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Abstract

The present paper discusses a two-state retrial queueing system with
catastrophe. If a customer on arrival finds the server free then it is served
immediately. Such customer is known as primary customer. Moreover, if
the server is busy then the customer joins virtual queue and retries for
service after a random amount of time. This customer is called a sec-
ondary customer. Primary and secondary customers both follow Poisson
processes. Inter arrival times and service times both follow exponential
distribution. Catastrophe occurs on a busy server and its occurrence fol-
lows a Poisson process. Catastrophe causes the failure of server and so
the server is sent for repair after occurrence of catastrophe. The repair
times are also exponentially distributed. Time dependent probabilities for
exact number of arrivals in the system and departures from the system
when the server is idle or busy are obtained by using recursive approach.
The probability of server being under repair is also obtained. Verifica-
tion of results is done. Numerical results are generated and represented
graphically to study the effect of various parameters.

Keywords: Retrial, Arrivals, Departures, Catastrophe, Repair.

1 Introduction

In many real life situations it has been observed that a customer does not get
the service instantly on arrival. So he tries again for the service after a random
period of time which is popularly known as retrial. The queueing systems with
these repeated attempts have been used in many fields such as telecommuni-
cation, computer networks, data transmission, etc. Analysis of such systems
developed a new class of queueing systems which is known as retrial queueing
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systems. Retrial queue is a model of the system with finite capacity where if
the arrival finds a free server, it is served immediately. However, if the server is
not free, the customer leaves the service area and joins the virtual queue known
as orbit. Thereafter it retries from the orbit after a random amount of time to
get service.

Call centers serve as a basic example to retrial systems where call agent is
the server and a person who is calling is the customer. If a customer is able to
connect the call agent immediately after making a call, he is answered else he
has to repeat the call.
[6] is the early work done on retrial queues. [16] discussed some important sin-
gle server retrial queuing models and represented analytic results. [10] analyzed
the single server retrial queue with finite number of sources and established
customer’s arrival distribution, busy period and waiting time process. An ex-
planation of the retrial queueing system is shown in the following diagram:

Primary Arrivals Is Server free? Orbit
No

Secondary Arrivals

Service Area

Yes

Departures

Figure 1. Basic Structure of a Retrial Queueing System

[13] was the first who introduced the concept of two-state in ‘Some New Re-
sults for the M/M/1 Queue’. In this paper they obtained a closed form solution
for the probability that exactly i arrivals and j services occur over a time inter-
val of length t. [14] studied the two-state single server retrial queuing model in
which the time dependent probabilities of exact number of arrivals and depar-
tures in the system are obtained when the server is free or busy. [15] developed
‘A two-state retrial queueing model with feedback having two identical parallel
servers’ in which transient solution is obtained for the retrial queueing model.
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In recent years many researchers have shown interest towards the concept of
catastrophe. Catastrophe is a sudden, unexpected failure in a machine, com-
puter network, electronic system, communication system, etc. Catastrophe oc-
curs at random, deletes all the customers present in the system and inactivates
the service facilities for a short period of time. Catastrophe resets the system
from current state to zero state at random time intervals. Catastrophe may
come from outside the system or from another service station. Retrial queueing
system with catastrophe can be seen in call centers, computer networks and
in telecommunication networks. In population dynamics, catastrophe can be
considered as the natural disasters such as floods, storms, etc. On the other
hand in the queueing models, catastrophe makes the system empty and causes
server’s breakdown.
For example: In call centers with the occurrence of catastrophic events like
power failure, virus attacks will result in loss of all the calls present at that time
and breakdown of the network.
[8], [5] are the works done on Catastrophe occurring in a simple Markovian
queue. [11] discussed the asymptotic behavior of the probability of server being
free. [12] worked on M/M/1 queuing system with catastrophes. Transient solu-
tion is obtained for system with server failure and non-zero repair time.
Furthermore, the server is sent for repair immediately when the failure occurs.
After getting repaired, the server comes back to its working position and the
system becomes ready to serve new customers. [4] proposed M/M/∞ queueing
system with catastrophe and repairable servers.
Following diagram shows the basic structure of retrial queueing system with
catastrophe.
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Primary Arrivals Is Server free? Orbit
No

Secondary Arrivals

Service Area

Yes

Departures

Catastrophe

Server breakdown

Repair

Figure 2. Basic Structure of a Retrial Queue With Catastrophe.

