
Laplace Variational Iteration Method for
Solving fractional Wave like Equations

Deepika Jain, Alok Bhargava

Department of Mathematics, Swami Keshvanand Institute of
Technology, Management and Gramothan, Jaipur

Manipal University Jaipur, Jaipur

30. december 2022

This paper introduces the latest procedure for explaining certain types
of fractional wave equations using the variation iteration method (VIM) and
Laplace transform. The Laplace variation iteration method is a type of semi-
analytical technique applied to both linear and non-linear equations wit-
hout requiring linearization, discretization, or perturbation. It is not a time-
consuming method and converses the solution rapidly with the exact and less
error solution. This approach is delineated and then explained through se-
veral example cases. The outcomes demonstrate that this alternate strategy
yields reliable outcomes and the results are displayed graphically.

1 Introduction
Mathematics, engineering, and sciences are full of amazing phenomena that
can be precisely described by using mathematical techniques from fractional
calculus, such as the perception of fractional order derivatives and integrals
[6,14,15,19]. Differential equations of fractional order [25,26,27,28] have be-
en gaining a lot of attention newly owing to the precise understanding of
nonlinear phenomena.
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The Wave equations are the linear partial differential equations of the
second order. This equation describes the waves, which are a common part
of classic physics. These include water waves, sound waves, and light waves.
Over the last few years, there has been a new application of wave-like models
to physical problems. These models can be used in different fields [2,12,16,17].
Due to the importance of wave-like equations, many researchers [2,20,21] have
considered solutions to these equations. For the current issue, we take into
consideration the following fractional wave equations with variable

Dα
t v(x, t) = F (x′, y′, z′)

∂2v

∂x′2 +G(x′, y′, z′)
∂2v

∂y′2
+H(x′, y′, z′)

∂2v

∂z′2
;

1 < α ≤ 2

(1)

with the initial conditions

u(x′, y′, z′, 0) = h(x′, y′, z′), ut(x
′, y′, z′, 0) = m(x′, y′, z′) (2)

An analytical approach that is more powerful than the traditional variational
technique is called the “Variational iteration method” (VIM). It was initial-
ly recommended by He [8]. The “Laplace variational iteration method” is a
combination of the “Laplace transform” and “variational iteration method.”
Applications of VIM to fractional differential equations are slow to conver-
ge, mainly because they directly use the Lagrange multipliers of ordinary
differential equations (ODEs) [23]. Wu and Baleanu [24] pointed out that it
can be difficult to apply integrals by parts of the Riemann-Liouville (RL)
integral resulting from the constructed correction function. To overcome this
shortcoming, they proposed to identify generalized Lagrange multipliers via
the Laplace transform. This method has been utilized by many authors to
solve several difficulties [1,3,7]. The novelty of this work lies in applying the
“Laplace variational iteration method” (LVIM) for solving heat equations of
fractional order.

2 Preliminaries
Definition 1 The Caputo derivative of arbitrary order [4] of function v(x,t)
is presented as

2

378

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 3, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Deepika Jain 377-399



Dα
t v ( x, t ) =

1

Γ(m− µ

∫ t

0

(t− δ)m−µ−1 v(m) ( x, δ ) dδ = Jm−µ
t Dmu( v, t );

m− 1 < µ ≤ m,m ∈ N,

(3)

where dα

dtα
and Jα

t shows the Riemann- Liouville integral operator of fra-
ctional order [19], α > 0

Jα
t v(x, t) =

1

Γ(α)

∫ t

0

(t− δ)α−1v(x, δ) dδ ;m− 1 < µ ≤ m,m ∈ N (4)

Definition 2 The Laplace Transform [18,19] of f(t), t > 0 is defined as

L[f(t)] = F (s) =

∫ t

0

e−stf(t) dt (5)

Definition 3 The Laplace transform of Dα
t v(x, t) is explained as [18,19]

L[Dα
t v(x, t)] = L[v(x, t)]−

m−1∑
n=0

vn(x, 0)sα−n−1;m− 1 < α ≤ m,m ∈ N (6)

Definition 4 The Mittag-Leffler function is explained as [18]

Eα (t) =
∞∑
n=0

tn

Γ (αn+ 1)
(7)

Eα,β(t) =
∞∑
n=0

tn

Γ(αn+ β)
(8)

