
Definition 2.6. The inverse of YL transform of θ (t) is stated as

L−1
α

(
θL,αs (s)

)
= θ (t) =

1

(2π)
α

∫ υ+iω

υ−iω
Eα (sαtα) θL,αs (s) (ds)

α
, 0 < α ≤ 1, (7)

where sα = υα + iαωα; fractal imaginary unit iα and Re (s) = α > 0.
Some useful formulae of LFLT [11, 12] are mentioned here:

Lα {aθ (t) + bφ (t)} = aθL,αs (s) + bφL,αs (s) , (8)

Lα {Eα (cαtα) θ (t)} = θL,αs (s− c) , (9)

Lα

{
θ(mα) (t)

}
= smαθL,αs (s)

−s(m−1)αθ (0)− s(m−2)αθ(α) (0)− · · · − θ((m−1)α) (0) , (10)

Lα {Eα (cαtα)} =
1

sα − cα
, (11)

Lα {sinα (cαtα)} =
cα

s2α + c2α
, (12)

Lα {tmα} =
Γ (1 +mα)

s(m+1)α
. (13)

Definition 2.7. The Mittag-Leffler function (MLF) is formulated as [12, 28]

Eα (tα) =
∞∑
m=0

tmα

Γ (1 +mα)
, 0 < α ≤ 1. (14)

3
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The following results hold true;

sinα (tα) =
∞∑
m=0

(−1)
m t(2m+1)α

Γ (1 + (2m+ 1)α)
,

cosα (tα) =
∞∑
m=0

(−1)
m t2mα

Γ (1 + 2mα)
, 0 < α ≤ 1. (15)

Certain fundamental formulas and results used in the work are presented below:

dαtmα

dtα
=

Γ (1 +mα) t(m−1)α

Γ (1 + (m− 1)α)
, (16)

dαEα (tα)

dtα
= Eα (tα) , (17)

dαEα (mtα)

dtα
= mEα (mtα) . (18)

3 Working plan of q-LFHATM

To elucidate the procedure of q-LFHATM, the following nonlinear local frac-
tional partial differential equation (LFPDE) is investigated

–Lα ε(η, κ) +Rα ε(η, κ) +Nα ε(η, κ) = h(η, κ), n− 1 < α ≤ n, (19)

where –Lα indicates the linear local fractional operator, Rα indicates the remain-
ing local linear differential operator, Nα stands for the nonlinear differential
operator and h(η, κ) signifies the source term.
Operating the LFLT on Eq. (19), we obtain

Lα [ε(η, κ)]− s−αε(η, 0)− s−2αε(α)(η, 0)− · · · − s−tαε((t−1)α)(η, 0)
+s−tα Lα [Rαε(η, κ) +Nα ε(η, κ)− h(η, κ)] = 0.

(20)

We describe the nonlinear operator as:

N [ψ(η, κ; l)] = Lα [ψ(η, κ; l)]− s−αψ(η, κ; l)(0+)− s−2αψ(σ)(η, κ; l)(0+)− · · ·
−s−tαψ((t−1)α)(η, κ; l)(0+) + s−tαLα [Rαε(η, κ) +Nα ε(η, κ)− h(η, κ)] .

(21)
In Eq. (21), l ∈ [0, 1/n] and ψ(η, κ; l) is a real valued function of η, κ & l. Now,
the homotopy is framed as:

(1− nl)Lα [[ψ(η, κ; l)− ε0(η, κ)] = h̄ l N [ε(η, κ)]. (22)

In Eq. (22), Lα stands for the LFLT operator, n ≥ 1,l ∈ [0, 1/n] is an embedding
variable, h̄ 6= 0 stands for an auxiliary parameter, ε0(η, κ) denotes initial guess
(IG) of ε(η, κ) and ψ(η, κ; l) is an unidentified function. Clearly, for l = 0 and
l = 1

n , the results obtained are

ψ(η, κ; 0) = ε0(η, κ), ψ(η, κ ;
1

n
) = ε(η, κ), (23)

4
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respectively. Therefore, when l approaches from 0 to 1
n , ψ(η, κ; l) changes from

the IG ε0(η, κ) to solution ε(η, κ). Taylor series expansion of ψ(η, κ; l) provides

ψ(η, κ; l) =
∞∑
m=0

εm(η, κ)lm. (24)

where

εm(η, κ) =
1

m !