[1] studied the transient behaviour of two-processor heterogeneous system
with catastrophes, server failures and repairs. [7] studied a fractional M/M/1
queue with catastrophe. [3] obtained transient solution of markovin queues with
catastrophe having infinite servers.

The transient solutions are used to study the dynamic behaviour of a system.
They are useful to study the characteristics of a system on different time points.
Therefore, transient analysis of queueing systems is extremely important from
theoretical and practical perspective.
In this paper, we derive two-state time-dependent probabilities for exact num-

ber of arrivals to the system and departures from the system by time t when the
server is idle or busy for a single server retrial queueing system. The factor two-
state makes the results well-quantified as in the case of [13]. Also we obtain the
probability of server being under repair when the server fails due to catastrophic
events at random time intervals. Besides these theoretical solutions, we present
some numerical results graphically to study the effect of various parameters and
the behaviour of probabilities with respect to average service times.

The paper has been organized in the following sections:

4
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In section 2 the complete mathematical description of the model is defined.
Also, the difference-differential equations are derived in this section. Solution of
the model is given in section 3 in which we obtained the transient state proba-
bilities and the probability of server being under repair. In section 4 verification
of results is done. The numerical results are obtained and represented graphi-
cally in section 5. In section 6 the busy period probabilities of system and the
server are obtained numerically and presented graphically. Section 7 discusses
the conclusion and in section 8 acknowledgment is given. Finally the references
are listed.

2 Model Description

In this paper, we are considering a two-state single server retrial queueing system
with catastrophe. In this system, customers arrive according to Poisson process.
If on arrival customer finds the server busy, he joins the orbit and retries from the
orbit. These retrials are considered to be secondary arrivals. Catastrophe occurs
according to Poisson process. We are assuming in our model that catastrophe
occurs only when the system is non-empty and when the server is busy. It has
no effect on the system when the system is empty. Catastrophe makes system
empty and also causes server’s breakdown by deleting all the customers present
in the system. Once the system becomes empty or when the server breaks down,
it is sent for repair immediately. Further, it is assumed that during the repair
time no arrival can take place. The detailed description of the model is given
as follows:

� Arrival Process: The primary customers arrive at the system according to
Poisson process with mean arrival rate λ.

� Retrial Process: The secondary customers arrive at the system according
to Poisson process with mean retrial rate θ.

� Service Process: The service times are exponentially distributed with pa-
rameter µ.

� Catastrophe: Catastrophe follow Poisson process with mean rate ξ.

� Repair: The repair time is exponentially distributed with parameter τ .

Also, the primary and secondary arrivals, inter-arrival times, service times, de-
partures and catastrophes are mutually independent.

Laplace transformation f̄(s) of f(t) is given by:

f̄(s) =

∫ ∞

0

e−stf(t)dt; Re(s) > 0

5
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The Laplace inverse of

Q(p)

P (p)
=

n∑
k=1

mk∑
l=1

tmk−leakt

(mk − l)!(l − 1)!
× dl−1

dpl−1

(
Q(p)

P (p)

)
(p−ak)

mk ∀p = ak, ai ̸= ak for i ̸= k

where

P (p) = (p− a1)
m1(p− a2)

m2 .......(p− an)
mn

Q(p) is a polynomial of degree < m1 +m2 +m3 + ............+mn − 1

If L−1{f(s)} = F (t) and L−1{g(s)} = G(t) then

L−1{f(s)g(s)} =

∫ t

0

F (u)G(t− u)du = F ∗G

F ∗G is called the convolution of F and G.