3 Variational Iteration Method
He [10] established a method VIM for solving problems. This is a common
technique used to evaluate solutions for linear and non-linear problems. Illu-
strate the VIM model, we take into consideration the subsequent non-linear
equation with given constraints::

Pv(x, t) +Qv(x, t) = f(x, t) (9)

3
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where ′v′ is the unknown function, ‘P’, ‘Q’ are linear and nonlinear operators,
and f is the source term. The correction functional for (7) is given as follows:

vn+1(x, t) = vn(x, t) +

∫ t

0

λ[Pvn(ξ, t) +Qvn(ξ, t)− f(ξ, t)]dξ (10)

where λ is a general Lagrange multiplier that can be identified optimally
via the variation theory. The subscript n indicates the nth approximation
and un is considered as a restricted variation δun = 0.

3.1 Laplace Variational Iteration Method (LVIM)

To demonstrate the elementary purpose of (LVIM), deliberate a general fra-
ctional non-linear nonhomogeneous partial differential equation through the
primary situations of the type

Dα
t v(x, t) + Pv(x, t) +Qv(x, t) = f(x, t);m− 1 < α ≤ m,m ∈ N (11)

vn(x, 0) = hk(x);n = 0, 1, 2, 3, ...m− 1 (12)

where Dα
t is the Caputo derivative. P and Q are linear and nonlinear opera-

tors, respectively, and f is the source term. By applying Laplace transform
pertaining to t, on both sides of (9), we get

L[v(x, t)] =
1

sα

m−1∑
n=0

vn(x, 0)sα−n−1 +
1

sα
L[f(x, t)]− 1

sα
L[Pv(x, t) +Qv(x, t)]

(13)
taking inverse Laplace transform on equation (13)

v ( x, t ) = L−1

[
1

s α

m−1∑
n=0

s α−1−nvn ( x, 0 )+
1

s α
L [f ( x, t )]

]
−

L−1

[
1

s α
L [Pv ( x, t ) +Qv ( x, t )]

] (14)

by differentiating (14), concerning t, we get

∂v( x, t )

∂t
=

∂

∂t

{
L−1

[
1

s α

m−1∑
n=0

s α−1−nvn ( x, 0 )+
1

s α
L [f ( x, t )]

]
−

L−1

[
1

s α
L [Pv ( x, t ) +Qv ( x, t )]

] (15)

4
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The correction functional for (15)

vn+1( x, t ) = vn( x, t ) +

∫ t

0

λ

[
∂vn( x, ε )

∂ε
−

∂

∂ε

{
L−1

[
1

s α

m−1∑
n=0

s α−1−nvn ( x, 0 )+
1

s α
L [f ( x, t )]

]}
−

L−1

[
1

s α
L [Pv ( x, ε ) +Qv ( x, ε )]

]
dε

(16)

The general Lagrange multiplier for (16) can be identified optimally via
variation theory to get

1 + (λ)ϵ=t = 0 (17)

From (17), we get

λ = −1 (18)

Substituting λ = −1 into (16), then the iterative formula for n = 0, 1, 2,
. . ., as follows:

vn+1( x, t ) = vn( x, t )−
∫ t

0

[
∂vn( x, ε )

∂ε
− ∂

∂ε

{
L−1

[
1

s α

m−1∑
n=0

s α−1−nvn ( x, 0 )+
1

s α
L [f ( x, t )]− L−1

[
1

s α
L [Pv ( x, ε ) +Qv ( x, ε )]

]
dε

(19)

Begin with the early iteration

v0(x, t) = v(x, 0) + tvt(x, 0) (20)

As a limit of the subsequent approximations, the exact answer is provided
vn(x, t), n = 0, 1, 2, . . .; alternatively in other words

v(x, t) = lim
n→∞

vn(x, t) (21)

3.2 Applications of LVIM for Solving fractional wave-like equa-
tions

5
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Problem 1 Deliberate the succeeding 1-D fractional wave-like
equation:

Dα
t v(x, t) =

1

2
x2 ∂

2v

∂x2
; 1 < α ≤ 2 (22)

initial condition:

v0(x, y, 0) = 0, vt(x, 0) = x2 (23)

taking the Laplace transformation on (22) and result specified by equation
(23) we obtain