∂mψ(η, κ; l)

∂lm
|l=0. (25)

For proper values of u0(x, t),n and h̄ , the series (10) converges for l = 1
n , then

we obtain

ε(η, κ) =
∞∑
m=0

εm(η, κ)(
1

n
)m. (26)

Now, the set of vectors is characterized as

−→ε m = {ε0(η, κ), ε1(η, κ), · · · , εm(η, κ)}. (27)

Next, the mth-order deformation equation is composed as

Lα [εm(η, κ)− χmεm−1(η, κ)] = h̄<m(−→ε m−1). (28)

Operating the inverse LFLT on Eq. (28), we obtain

εm(η, κ) = χmεm−1(η, κ) + h̄ Lα
−1[<m(−→ε m−1)]. (29)

In Eq. (29), the value of <k(~φk−1) and χk are presented below

<m(−→ε m−1) =
1

(m− 1)!

∂m−1N [ε(η, κ; l)]

∂lm−1
|l=0, (30)

and

χm =

{
0, m ≤ 1,
n, m > 1.

(31)

4 Illustrative examples

Example 4.1 Let us take the local fractional Helmholtz equation [10] as follows

∂2ρφ(u, v)

∂u2ρ
+
∂2ρφ(u, v)

∂v2ρ
= φ(u, v), 0 < ρ ≤ 1 (32)

with initial-boundary conditions given as:

φ (0, v) = 0,
∂ρφ(0, v)

∂uρ
= Eρ (vρ) . (33)

Applying LFLT on Eq. (32), we obtain

Lρ {φ(u, v)} − sρφ(0, v)− s−2ρ ∂
ρφ(0, v)

∂uρ
+ s−2ρLρ

{
∂2ρφ(u, v)

∂2ρv
− φ(u, v)

}
= 0,

5
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or

Lρ {φ(u, v)} − s−2ρEρ (yρ) + s−2ρLρ

{
∂2ρφ(u, v)

∂2ρv
− φ(u, v)

}
= 0. (34)

The nonlinear operator is defined as

N [ψ(η, κ; l)] = Lρ [ψ(η, κ; l)]−s−2ρEρ (yρ)+s−2ρLβ

{
∂2ρψ(η, κ; l)

∂2ρv
− ψ(η, κ; l)

}
,

(35)
and so

<m
(
~φm−1 (u, v)

)
= Lρ {φm−1 (u, v)}

−
(

1− χm
n

)
s−2ρEρ (vρ) + s−2ρLρ

[
∂2ρφm−1 (u, v)

∂v2ρ
− φm−1 (u, v)

]
. (36)

The mth-order deformation equation is built as

Lρ {φm (u, v)− χmφm−1 (u, v)} = h̄<m
(
~φm−1 (u, v)

)
. (37)

Applying inverse LFLT on Eq. (37), we obtain

φm (u, v) = χmφm−1 (u, v) + h̄L−1
ρ

{
<m

(
~φm−1 (u, v)

)}
. (38)

For m = 1, we have

φ1 (u, v) = χ1φ0 (u, v) + h̄L−1
ρ

{
<1

(
~φ0 (u, v)

)}
or

φ1 (u, v) = −h̄Eρ (vρ)
uρ

Γ (1 + ρ)
. (39)

For m = 2, we have

φ2 (u, v) = χ2φ1 (u, v) + h̄L−1
ρ

{
<2

(
~φ1 (u, v)

)}
,

or

φ2 (u, v) = − (n+ h̄) h̄Eρ (vρ)
uρ

Γ (1 + ρ)
. (40)

For m = 3, we have

φ3 (u, v) = χ3φ2 (u, v) + h̄L−1
ρ

{
<3

(
~φ2 (u, v)

)}
,

or

φ3 (u, v) = − (n+ h̄) h̄2Eρ (vρ)
uρ

Γ (1 + ρ)
, (41)

& so on.

6
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Hence, the nondifferentiable solution is expressed as

φ(u, v) =
∞∑
m=0

φm(u, v)(
1

n
)m.

φ(u, v) = φ0(u, v) +
φ1(u, v)

n
+
φ2(u, v)

n2
+
φ3(u, v)

n3
+ · · ·

or

φ(u, v) =
1

n

[
h̄Eρ (vρ)

uρ

Γ (1 + ρ)

]
− 1

n2

[
(n+ h̄) h̄Eρ (vρ)

uρ

Γ (1 + ρ)

]

− 1

n3

[
(n+ h̄) h̄2Eρ (vρ)

uρ

Γ (1 + ρ)

]
+ · · · . (42)

On letting h̄ = −1 and n = 1, one can achieve the result

φ (u, v) =
uρ

Γ (1 + ρ)
Eρ (vρ) . (43)

which is the solution of fractal problem (32).
Example 4.2 Take the following local fractional Laplace equation [9]