2.1 The Two-Dimensional State Model

2.1.1 Notations

Pi,j,0(t) = Probability that there are exactly i number of arrivals in the system
and j number of departures from the system by time t and the server is free.

Pi,j,1(t) = Probability that there are exactly i arrivals, j departures from the
system by time t and the server is busy.

Q(t)=Probability that the server is under repair by time t.

Pi,j(t) = Probability that there are exactly i arrivals in the system and j de-
partures from the system by time t.

Pi,j(t) = Pi,j,0(t) + Pi,j,1(t) ∀ i, j i ≥ j;

and Pi,j,1(t) = 0, i ≤ j; Pi,j,0(t) = 0, i < j;

Initially

P0,0,0(0) = 1; Pi,j,0(0) = 0, Pi,j,1(0) = 0, i, j ̸= 0; Q(0) = 0;

2.1.2 The Difference-Differential equations governing the system are:

d

dt
Pi,j,0(t) = −(λ+ (i− j)θ)Pi,j,0(t) + µPi,j−1,1(t) i ≥ j > 0 (1)

d

dt
P0,0,0(t) = −λP0,0,0(t) + τQ(t) (2)

d

dt
Pi,j,1(t) = −(λ+ µ+ ξ)Pi,j,1(t) + λPi−1,j,0(t) + λPi−1,j,1(t)(1− δi−1,j)+

(i− j)θPi,j,0(t) i > j ≥ 0 (3)
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d

dt
Q(t) = −τQ(t) + ξ

∞∑
i=1

∞∑
j=0

Pi,j,1(t) (4)

where

δi−1,j =

{
1 when i− 1 = j

0 otherwise

Using the Laplace transformation f̄(s) of f(t) given by

f̄(s) =

∫ ∞

0

e−stf(t)dt, Re(s) > 0

in the equations (1)-(4) along with the initial conditions, we have

(s+ λ+ (i− j)θ)P̄i,j,0(s) = µP̄i,j−1,1(s) i ≥ j > 0 (5)

(s+ λ+ µ+ ξ)P̄i,j,1(s) = λP̄i−1,j,0(s) + λP̄i−1,j,1(s)(1− δi−1,j)+

(i− j)θP̄i,j,0(s) i > j ≥ 0 (6)

(s+ λ)P̄0,0,0(s) = 1 + τQ̄(s) (7)

(s+ τ)Q̄(s) = ξ
∞∑
i=1

∞∑
j=0

P̄i,j,1(s) (8)

where

δi−1,j =

{
1 when i− 1 = j

0 otherwise

3 Solution of the Problem

Solving equations (5)-(8) recursively, we have

P̄0,0,0(s) =
1

s+ λ
+

τ

s+ λ
Q̄(s) (9)

P̄i,0,1(s) =

(
λ

s+ λ+ µ+ ξ

)i (
1

s+ λ
+

τ

s+ λ
Q̄(s)

)
i ≥ 1

(10)

P̄i,1,0(s) =

[
µ

s+ λ+ (i− 1)θ

(
λ

s+ λ+ µ+ ξ

)i (
1

s+ λ
+

τ

s+ λ
Q̄(s)

)]
i ≥ 1

(11)

P̄i,i,0(s) =
µ

s+ λ

[
λ

s+ λ+ µ+ ξ
P̄i−1,i−1,0(s) +

θ

s+ λ+ µ+ ξ
P̄i,i−1,0(s)

]
i ≥ 2

(12)

P̄i,i−1,1(s) =
λ

s+ λ+ µ+ ξ
P̄i−1,i−1,0(s) +

θ

s+ λ+ µ+ ξ
P̄i,i−1,0(s) i ≥ 2

(13)

