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This paper introduces the latest procedure for explaining certain types
of fractional wave equations using the variation iteration method (VIM) and
Laplace transform. The Laplace variation iteration method is a type of semi-
analytical technique applied to both linear and non-linear equations wit-
hout requiring linearization, discretization, or perturbation. It is not a time-
consuming method and converses the solution rapidly with the exact and less
error solution. This approach is delineated and then explained through se-
veral example cases. The outcomes demonstrate that this alternate strategy
yields reliable outcomes and the results are displayed graphically.

1 Introduction

Mathematics, engineering, and sciences are full of amazing phenomena that
can be precisely described by using mathematical techniques from fractional
calculus, such as the perception of fractional order derivatives and integrals
[6,14,15,19]. Differential equations of fractional order [25,26,27,28] have be-
en gaining a lot of attention newly owing to the precise understanding of
nonlinear phenomena.
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The Wave equations are the linear partial differential equations of the
second order. This equation describes the waves, which are a common part
of classic physics. These include water waves, sound waves, and light waves.
Over the last few years, there has been a new application of wave-like models
to physical problems. These models can be used in different fields [2,12,16,17].
Due to the importance of wave-like equations, many researchers [2,20,21] have
considered solutions to these equations. For the current issue, we take into
consideration the following fractional wave equations with variable

N 0*v 0*v 0*v
Dfv(x,t) = F(2',y, 2") 972 + G2,y Z’)w + H(', Y, z’)w; )
l<a<?2
with the initial conditions

An analytical approach that is more powerful than the traditional variational
technique is called the “Variational iteration method” (VIM). It was initial-
ly recommended by He [8]. The “Laplace variational iteration method” is a
combination of the “Laplace transform” and “variational iteration method.”
Applications of VIM to fractional differential equations are slow to conver-
ge, mainly because they directly use the Lagrange multipliers of ordinary
differential equations (ODEs) [23]. Wu and Baleanu [24| pointed out that it
can be difficult to apply integrals by parts of the Riemann-Liouville (RL)
integral resulting from the constructed correction function. To overcome this
shortcoming, they proposed to identify generalized Lagrange multipliers via
the Laplace transform. This method has been utilized by many authors to
solve several difficulties [1,3,7]. The novelty of this work lies in applying the
“Laplace variational iteration method” (LVIM) for solving heat equations of
fractional order.

2 Preliminaries

Definition 1 The Caputo derivative of arbitrary order [4] of function v(x,t)
is presented as
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t
Div(at) = ﬁ / (t—8)" " o(™ (2,6 )d6 = J;"*D™u( v,t );

m—1<pu< mme N,
(3)
4

where 7= and J{* shows the Riemann- Liouville integral operator of fra-
ctional order [19], a > 0

1 t
Jtav(x,t):—/(t—(ﬂa1v(x,6)d5;m—1<u§m,m€]\f (4)
I'(@) Jo
Definition 2 The Laplace Transform [18,19] of f(t), ¢ > 0 is defined as
t
L) = F(s) = [ e pte)a )
0

Definition 3 The Laplace transform of Dfv(z,t) is explained as [18,19]

LID{v(zx,t)] = Lv(x,t)] — : v (2,0)s* " tm—1<a<mméeN (6)

3

E, (t) = Za F(#nﬂ) (7)
Eus) =Y s 0

3 Variational Iteration Method

He [10] established a method VIM for solving problems. This is a common
technique used to evaluate solutions for linear and non-linear problems. Illu-
strate the VIM model, we take into consideration the subsequent non-linear
equation with given constraints::

Pu(x,t) + Qu(z,t) = f(z,1) 9)

3
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where ‘v’ is the unknown function, ‘P’, ‘Q’ are linear and nonlinear operators,
and f is the source term. The correction functional for (7) is given as follows:

Un1 (2,) = vn (2, 1) +/0 AlPun(§,1) + Qua(&, 1) — F(&,1)]dE (10)

where A is a general Lagrange multiplier that can be identified optimally
via the variation theory. The subscript n indicates the nth approximation
and u, is considered as a restricted variation du,, = 0.