∂2ρφ(u, v)

∂u2ρ
+
∂2ρφ(u, v)

∂v2ρ
= 0, 0 < ρ ≤ 1, (44)

with initial-boundary conditions given as:

φ (0, v) = −Eρ (vρ) ,
∂ρφ(0, v)

∂uρ
= 0. (45)

Applying LFLT on Eq. (44), we obtain

Lρ {φ(u, v)} − s−ρφ(0, v)− s−2ρ ∂
ρφ(0, v)

∂uρ
+ s−2ρLρ

{
∂2ρφ(u, v)

∂2ρv

}
= 0,

or

Lρ {φ(u, v)}+ s−ρEρ (yρ) + s−2ρLρ

{
∂2ρφ(u, v)

∂2ρv

}
= 0. (46)

The nonlinear operator is

N [ψ(η, κ; l)] = Lρ [ψ(η, κ; l)] + s−ρEρ (yρ) + s−2ρLβ

{
∂2ρψ(η, κ; l)

∂2ρv

}
, (47)

and so
<m

(
~φm−1(u, v)

)
= Lρ {φm−1(u, v)}

+
(

1− χm
n

)
s−ρEρ (vρ) + s−2ρLρ

[
∂2ρφm−1(u, v)

∂v2ρ

]
. (48)

7
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The mth-order deformation equation is constituted as:

Lρ {φm (u, v)− χmφm−1 (u, v)} = h̄<m
(
~φm−1(u, v)

)
. (49)

Operating the inverse LFLT, we obtain

φm (u, v) = χmφm−1 (u, v) + h̄L−1
ρ

{
<m

(
~φm−1(u, v)

)}
. (50)

Taking m = 1, 2, 3, . . ., we get
For m = 1

φ1 (u, v) = −h̄Eρ (vρ)
u2ρ

Γ (1 + 2ρ)
. (51)

For m = 2

φ2 (u, v) = − (n+ h̄) h̄Eρ (vρ)
u2ρ

Γ (1 + 2ρ)
− h̄2Eρ (vρ)

u4ρ

Γ (1 + 4ρ)
. (52)

For m = 3

φ3 (u, v) = − (n+ h̄)
2
h̄Eρ (vρ)

u2ρ

Γ (1 + 2ρ)
− 2 (n+ h̄) h̄2Eρ (vρ)

u4ρ

Γ (1 + 4ρ)

−h̄3Eρ (vρ)
u6ρ

Γ (1 + 6ρ)
, (53)

& so on.
Hence, the nondifferentiable solution is presented as

φ(u, v) = − 1

n

[
h̄Eρ (vρ)

u2ρ

Γ (1 + 2ρ)

]
− 1

n2

[
(n+ h̄) h̄Eρ (vρ)

u2ρ

Γ (1 + 2ρ)
− h̄2Eρ (vρ)

u4ρ

Γ (1 + 4ρ)

]

− 1

n3

[
(n+ h̄)

2
h̄Eρ (vρ)

u2ρ

Γ (1 + 2ρ)
+ 2 (n+ h̄) h̄2Eρ (vρ)

u4ρ

Γ (1 + 4ρ)
+ h̄3Eρ (vρ)

u6ρ

Γ (1 + 6ρ)

]
+· · · .

(54)
Setting h̄ = −1 and n = 1, one can have

φ (u, v) = Eρ (vρ)

(
−1 +

u2ρ

Γ (1 + 2ρ)
− u4ρ

Γ (1 + 4ρ)
+

u6ρ

Γ (1 + 6ρ)
− · · ·

)
.

It can be written as

φ (u, v) = Eρ (vρ)

( ∞∑
m=0

(−1)
m u2mρ

Γ (1 + 2mρ)

)
.

The solution of Eq. (44) is constituted as

φ (u, v) = Eρ (vρ) cosρ (uρ) . (55)

8
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Example 4.3 Finally, the following Laplace equation with LFD [9] is investi-
gated

∂2ρφ(u, v)

∂u2ρ
+
∂2ρφ(u, v)

∂v2ρ
= 0, 0 < ρ ≤ 1 (56)

with initial-boundary conditions given as:

φ (0, v) = 0,
∂ρφ(0, v)

∂uρ
= −Eρ (yρ) . (57)

Applying LFLT on Eq. (56), we obtain

Lρ {φ(u, v)} − s−ρφ(0, v)− s−2ρ ∂
ρφ(0, v)

∂uρ
+ s−2ρLρ

{
∂2ρφ(u, v)