7
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P̄i,j,0(s) =
µ

s+ λ+ (i− j)θ

[i−j+1∑
k=1

(
λ

s+ λ+ µ+ ξ

)i−j−k+1

η,k(s)P̄j+k−1,j−1,0(s) +(
λ

s+ λ+ µ+ ξ

)i−j

P̄j,j−1,1(s)

]
i > j > 1

(14)

where

η
′

k =



1 if k = 1

1 +
kθ

s+ λ+ µ+ ξ
if k = 2 to i− j

kθ

s+ λ+ µ+ ξ
if k = i− j + 1

P̄i,j,1(s) =

i−j∑
k=1

[(
λ

s+ λ+ µ+ ξ

)i−j−k

η
′

k(s)p̄j+k,j,0(s)

]
+

(
λ

s+ λ+ µ+ ξ

)i−j−1

P̄j+1,1,1(s)

i ≥ j + 2, j ≥ 1
(15)

where

η
′

k =



1 if k = 1

1 +
kθ

s+ λ+ µ+ ξ
if k = 2 to i− j − 1

kθ

s+ λ+ µ+ ξ
if k = i− j

Q̄(s) =
ξ

s+ τ

∞∑
i=1

∞∑
j=0

P̄i,j,1(s) (16)

Taking the Inverse Laplace transform of equations (9)− (16), we have

P0,0,0(t) = e−λt + τe−λt ∗Q(t) (17)

Pi,0,1(t) = λie−λt

[
1

(µ+ ξ)i
− e−(µ+ξ)t

i−1∑
r=0

tr

r!

1

(µ+ ξ)i−r

]
+ τλi

[
1

(µ+ ξ)i
− e−(µ+ξ)t

i−1∑
r=0

tr

r!

1

(µ+ ξ)i−r

]
∗Q(t) i ≥ 1

(18)
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Pi,1,0(t) = µe−(λ+(i−1)θ)t ∗ Pi,0,1(t) i ≥ 1

(19)

Pi,i,0(t) = µλe−λt

[
1

µ+ ξ
− e−(µ+ξ)t

µ+ ξ

]
∗ Pi−1,i−1,0(t) + µθe−λt

[
1

µ+ ξ
− e−(µ+ξ)t

µ+ ξ

]
∗ Pi,i−1,0(t) i > 1

(20)

Pi,i−1,1(t) = λe−(λ+µ+ξ)t ∗ Pi−1,i−1,0(t) + θe−(λ+µ+ξ))t ∗ Pi,i−1,0(t) i > 1
(21)

Pi,j,0(t) = µλi−je−(λ+(i−j)θ)t

[
1

(µ+ ξ)i−j
− e−(µ+ξ)t

i−j−1∑
r=0

tr

r!

1

(µ+ ξ)i−j−r

]
∗ Pj,j−1,0(t)

+ e−(λ+(i−j)θ)t

i−j∑
k=2

µλi−j−k+1

[
1

(µ+ ξ)i−j−k+1
− e−(µ+ξ)t

i−j−k∑
r=0

tr

r!

1

(µ+ ξ)i−j−k−r+1

]

∗ Pj+k−1,j−1,0(t) + e−(λ+(i−j)θ)t

i−j∑
k=2

(µkθ)λi−j−k+1

[
1

(µ+ ξ)i−j−k+2

− e−(µ+ξ)t

i−j−k+1∑
r=0

tr

r!

1

µi−j−k−r+2

]
∗ Pj+k−1,j−1,0(t) + e−(λ+(i−j)θ)t

((i− j + 1)µθ)

[
1

µ+ ξ
− e−(µ+ξ)t

µ+ ξ

]
∗ Pi,j−1,0(t) + µλi−je−(λ+(i−j)θ)t

[
1

(µ+ ξ)i−j
− e−(µ+ξ)t

i−j−1∑
r=0

tr

r!