L [v( x, t )] =
x

s
+

x2

s2
+

1

2sα
x2L

[
∂2u

∂x2

]
(24)

applying inverse Laplace transformation to the Equation (24), we have

v( x, t ) = x+ x2t+ L−1

[
1

2sα
x2L

[
∂2v

∂x2

]]
(25)

differentiating Equation (25) concerning t, we have

∂v

∂t
= x2 +

∂

∂t
L−1

[
1

2sα
x2L

[
∂2v

∂x2

]]
(26)

the correction functional for λ = −1 is offered by

vn+1( x, t ) = vn( x, t )−
∫ t

0

[
∂vn( x, ε )

∂ε
− x2 − ∂

∂ε
L−1

{
1

2sα
x2L

(
∂2vn
∂x2

)}]
dε

(27)
the initial iteration

v0(x, 0) = x+ x2t (28)

using the equation in equation (26), we have

v0(x, t) = v0(x, 0) = x+ x2t (29)

v1(x, t) = x+ x2t+ x2 tα+1

Γ(α + 2)
(30)

v2(x, t) = x+ x2t+ x2 tα+1

Γ(α + 2)
+ x2 t2α+1

Γ(2α + 2)
(31)

6
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therefore it is expected that the general term in the successive approxi-
mation

vn(x, t) = x+ x2[t+
tα+1

Γ(α + 2)
+

t2α+1

Γ(2α + 2)
+ ...] (32)

assumed that the solution was in closed form by

v(x, t) = lim
n→∞

vn(x, t) = x+ x2tEα,2(t
α) (33)

where Eα,2(t
α) is the Mittag- Laffler Function defined in equation (6) letting

α = 2 then
v(x, t) == x+ x2t+

sinht

t
(34)

Numerical and Graphical discussion
In this part we found a record for numerical explanation of equation (31)

and plot some graphs for α = 0.25, 0.5, 0.75, 1.

Table 1: The values of v(x, t) for α = 0.25
α = 0.25

t X=1 X=3 X=5 X=7 X=9
0 2 12 30 56 90
2 22.907618 50.042141 135.672615 263.118327 432.379275
4 13.010819 111.097371 305.270476 595.530113 981.876342
6 21.343969 186.09572 513.599243 1003.854451 1656.861548
8 30.896476 272.068286 752.411907 1471.927338 2430.614579
10 41.483595 367.352360 1017.089089 1990.696185 3288.171245

Table 2: The values of v(x, t) for α = 0.50
α = 0.50

t X=1 X=3 X=5 X=7 X=9
0 2 12 30 56 90
2 49.149229 58.14922947 133.192304 258.256916 424.343065
4 16.018022 138.162200 380.450555 742.883089 1225.459800
6 31.055812 273.502315 756.395319 1479.734827 2443.520836
8 51.021537 453.193835 1255.538432 2458.055328 4060.744521
10 75.788321 676.094894 1874.708039 3671.627756 6066.854046
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Table 3:The values of v(x, t) for α = 0.75
α = 0.75

t X=1 X=3 X=5 X=7 X=9
0 2 12 30 56 90
2 5.239601 41.156416 110.990046 214.740490 352.407748
4 19.958726 173.628535 478.968154 935.977582 1544.656820
6 57.104733 507.942604 1407.618347 2756.131960 4553.483443
8 129.591614 1160.324531 3219.790365 6307.989114 10424.92078
10 251.599886 2258.398981 6269.997168 12286.39445 20307.59083

Table 4:The values of v(x, t) for α = 1
α = 1.0

t X=1 X=3 X=5 X=7 X=9
0 2 12 30 56 90
2 5.33 42 113.33 219.33 360
4 20.66 180 496.66 970.66 1602
6 56 498 1380 2702 4464
8 119.33 1068 2963.33 5805.33 9594
10 218.66 1962 5446.66 10672.66 17640

The solution is graphically presented in Figures 1,2,3, and 4 for various
fractional orders of α

Figur 1: The behaviour of v(x, t) w.r.t. x and t for α = 0.25

8
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Figur 2: The behaviour of v(x, t) w.r.t. x and t for α = 0.50

Figur 3: The behaviour of v(x, t) w.r.t. x and t for α = 0.75

9
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Figur 4: The behaviour of v(x, t) w.r.t x and t for α = 1