3.1 Laplace Variational Iteration Method (LVIM)

To demonstrate the elementary purpose of (LVIM), deliberate a general fra-
ctional non-linear nonhomogeneous partial differential equation through the
primary situations of the type

Div(z,t) + Pu(x,t) + Qu(z,t) = f(z,t)ym—1<a<mmeN (11)

U (2,0) = hg(z);n =10,1,2,3,..m — 1 (12)

where Dy is the Caputo derivative. P and () are linear and nonlinear opera-
tors, respectively, and f is the source term. By applying Laplace transform
pertaining to t, on both sides of (9), we get

-1

3

1 1 1
L[”('I?t)] = S_O‘ Un(xa O)Sa_n_l + S_aL[f<l’,t)] - S—aL[PU(l‘, t) + QU(ZL’, t)]
n=0
(13)
taking inverse Laplace transform on equation (13)
-1 1 = a—1-n,n 1
U(l‘,t):L o S v ($,0)+_L[f($,t)] -
s s
n=0 (14)

[ L%L[Pv( o)+ Qu ot )]]

by differentiating (14), concerning t, we get

ov( x,t o) |1 s e n 1
%:a{L L—anzzos v (m,0)+s—aL[f(x,t)}]— )

L L%L[Pv(x,t)#—@v(x,t)]}

4
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The correction functional for (15)

t
vn+1(x,t):vn(x,t)+/)\ -

0

aa{ liz ,o>+8iaL[f<x,t>]]}— (16)

=0

[tz

I LLQL[PM te) +Qu( e )]]czg

The general Lagrange multiplier for (16) can be identified optimally via
variation theory to get

1+ <)\)e=t =0 (17)
From (17), we get
=1 (18)
Substituting A = —1 into (16), then the iterative formula for n = 0, 1, 2,
., as follows:
“lov(z,e) O 1 =
vn+1(x,t):vn(a:,t)—/0 [T_§ S_O‘nz:
a—1l-n, n 1 -1 1
s v (x0)+—L[f( )] =L S—aL[Pv( )+ Qu( de
(19)

Begin with the early iteration

vo(z,t) = v(z,0) + tv(z,0) (20)
As a limit of the subsequent approximations, the exact answer is provided
Un(z,t), n =0, 1, 2, . . ; alternatively in other words
v(z,t) = lim v,(z,t) (21)
n—oo

3.2 Applications of LVIM for Solving fractional wave-like equa-
tions
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Problem 1 Deliberate the succeeding 1-D fractional wave-like

equation:
N 1 ,0%
Div(x,t) = §x2@; l<a<?2 (22)
initial condition:
U0($7y70) = 0>Ut<x70) :$2 (23)

taking the Laplace transformation on (22) and result specified by equation
(23) we obtain

r 2 1 , [J%u
L[U(l’,t)]_gﬁ—?ﬁ—Q—axL[w] (24)
applying inverse Laplace transformation to the Equation (24), we have
1 0?
U( .ZU,t ) =X + {L‘2t + L_l [ﬁ.fg[/ |:a—;2):|:| (25)
differentiating Equation (25) concerning t, we have
w5, 0 1 5, [0
P2y L =2 |2 2%
o =" T {23” 02 (26)
the correction functional for A = —1 is offered by
"Tov(xe) o 0. 1 o (0%,
Uns1(x,t) :vn(x,t)—/o {T —z° — %L {@x L((%ﬂ )H de
(27)
the initial iteration
vo(z,0) = v + 2%t (28)
using the equation in equation (26), we have
vo(a,t) = vo(,0) = x + 2 (29)
) ) ta+1
t) = t _— 30
) ) tori—l ) t20¢+1
t) = t 31
ve(z,t) =2+ +xF(a+2)+xF(2a—|—2) (31)

6
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therefore it is expected that the general term in the successive approxi-

mation

vp(2,t) = 2 + 2

ta+1

t2a+1

£+ I'a+2)

* ['(2a+2)

assumed that the solution was in closed form by

v(x,t) = lim v,(z,t) = x + 2t Ey (%)

n—o0

+..]

(32)

(33)

where E, 2(t%) is the Mittag- Laffler Function defined in equation (6) letting

a = 2 then

v(x,t) ==z + 2%t +

Numerical and Graphical discussion
In this part we found a record for numerical explanation of equation (31)
and plot some graphs for a = 0.25,0.5,0.75, 1.

sinht

Table 1: The values of v(z,t) for o = 0.25

(34)

a=0.25
t X=1 X=3 X=5 X=7 X=9
0 2 12 30 o6 90
2 22.907618 | 50.042141 | 135.672615 || 263.118327 || 432.379275
4 13.010819 | 111.097371 | 305.270476 | 595.530113 || 981.876342
6 21.343969 | 186.09572 | 513.599243 || 1003.854451|| 1656.861548
8 30.896476 | 272.068286 | 752.411907 | 1471.927338|| 2430.614579
10 41.483595 | 367.352360 | 1017.089089| 1990.696185|| 3288.171245