1

(µ+ ξ)i−j−r

]
∗ Pj,j−1,1(t) i > j > 1

(22)

Pi,j,1(t) = λi−j−1e−(λ+µ+ξ)t ti−j−2

(i− j − 2)!
∗ Pj+1,j,0(t) + e−(λ+µ+ξ)t

i−j−1∑
k=2

λi−j−k

ti−j−k−1

(i− j − k − 1)!
∗ Pj+k,j,0(t) + e−(λ+µ+ξ)t

i−j−1∑
k=2

kθλi−j−k ti−j−k

(i− j − k)!
∗ Pj+k,j,0(t)+

(i− j)θe−(λ+µ+ξ)t ∗ Pi,j,0(t) + λi−j−1e−(λ+µ+ξ)t ti−j−2

(i− j − 2)!
∗ Pj+1,j,1(t)

i ≥ j + 2, j ≥ 1
(23)

Q(t) = ξe−τt
∞∑
i=1

∞∑
j=0

Pi,j,1(t) (24)

9

421

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 3, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Neelam Singla 413-429



4 Verification of Results

� Summing equations (9)-(16) over i and j we get,

∞∑
i=0

i∑
j=0

[
P̄i,j,0(s) + P̄i,j,1(s)

]
+ Q̄(s) =

1

s

and hence

∞∑
i=0

i∑
j=0

[Pi,j,0(t) + Pi,j,1(t)] +Q(t) = 1

which is the verification of our results.

� Define Un,l(t)= Probability that there are n customers in the orbit at time
t. The server is idle when l = 0 and server is busy when l = 1.
When the server is idle, it is represented as Un,0(t):

Un,0(t) =

∞∑
j=0

Pj+n,j,0(t)

where n is the number of customers in the orbit, which can be calculated
by using the following formula:
n=(number of arrivals - number of departures).
When the server is busy, it is represented as Un,1(t):

Un,1(t) =
∞∑
j=0

Pj+n+1,j,1(t)

In this case:
n= (number of arrivals - number of departures - 1).
Using the above definitions in (1)-(4) and let ξ = 0, τ = 0 the equations
in statistical equilibrium are:

(λ+ nθ) Un,0 = µ Un,1 n ≥ 0

(λ+ µ) Un,1 = λ(Un,0 + Un−1,1) + (n+ 1)θ U(n+1),0 n ≥ 2

which coincides with the results (1.5) and (1.6) of [9]

5 Numerical Solution and Graphical Represen-
tation

The Numerical results are generated using MATLAB programming for the case

ρ =
(

λ
µ

)
=0.5, η =

(
θ
µ

)
=0.6, τ

′
=

(
τ
µ

)
=0.4, ξ

′
=

(
ξ
µ

)
=0.3. In following

10
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tables, we observe some significant probabilities at various time instants whose
sum approaches to 1.

Table I. At time t =1

t P0,0,0 P1,1,0 P2,1,0 P2,2,0 P3,1,0 P3,2,0 P3,3,0 P4,1,0 P4,2,0 P1,0,1 P2,0,1

1 0.6118 0.1029 0.0117 0.0043 0.0012 0.0007 0.0001 0.0001 0.0001 0.1702 0.0335

P2,1,1 P3,0,1 P3,1,1 Sum
0.0153 0.0049 0.0032 0.96

Table II. At time t =5

t P0,0,0 P1,1,0 P2,1,0 P2,2,0 P4,1,0 P4,2,0 P4,3,0 P4,4,0 P5,1,0 P5,2,0

5 0.1769 0.1584 0.0205 0.099 0.0009 0.0058 0.0128 0.0096 0.0004 0.0024

P5,3,0 P5,4,0 P5,5,0 P1,0,1 P2,0,1 P2,1,1 P3,0,1 P3,1,1 P3,2,1 P4,0,1

0.0063 0.0073 0.0032 0.0546 0.0174 0.0553 0.0057 0.0258 0.0332 0.0019

P4,1,1 P4,2,1 P4,3,1 P5,0,1 P5,1,1 P5,2,1 P5,3,1 P5,4,1 Q(t) Sum
0.0098 0.0182 0.0118 0.0008 0.0047 0.0104 0.0105 0.0041 0.1663 0.934