Problem 2 Deliberate the succeeding 2-D fractional wave-like
equation:

Dα
t v(x, y, t) =

1

2
[x2 ∂

2v

∂x2
+ y2

∂2v

∂y2
], 1 < α ≤ 2 (35)

initial condition:

v0(x, y, 0) = x4, vt(x, y, 0) = y4 (36)

taking the Laplace transformation on (34) and using the result specified by
(35), we achieve,

v( x, y, t ) = x4 + y4t+ L−1

[
1

12sα
L

[
x2 ∂

2v

∂x2 + y2
∂2v

∂y2

]]
(37)

apply inverse Laplace transform we have

∂v

∂t
= y4 +

∂

∂t
L−1

[
1

12sα
L

[
x2 ∂

2v

∂x2 + y2
∂2v

∂y2

]]
(38)

the correction functional for λ = −1 is given as follows

10
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vn+1( x, y, t ) = vn( x, y, t )−
∫ t

0

[
∂vn( x, y, ε )

∂ε
− y4−

∂

∂ε
L−1

{
1

12sα
L

(
x2∂

2vn
∂x2

+ y2
∂2vn
∂y2

)}
dε

(39)

the initial iteration
v0(x, y, 0) = x4 + y4t (40)

using the equation in equation (38), we have

v0(x, y, t) = x4 + y4t (41)

v1(x, y, t) = x4 + y4t+ x4 tα+1

Γ(α + 1)
+ y4

tα+1

Γ(α + 2)
(42)

v2(x, y, t) = x4+y4t+x4 tα+1

Γ(α + 1)
+y4

tα+1

Γ(α + 2)
+x4 t2α

Γ(2α + 1)
+y4

t2α+1

Γ(α + 2)
(43)

assumed that the solution was in closed form by

v(x, y, t) = lim
n→∞

vn(x, y, t) = x4Eα(t
α) + y4Eα,2(t

α) (44)

where Eα,2(t
α) is the Mittag- Laffler Function defined in equation (6) letting

α = 2 then
v(x, y, t) == x4cosht+ y4sinht (45)

Numerical and Graphical discussion
In this part we found a record for numerical explanation of equation (42)

and plot some graphs for α = 0.25, 0.5, 0.75, 1.
Table 5: The values of v(x, y, t) for α = 0.25

α = 0.25
t X=1 X=3 X=5 X=7 X=9
0 16 81 625 2401 6561
2 10.723461 322.384991 2448.587477 9388.799277 25645.15124
4 13.010819 111.097371 305.270476 595.530113 981.876342
6 30.834622 470.086827 3457.001819 13208.40076 36049.51540
8 42.943473 524.703270 3814.269888 14553.73738 39709.24682
10 56.013753 578.426352 4130.832026 15728.39172 42893.84687
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Table 6:The values of v(x, y, t) for α = 0.50
α = 0.50

t X=1 X=3 X=5 X=7 X=9
0 16 81 625 2401 6561
2 10.723461 378.384991 2878.483393 11040.56935 30158.96889
4 25.274780 605.815447 4553.491981 17441.49478 47629.60945
6 44.819765 825.936021 6137.526560 23478.30743 64096.35272
8 69.213075 1044.536135 7676.732939 29328.90486 80045.70396
10 98.356569 1263.816429 9188.943467 35062.15232 95666.06497

Table 7:The values of v(x, y, t) for α = 0.75
α = 0.75

t X=1 X=3 X=5 X=7 X=9
0 16 81 625 2401 6561
2 9.535236 406.142637 3103.072959 11907.75724 32531.34205
4 23.880947 831.523787 6323.495098 24253.16615 66250.59382
6 44.109711 1342.276394 10169.80983 38989.11017 106493.7576
8 70.420350 1926.202514 14545.52123 55743.88528 152244.5578
10 103.057275 2575.614244 19389.00163 74279.76634 202852.7288

Table 8:The values of v(x, y, t) for α = 1
α = 1.0

t X=1 X=3 X=5 X=7 X=9
0 16 81 625 2401 6561
2 10.33 410.33 3130.33 12010.33 32810.33
4 35.66 1075.66 8147.66 31235.66 85315.66
6 85 2085 15685 60085 164085
8 166.33 3446.33 25750.33 98566.33 269126.33
10 287.66 5167.66 38351.66 146687.66 400447.66