Table 2: The values of v(z,t) for a = 0.50

a = 0.50
t X=1 X=3 X=5 X=7 X=9
0 2 12 30 o6 90
2 49.149229 | 58.14922947| 133.192304 || 258.256916 | 424.343065
4 16.018022 | 138.162200 | 380.450555 | 742.883089 | 1225.459800
6 31.055812 | 273.502315 | 756.395319 | 1479.734827|| 2443.520836
8 51.021537 | 453.193835 | 1255.538432| 2458.055328|| 4060.744521
10 75.788321 | 676.094894 | 1874.708039| 3671.627756| 6066.854046

7

383

Deepika Jain 377-399




J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 3, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Table 3:The values of v(z,t) for a = 0.75
a=0.75
t X=1 X=3 X=5 X=7 X=9
0 2 12 30 o6 90
2 5.239601 41.156416 | 110.990046 | 214.740490 || 352.407748
4 19.958726 | 173.628535 | 478.968154 | 935.977582 || 1544.656820
6 57.104733 | 507.942604 | 1407.618347|| 2756.131960|| 4553.483443
8 129.591614 | 1160.324531] 3219.790365| 6307.989114|| 10424.92078
10 251.599886 | 2258.398981| 6269.997168|| 12286.39445| 20307.59083
Table 4:The values of v(z,t) for a =1
a=1.0
t X=1 X=3 X=5 X=7 X=9
0 2 12 30 o6 90
2 5.33 42 113.33 219.33 360
4 20.66 180 496.66 970.66 1602
6 o6 498 1380 2702 4464
8 119.33 1068 2963.33 5805.33 9594
10 218.66 1962 5446.66 10672.66 17640

The solution is graphically presented in Figures 1,2,3,
fractional orders of «

Figure 1
a=0.25

and 4 for various

Figur 1: The behaviour of v(z,t) w.r.t. x and t for a = 0.25
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Figure 2
a=0.5

Figur 2: The behaviour of v(x,t) w.r.t. x and t for a = 0.50

Figure 3
o=0.75

Figur 3: The behaviour of v(z,t) w.r.t. x and t for « = 0.75
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Fifure 4
a=1

Figur 4: The behaviour of v(z,t) w.r.t x and t for a =1

Problem 2 Deliberate the succeeding 2-D fractional wave-like

equation:
N 1, ,0% 0%
Dtv(l',y,t):§[ w—’—y a—y2],1<04§2 (35)
initial condition:
Uo(xayvo) = x4,vt(:c,y,()) = y4 (36)

taking the Laplace transformation on (34) and using the result specified by
(35), we achieve,

0% 0%
t)y=a'+y't+ L L|z*—+y*— 37
vy, t) =o' +y't+ [128& [:c o TV ap (37)
apply inverse Laplace transform we have
o, 0 1 9 v
— = — L' —L |25+ 38
o~V T o [1%@ [m 02 oy (38)
the correction functional for A = —1 is given as follows
10
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FTov,(x,y, e
/Un‘f‘l( x7y7t):?-}n( -T,y,t)—/ {%_yﬁi_
0 g

39)
0 1 0*v 0*v (
—L! L= +y* = | pd
Oe {1230‘ <x Ox? Ty 8y2)} y
the initial iteration
vo(,y,0) = 2* +y't (40)
using the equation in equation (38), we have
vo(w,y,t) = x* + y't (41)
. L et a1
t) = t 42
vi(@ g, t) = 4yt S R Y R (42)
A 4 A A toc-i—l A t20¢ A t?oz-i—l
t) = t
va® g, t) = Ay S Y e T Y Tea s ) T T 1 2)
(43)
assumed that the solution was in closed form by
U(.I, Y, t) = 111’11 Un(l,’, Y, t) = ‘IAEOé(ta) + y4ECY,2(ta) (44)
n—oo

where E, »(t%) is the Mittag- Laffler Function defined in equation (6) letting

a = 2 then

v(x,y,t) == z*cosht + y*sinht

Numerical and Graphical discussion
In this part we found a record for numerical explanation of equation (42)

and plot some graphs for a = 0.25,0.5,0.75, 1.
Table 5: The values of v(z,y,t) for o = 0.25

(45)

387

a = 0.25

t X=1 X=3 X=5 X=7 X=9

0 16 81 625 2401 6561

2 10.723461 | 322.384991 | 2448.587477|| 9388.799277|| 25645.15124
4 13.010819 | 111.097371 | 305.270476 || 595.530113 || 981.876342
6 30.834622 | 470.086827 | 3457.001819| 13208.40076| 36049.51540
8 42.943473 | 524.703270 | 3814.269888| 14553.73738|| 39709.24682
10 56.013753 | 578.426352 | 4130.832026| 15728.39172|| 42893.84687