Table III. At time t =15

t P0,0,0 P1,1,0 P2,1,0 P2,2,0 P3,1,0 P3,2,0 P3,3,0 P5,1,0 P5,2,0 P5,3,0

15 0.1544 0.0866 0.0109 0.0575 0.002 0.011 0.0433 0.0001 0.0006 0.0025

P5,4,0 P5,5,0 P6,5,0 P6,6,0 P7,3,0 P7,4,0 P7,5,0 P7,6,0 P7,7,0 P1,0,1

0.0086 0.0271 0.0079 0.0186 0.0002 0.0008 0.0024 0.0061 0.0108 0.043

P2,0,1 P2,1,1 P3,0,1 P3,1,1 P3,2,1 P4,0,1 P4,1,1 P4,2,1 P4,3,1 P6,0,1

0.0119 0.0277 0.0033 0.012 0.0199 0.0009 0.0043 0.0104 0.0157 0.0001

P6,1,1 P6,2,1 P6,3,1 P6,4,1 P6,5,1 P8,2,1 P8,4,1 P8,5,1 P8,6,1 P8,7,1 Q(t)
0.0005 0.0016 0.004 0.0078 0.0102 0.0003 0.0026 0.0056 0.0095 0.0102 0.1914

11
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P5,0,1 P5,1,1 P5,2,1 P5,3,1 P5,4,1 P7,3,1 P7,4,1 P7,5,1 P7,6,1 Sum
0.0003 0.0014 0.0042 0.0089 0.0129 0.0016 0.0037 0.0065 0.0073 0.8911

Table IV. At time t =25

t P0,0,0 P1,1,0 P2,2,0 P3,3,0 P4,4,0 P5,5,0 P6,6,0 P7,7,0 P8,8,0 P1,0,1 P5,0,1

25 0.1391 0.0798 0.0525 0.0369 0.027 0.0204 0.0158 0.0125 0.1515 0.0389 0.0002

P7,5,1 P7,6,1 P6,4,1 P5,3,1 P5,4,0 P7,6,0 P7,5,0 P5,4,1 P4,1,1 P6,5,1

0.0048 0.0059 0.0061 0.0077 0.007 0.0044 0.0017 0.0099 0.004 0.0076

P7,4,1 P2,1,1 P4,2,1 P5,2,1 P6,5,0 P2,0,1 P3,2,1 P6,3,1 Q(t) Sum
0.0029 0.0257 0.0095 0.0039 0.0056 0.0109 0.0181 0.0034 0.1694 0.8831

Table V. At time t =40

t P6,6,0 P7,7,0 P5,5,0 P5,4,0 P3,2,0 P7,6,0 P4,4,0 P6,5,1 P7,3,1 P7,4,1 P7,6,1

40 0.0131 0.0101 0.0171 0.0059 0.0085 0.0037 0.0227 0.0064 0.0011 0.0024 0.0049

P0,0,0 P1,1,0 P1,0,1 P2,1,1 P3,1,1 P4,3,1 P4,2,1 P5,3,1 P5,4,1 P7,5,1 P2,1,0

0.1153 0.0661 0.0323 0.0213 0.0093 0.0111 0.0079 0.0064 0.0083 0.0024 0.0083

P2,2,0 P6,4,0 P3,3,0 Q(t) P3,1,0 P4,3,0 P5,2,0 P5,3,0 P8,8,0 P2,0,1 P3,0,1

0.0436 0.0017 0.0309 0.1406 0.0015 0.0073 0.0005 0.0019 0.295 0.0.009 0.0025

P3,2,1 P4,0,1 P4,1,1 Sum
0.0151 0.0.0007 0.0033 0.9382

The probabilities against time are represented graphically in the following
figures.
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Figure 3. Probabilities P4,1,0, P4,2,0, P4,3,0 and P4,4,0 against average service
times

In figure 3, the probabilities P4,1,0, P4,2,0, P4,3,0 and P4,4,0 are plotted against
time t for the given case. It is observed that all the probabilities increase initially
and then decrease. Also it can be seen that the probabilities attain higher values
for greater number of departures.