The solution is graphically presented in Figures 5,6,7, and 8 for various
fractional orders of α
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Figur 5: The behaviour of v(x, y, t) w.r.t. x and t for α = 0.25

Figur 6: The behaviour of v(x, y, t) w.r.t. x and t for α = 0.50
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Figur 7: The behaviour of v(x, y, t) w.r.t. x and t for α = 0.75

Figur 8: The behaviour of v(x, y, t) w.r.t.x and t for α = 1

Problem 3 Deliberate the succeeding 3-D fractional wave-like
equation:

Dα
t v( x, y, z, t ) = x2+y2+z2+

1

2

[
x2 ∂

2v

∂x2 + y2
∂2v

∂y2
+ z2

∂2v

∂z2

]
; 1 < α ≤ 2 (46)

14
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initial condition:

v0(x, y, z, 0) = 0, vt(x, y, z, 0) = x2 + y2 − z2 (47)

taking the laplace transform of equation (45) and result obtained by equation
(46) we obtain

L [v( x, y, z, t )] =
x2 + y2 − z2

s2
+

1

sα
L
(
x2 + y2 + z2

)
+

1

2sα
L

[
x2 ∂

2v

∂x2 + y2
∂2v

∂y2
+ z2

∂2v

∂z2

] (48)

apply inverse Laplace transform we have

v( x, y, z, t ) = t
(
x2 + y2 − z2

)
+
(
x2 + y2 + z2

) tα

Γ(α + 1)
+

L−1

[
1

2sα
L

[
x2 ∂

2v

∂x2 + y2
∂2v

∂y2
+ z2

∂2v

∂z2

]] (49)

differentiating Equation (48) regarding t, we have

∂v

∂t
=

(
x2 + y2 − z2

)
+
(
x2 + y2 + z2

)
α

tα−1

Γ(α + 1)
+

∂

∂t

{
L−1

[
1

2sα
L

[
x2 ∂

2v

∂x2 + y2
∂2v

∂y2
+ z2

∂2v

∂z2

]]} (50)

the correction functional for λ = −1 is given as follows

vn+1 (x, y, z, t) = vn (x, y, z, t)−
∫ t

0

[
∂vn (x, y, z, ε)

∂ε
−
(
x2 + y2 − z2

)
−

(
x2 + y2 + z2

) αεα−1

Γ (α + 1)
− ∂

∂ε

{
L−1

[
1

2sα
L

[
x2∂

2vn

∂x2 + y2
∂2vn

∂y2
+ z2

∂2vn

∂z2

]]}
dε

(51)

the initial iteration

v0(x, y, z, 0) = (x2 + y2 − z2)t+ (x2 + y2 + z2 )
tα

Γ(α + 1)
(52)

then, we have

15
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v1( x, y, z, t ) = v0( x, y, z, t )−
∫ t

0

[
∂v0( x, y, z, ε )

∂ε
−
(
x2 + y2 − z2

)
−

(
x2 + y2 + z2

) αεα−1

Γ (α + 1)
− ∂

∂ε

{
L−1

[
1

2sα
L

[
x2∂

2v0

∂x2 + y2
∂2v0

∂y2
+ z2

∂2v0

∂z2

]]}
dε

(53)

v1( x, y, z, t ) = t
(
x2 + y2 − z2

)
+
(
x2 + y2 + z2

) tα

Γ(α + 1)
+
(
x2 + y2 − z2

)
tα+1

Γ(α + 2)
+
(
x2 + y2 + z2

) t2α

Γ(2α + 1)
(54)

v2( x, y, z, t ) = v1( x, y, z, t )−
∫ t

0

[
∂v1(x, y, z, ε)

∂ε
−
(
x2 + y2 − z2

)
−

(
x2 + y2 + z2

) αεα−1

Γ (α + 1)
− ∂

∂ε

{
L−1

[
1

2sα
L

[
x2∂

2v1

∂x2 + y2
∂2v1

∂y2
+ z2

∂2v1

∂z2

]]}
dε

(55)

v2( x, y, z, t ) = t
(
x2 + y2 − z2

)
+
(
x2 + y2 + z2

) tα

Γ(α + 1)
+

(
x2 + y2 − z2

) tα+1

Γ(α + 2)
+
(
x2 + y2 + z2

) t2α

Γ(2α + 1)
+
(
x2 + y2 − z2

)
t2α+1

Γ(2α + 2)
+
(
x2 + y2 + z2

) t3α

Γ(3α + 1)