11
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Table 6:The values of v(z,y,t) for o = 0.50
a = 0.50
t X=1 X=3 X=5 X=7 X=9
0 16 81 625 2401 6561
2 10.723461 | 378.384991 | 2878.483393| 11040.56935| 30158.96889
4 25.274780 | 605.815447 | 4553.491981| 17441.49478|| 47629.60945
6 44.819765 | 825.936021 | 6137.526560| 23478.30743| 64096.35272
8 69.213075 | 1044.536135| 7676.732939| 29328.90486| 80045.70396
10 98.356569 | 1263.816429| 9188.943467| 35062.15232|| 95666.06497
Table 7:The values of v(z,y,t) for a = 0.75
a=0.75
t X=1 X=3 X=5 X=T7 X=9
0 16 81 625 2401 6561
2 9.535236 406.142637 | 3103.072959| 11907.75724(| 32531.34205
4 23.880947 | 831.523787 | 6323.495098| 24253.16615| 66250.59382
6 44.109711 | 1342.276394| 10169.80983| 38989.11017| 106493.7576
8 70.420350 | 1926.202514| 14545.52123|| 55743.88528|| 152244.5578
10 103.057275 | 2575.614244| 19389.00163| 74279.76634| 202852.7288
Table 8:The values of v(zx,y,t) for a =1
a=1.0
t X=1 X=3 X=5 X=T7 X=9
0 16 81 625 2401 6561
2 10.33 410.33 3130.33 12010.33 32810.33
4 35.66 1075.66 8147.66 31235.66 85315.66
6 85 2085 15685 60085 164085
8 166.33 3446.33 25750.33 98566.33 269126.33
10 287.66 5167.66 38351.66 146687.66 | 400447.66

The solution is graphically presented in Figures 5,6,7,

fractional orders of «

12
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Figure 5
a=0.25

Figur 5: The behaviour of v(z,y,t) w.r.t. x and t for « = 0.25

Figure 6
a=0.5

Figur 6: The behaviour of v(z,y,t) w.r.t. x and t for a = 0.50

13
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Figure 7
a=0.75

Figur 7: The behaviour of v(z,y,t) w.r.t. x and t for « = 0.75

Figure 8
a=1

Figur 8: The behaviour of v(z,y,t) w.r.t.x and t for a =1

Problem 3 Deliberate the succeeding 3-D fractional wave-like

equation:
1[ ,0% 0%v 0%
DMv(x,y,2,t) = 2 +y?+ 224 = |2 = + P + 2= |l < a <2 (46
fo(@,y,2,t) y TtV ag T oz <2 (46)
14
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initial condition:
vo(,y,2,0) = 0,0(x,y,2,0) = 2% + y* — 2° (47)

taking the laplace transform of equation (45) and result obtained by equation

(46) we obtain

22 +y? — 22 1

Y T L@+ )+
s s

1 5 0% v 9*v
x

—L |2’ P+ 2
25 ox? Y oy? 07>

Llv(z,y,z1)] = s
8

apply inverse Laplace transform we have

2s Y z

differentiating Equation (48) regarding t, we have
toc—l
Flat1)

0 1 0*v 0% 0%
e L*l —L 27 7 27 7 27 7
m{ baFw”yw*%AH

the correction functional for A = —1 is given as follows

%z(m2+y2—22)+(9€2+y2+22)a
(50)

t
an AR
Un—&-l(I?wa?t):Un(xvyvz7t)_/ [M_(‘r2+y2_22)_
0

Os
a-1 2 2 2
2, .2, 2y @€ 9 a1 2070y, 2 0%y 2070y,

- — — <L —L d
(" +y +2)F(a+1) 65{ {256“ {x 5.2 +y % +z e 5

(51)

the initial iteration
’Uo(iE,y, 270) = ($2+y2—22)t+($2+y2+22 ) (52)

['(a+1)

then, we have

15
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Ovo( z,y,2, €)

t
t)= t)—
Ul( x,y, =z, ) UO( €, Y, z, ) /0 |: 65

2 o 2y 0! o[ L 2Pv | 0% | 0%
v+ 2 ) e {L [QSQL{‘” o Ve T |

(53)

—(x2—|—y2—22)—

ta
I(a+1)

toc-‘rl N ( ) N N N 2) t2a
—_— T z
T(o+2) Y

v z,y,z,t)=t(2*+y°—2°) + (2® +y* + 2°) + (2?4 y* — 2%)