Figure 4. Effect of change in ξ
′
on the probability Q(t)

In figure 4, we study the effect of change in ξ
′
(catastrophe rate per unit

service time) on the probability Q(t)(probability of server being under repair).
From the graph it can be seen that whenever the catastrophe rate per unit
service time increases, the probability Q(t) also increases which is as desired.
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Figure 5. Effect of change in τ
′
on the probability Q(t)

In figure 5, the effect of change in τ
′
(repair rate per unit service time) on the

probability Q(t) is studied. From the graph it is clearly visible that whenever
the repair rate per unit service time increases, the probability Q(t) decreases.

6 Busy Period Probabilities

In this section we discuss the busy period probabilities of the server and the
system.
The Probability of busy server is given by:

P (Server is busy) =
∑

i>j≥0

Pi,j,1(t) (25)

The Probability of busy system is given by:

P (System is busy ) =
∑

i>j≥0

(
Pi,j,0(t) + Pi,j,1(t)

)
+Q(t) (26)

6.1 Numerical and Graphical Representation of Busy Pe-
riod Probabilities

The numerical results are obtained using MATLAB programming and following
[2]. The Probabilities of system busy and server busy are obtained for different
values of ρ keeping other parameters constant and are presented in the table
given below.
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Table VI. Probabilities of System Busy and Server Busy

Probability(System Busy) Probability(Server Busy)
t ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.5 ρ = 0.7 ρ = 0.9
0 0 0 0 0 0 0
1 0.2788 0.369 0.4485 0.2286 0.2967 0.3546
2 0.3858 0.5009 0.5956 0.2626 0.3298 0.3827
3 0.4432 0.5683 0.6651 0.2678 0.3315 0.3785
4 0.4779 0.6067 0.7017 0.2689 0.3286 0.3685
5 0.5005 0.6311 0.724 0.2684 0.3226 0.3544
6 0.5171 0.6494 0.7405 0.2662 0.3137 0.338
7 0.5314 0.6654 0.7545 0.2622 0.3026 0.3208
8 0.5453 0.6804 0.7671 0.2565 0.2902 0.3042
9 0.5594 0.6949 0.7786 0.2495 0.2773 0.2885
10 0.5741 0.7086 0.7891 0.2416 0.2645 0.2741

The probabilities of system busy and server busy are also represented graph-
ically.

Figure 6. Probabilities of system busy and server busy against average service
times

In Figure 6, the probabilities of system busy and server busy are plotted
against time t for the case ρ = 0.7, η = 0.6, τ

′
=0.4, ξ

′
=0.3. It is clear from

the graph that probability of system busy is higher than probability of server
busy. The probability of system busy increases rapidly with the increase in
time. However, the probability of server busy increases first and then decreases
gradually with time.
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7 Conclusion

In this paper, we studied a two-state single server retrial queueing system with
catastrophe. The catastrophes have significant impact on businesses, computer
networks, etc. It is very important to manage the risk of catastrophe for the
smooth functioning of the system. Moreover, the two-dimensional state queue-
ing model has been proven to be a viable tool for understanding and quantifying
factors. The proposed method is highly applicable in modeling many practical
situations like in submitting any application online, ticket booking services us-
ing telephone facility, withdrawing cash at an ATM, manufacturing sectors, call
centers, etc. In this paper, the transient state probabilities and the probabil-
ity of server being under repair are obtained. Numerical results and graphical
representations are also given.
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