∂2ρv

}
= 0

or

Lρ {φ(u, v)}+ s−2ρEρ (yρ) + s−2ρLρ

{
∂2ρφ(u, v)

∂2ρv

}
= 0. (58)

The nonlinear operator is constituted as

N [ψ(η, κ; l)] = Lρ [ψ(η, κ; l)] + s−2ρEρ (yρ) + s−2ρLβ

{
∂2ρψ(η, κ; l)

∂2ρv

}
, (59)

and so
<m

(
~φm−1 (u, v)

)
= Lρ {φm−1 (u, v)}

+
(

1− χm
n

)
s−2ρEρ (vρ) + s−2ρLρ

[
∂2ρφm−1 (u, v)

∂v2ρ

]
. (60)

Next, we present the mth-order deformation equation as

Lρ {φm (u, v)− χmφm−1 (u, v)} = h̄<m
(
~φm−1 (u, v)

)
. (61)

Applying the inverse LFLT, we obtain

φm (u, v) = χmφm−1 (u, v) + h̄L−1
ρ

{
<m

(
~φm−1 (u, v)

)}
. (62)

Taking m = 1, 2, 3, . . ., we get
For m = 1, we have

φ1 (u, v) = h̄Eρ (vρ)
uρ

Γ (1 + ρ)
. (63)

For m = 2, we obtain

φ2 (u, v) = (n+ h̄) h̄Eρ (vρ)
uρ

Γ (1 + ρ)
+ h̄2Eρ (vρ)

u3ρ

Γ (1 + 3ρ)
. (64)

For m = 3, we find

φ3 (u, v) = (n+ h̄)
2
h̄Eρ (vρ)

uρ

Γ (1 + ρ)

9
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+2 (n+ h̄) h̄2Eρ (vρ)
u3ρ

Γ (1 + 3ρ)
+ h̄3Eρ (vρ)

u5ρ

Γ (1 + 5ρ)
, (65)

Hence, the nondifferentiable solution is

φ(u, v) =
∞∑
m=0

φm(u, v)(
1

n
)m.

or

φ(u, v) =
1

n

[
h̄Eρ (vρ)

uρ

Γ (1 + ρ)

]
+

1

n2

[
(n+ h̄) h̄Eρ (vρ)

uρ

Γ (1 + ρ)
− h̄2Eρ (vρ)

(
u3ρ

Γ (1 + 3ρ)

)]

+
1

n3

[
(n+ h̄)

2
h̄Eρ (vρ)

uρ

Γ (1 + ρ)
+ 2 (n+ h̄) h̄2Eρ (vρ)

u3ρ

Γ (1 + 3ρ)
+ h̄3Eρ (vρ)

u5ρ

Γ (1 + 5ρ)

]
+· · · .

(66)
On using the values h̄ = −1 and n = 1, we have

φ (u, v) = Eρ (vρ)

(
− uρ

Γ (1 + ρ)
+

u3ρ

Γ (1 + 3ρ)
− u5ρ

Γ (1 + 5ρ)
+ · · ·

)
.

The solution of Eq. (56) in closed form is expressed as

φ (u, v) = Eρ (vρ)

( ∞∑
m=0

(−1)
m u(2m+1)ρ

Γ (1 + (2m+ 1) ρ)

)
.

or
φ (u, v) = Eρ (vρ) sinρ (uρ) . (67)

5 Numerical simulation

This section presents numerical outcomes for fractal problem given in Examples
4.1-4.3 under fractal initial-boundary conditions. The 3D graphs for the local
fractional Helmholtz and Laplace equations are demonstrated on the Cantor set
for the fractal order ρ = ln 2/ ln 3 via MATLAB. The graphics authenticates that
the achieved solutions for Examples 4.1-4.3 depend on the fractal order ρ of the
LFD. The 3D graphical visuals show the fractal pattern of the nondifferentiable
function φ (u, v) in Examples 4.1-4.3.

6 Conclusions

In this work, the q-LFHATM is utilized to obtain the nondifferentiable solutions
for the Helmholtz and Laplace equation in fractal media. The computed results
establish the reliability and efficiency of the proposed technique and the applied
method can be used to solve many other LFPDEs arising in fractal media.
Finally, the computer simulations are also presented for fractal analysis of local
fractional Helmholtz and Laplace models.
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Figure 1: 3D nature of φ (u, v) w.r.t. u and v for Example 4.1

Figure 2: 3D behavior of φ (u, v) w.r.t. u and v for Example 4.2
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Figure 3: 3D pattern of φ (u, v) w.r.t. u and v for Example 4.3
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