0
v 2.y, 2,0 ) = vi( 2,y,2,1 ) /{y) (x2+y2—22>—
0

a—1
. . g 0E ) ST
(®+y +Z)—F(a+1) 85{L {2 L{ ag+y ”}da

ta

vz, y,2,t) =t (2® +y* = 2°) + (¥ + y* + 2°) m—l—

) ta+1 ) ) ) t2a
) Tat2) (" + 5"+ %) T(20+ 1)
I'(20 +2) I'(Ba+1)

(IQ 4 y2 — 4 (1’2 +y2 o 22) (56)

assumed that the solution was in closed form by

v( @y, 2,t ) =limn — oov,(@,y,2,t ) = t(2° +y* — 2%) Eap (1) +

(4o + 22) [Ea )~ 1) O

where E, (t*) and E, 5(t*) are the Mittag-Laffer Function defined in equa-
tions (7) and (8) letting o = 2 then

v(x,y, z,t) = (22 +yH)e! + 22et — (2 + 1y + 22) (58)

16
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Numerical and Graphical discussion

In this part we found a record for numerical explanation of equation (51)
and plot some graphs for different values of a = 0.25,0.5,0.75, 1.

Table 9:The values of v(x,y, z,t) for a = 0.25

a = 0.25
t X=1 X=3 X=5 X=7 X=9
0 0 0 0 0 0
2 8.513426 60.620834 | 164.835650 || 321.157875 || 529.587508
4 13.992796 | 109.935171 | 301.819920 | 589.647043 || 973.416542
6 20.636626 | 169.729635 | 467.915654 || 915.194682 || 36049.51540
8 28.188647 | 237.697827 | 656.716187 || 1285.243727| 2123.280446
10 36.506662 | 312.559961 | 864.666558 | 1692.826455| 27107.03965

Table 10:The values of v(x,y, 2,t) for o = 0.50

a = 0.50
t X=1 X=3 X=5 X=7 X=9
0 0 0 0 0 0
2 9.127692 66.149229 | 180.192304 || 351.256916 || 579.343065
4 21.018022 | 173.162200 | 477.450555 || 933.883089 || 1542.459800
6 38.05581275| 326.502315 | 903.395319 || 23478.30743| 64096.35272
8 60.021537 | 524.193835 | 1452.538432| 2845.055328|| 4701.744521
10 86.788321 | 765.094894 | 2121.708039| 4156.62775 || 6869.854046

Table 11 The values of v(z,y, z,t) for a = 0.75

a=0.75
t X=1 X=3 X=h X=7 X=9
0 0 0 0 0 0
2 8.793468 63.1412156 | 171.836710 || 334.879951 || 552.270940
4 23.663151 | 196.968364 | 543.578790 || 1063.494429| 1756.71528
6 49.835450 | 432.519053 | 1197.886259| 2345.937068| 3876.671480
8 89.129443 | 786.164995 | 2180.236099| 4271.342754| 7059.484963
10 143.116946 | 1272.052519| 3529.923663| 6916.730379|| 903.395319
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Table 12:The values of v(z,y, 2,t) for a =1

a=1.0
t X=1 X=3 X=5 X=7 X=9
0 0 0 0 0 0
2 8.3333 59 160.33 312.33 515
4 25.33 215 593.66 1161.66 1919
6 63 551 1527 2991 4943
8 128.33 1139 3160.33 6192.33 10235
10 229.66 2051 5693.66 11157.66 18443

The solution is graphically presented in Figures 9,10,11, and 12 for various
fractional orders of «

Figur 9: The behaviour of v(z,y, z,t) w.r.t. x and t for « = 0.25

Figure 9
a=0.25

18

394

Deepika Jain 377-399




J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 3, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Figure 10
o=0.5

Figur 10: The behaviour of v(z,y, z,t) w.r.t. x and t for « = 0.50

Figur 11: The behaviour of v(x,y, z,t) w.r.t. x and t for & = 0.75
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Figure 12
a=1

Figur 12: The behaviour of v(z,y, z,t) w.r.t. x and t for a = 1

4 Conclusion:

We review the Laplace variational iteration method to show why it works
well for obtaining approximate analytical solutions of nonlinear equations
governing nonlinear phenomena. In the conferred document, the “Laplace
Variational Iteration Method” is productively executed for the fractional wave
equation, wherever we put in the fractional derivative in form of Caputo
sense. The analytical, consequent, and comprehensive outcomes have been
specified in expressions of a power series that come together to the exact
solutions. The graphical consequences of the analysis are also manifested. In
the future authors and scholars may use this paper for reference purposes and
different values for parameters may be used for the graphical presentation so
that the related phenomena may well be understood.
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