(56)

assumed that the solution was in closed form by

v( x, y, z, t ) = limn → ∞vn( x, y, z, t ) = t
(
x2 + y2 − z2

)
Eα,2 (t

α)+(
x2 + y2 + z2

)
[Eα (t

α)− 1]
(57)

where Eα (t
α) and Eα,2(t

α) are the Mittag-Laffer Function defined in equa-
tions (7) and (8) letting α = 2 then

v(x, y, z, t) = (x2 + y2)et + z2e−t − (x2 + y2 + z2) (58)
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Numerical and Graphical discussion
In this part we found a record for numerical explanation of equation (51)

and plot some graphs for different values of α = 0.25, 0.5, 0.75, 1.
Table 9:The values of v(x, y, z, t) for α = 0.25

α = 0.25
t X=1 X=3 X=5 X=7 X=9
0 0 0 0 0 0
2 8.513426 60.620834 164.835650 321.157875 529.587508
4 13.992796 109.935171 301.819920 589.647043 973.416542
6 20.636626 169.729635 467.915654 915.194682 36049.51540
8 28.188647 237.697827 656.716187 1285.243727 2123.280446
10 36.506662 312.559961 864.666558 1692.826455 27107.039651

Table 10:The values of v(x, y, z, t) for α = 0.50
α = 0.50

t X=1 X=3 X=5 X=7 X=9
0 0 0 0 0 0
2 9.127692 66.149229 180.192304 351.256916 579.343065
4 21.018022 173.162200 477.450555 933.883089 1542.459800
6 38.05581275 326.502315 903.395319 23478.30743 64096.35272
8 60.021537 524.193835 1452.538432 2845.055328 4701.744521
10 86.788321 765.094894 2121.708039 4156.62775 6869.854046

Table 11 The values of v(x, y, z, t) for α = 0.75
α = 0.75

t X=1 X=3 X=5 X=7 X=9
0 0 0 0 0 0
2 8.793468 63.1412156 171.836710 334.879951 552.270940
4 23.663151 196.968364 543.578790 1063.494429 1756.71528
6 49.835450 432.519053 1197.886259 2345.937068 3876.671480
8 89.129443 786.164995 2180.236099 4271.342754 7059.484963
10 143.116946 1272.052519 3529.923663 6916.730379 903.395319
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Table 12:The values of v(x, y, z, t) for α = 1
α = 1.0

t X=1 X=3 X=5 X=7 X=9
0 0 0 0 0 0
2 8.3333 59 160.33 312.33 515
4 25.33 215 593.66 1161.66 1919
6 63 551 1527 2991 4943
8 128.33 1139 3160.33 6192.33 10235
10 229.66 2051 5693.66 11157.66 18443

The solution is graphically presented in Figures 9,10,11, and 12 for various
fractional orders of α

Figur 9: The behaviour of v(x, y, z, t) w.r.t. x and t for α = 0.25
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Figur 10: The behaviour of v(x, y, z, t) w.r.t. x and t for α = 0.50

Figur 11: The behaviour of v(x, y, z, t) w.r.t. x and t for α = 0.75

19

395

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 3, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Deepika Jain 377-399



Figur 12: The behaviour of v(x, y, z, t) w.r.t. x and t for α = 1

4 Conclusion:
We review the Laplace variational iteration method to show why it works
well for obtaining approximate analytical solutions of nonlinear equations
governing nonlinear phenomena. In the conferred document, the “Laplace
Variational Iteration Method” is productively executed for the fractional wave
equation, wherever we put in the fractional derivative in form of Caputo
sense. The analytical, consequent, and comprehensive outcomes have been
specified in expressions of a power series that come together to the exact
solutions. The graphical consequences of the analysis are also manifested. In
the future authors and scholars may use this paper for reference purposes and
different values for parameters may be used for the graphical presentation so
that the related phenomena may well be understood.
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