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Abstract

In order to give timely hospitalisation for infections that are dangerously ill, our
primary goal is to reduce the interaction between susceptibles and infections. For
this we add treatment T as a fifth compartment to the SEIR model, converting
it from SEIR to SEITR. The stabilities of endemic equilibrium and disease-free
equilibrium were tested. The next generation matrix method was used to calcu-
late the SEITR model’s basic reproduction number. Numerical simulations were
also presented to validate our analytic findings. A graphic depicted the impact of
parameters on infected populations. It was perceived that, anytime the treatment
rate increased, the infected population, exposed population, and treated population
all declined but the susceptible population increased.
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1 Introduction

Kermack and McKendrick [21] introduced the first mathematical model, SIR (Susceptible-
Infectious-Recovered), early in the 20th century. Later Anderson and May[1] were pro-
posed the SEIR model by adding Exposed (E) as fourth compartment to SIR model to
define the spread of epidemic. Many authors introduced a numerous extended SEIR mod-
els to define the infectious diseases spread and their preventions [7]. ZhilanFeng (2007)
[31] developed a SEIR model which has been used to evaluate the electiveness of different
control strategies for the size of endemic with separation and isolation. Rafiqul Islam
et al [16] was proposed an SEIR model to analysis the influenza in Bangladesh. Vinod
kumar bais and Deepak kumar [29] was introduced a model SITR emphasized the condi-
tion of the dynamical classic to the transmission populace of H1N1 virus. By combining
these two SEIR and SITR models we developed an new SEITR model by including treat-
ment T as a fifth compartment to investigate the dynamics of the influenza epidemic’s
transmission. Hethcote and Yorke [14] were charity models to analyze the gonorrhea con-
troller techniques, such as showing, outling infectors, post treatment and vaccination.
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Chinviriyasit (2007) was introduced a dynamic SIRC model [6] to study the Numerical
exhibiting modeling of the spread dynamics of influenza. Samuel Abubakar (2013) was
proposed a model [25] to investigation the spread of infectious disease and stability of
disease in population. Various researchers such as Andreasen et al. (1997)[2], Hethcote
(2000), Earn et al. (2002)[15], Casagrandi et al. (2006)[10], Murray et al. (2008) [23]
have been studied the dynamics of influenza and they recommended mathematical mod-
els to revision the spread of H1N1 and control the influenza epidemic. Over the past
several decades, the field of FDEs has made considerable advancements. To examine the
dynamical behaviour of a fish farm in relation to an arbitrary order Atangana-Baleanu
derivative, Jagdev et al. [19] suggested a fraction fish farm model. By Jagdev Singh [18],
a fractional guava fruit model with memory outcome was introduced. To analyse the
COVID-19 trend, Supriya, Yadav et al [28] created the FDE model. A fractional model
was created by Jagdev Singh and Arpita Gupta[17] to analyse the results of nonlinear
partial modified. To study malaria transmission, Rehman, Attiq ul, et al [?] proposed
a 9 compartment FDE model. A simple influenza(H1N1) model by means of optimal
control studied by Srivastav. A. K et al. (2016) [27], Also Mishra et al. (2013) [22],
consume suggested a mathematical model to analyze the spread and control of influenza
between two economic groups. Christian Quirouette et al[24] developed to unfolding the
localization and spread of influenza virus inside the human breathing area. The Mathe-
matical model [3], plays a crucial role to learning the spread dynamics of the Contagious
Disease Influenza, and control the virus through isolation, treatment and vaccination of
infected population. Environmental contaminations, global warming, ecosystems, roving
etc. are main reasons to spread the contagious diseases. So that certain assumptions
and parameters are considered to formulate the model. Influenza is a breathing con-
tagious disease instigated by influenza virus[18], which is also known as flu and it has
three kinds A, B and C. This virus spreads easily in the population very fast through the
air from coughing, sneezing and through contact by the hands touching our eyes, nose
or mouth etc. Communal symptoms of H1N1 are high fever, pain, sore gorge, muscle
pain, coughing and weariness [11]. The symptoms were appeared after two days and it
has been at most one week [12] but cough may last more than two weeks. Each year
individuals are infected by this virus an outbreak particularly in the winter session. The
formulation and analysis of the SEITR model were briefly detailed in this article. The
analyses of the model, together with the findings on local and global stability, as well as
the presence of endemic equilibrium, were investigated. Numerical evidence was used to
establish an analytical conclusion. It was seen that if the rate of treatment increased,
the susceptible population rose while the infected, exposed, and treated populations all
decreased. The limitations of the SEITR model is that it oversimplifies complicated
disease processes while still being easily calculable. The SEITR model does take this
parameter into account, however additional model extensions would be required.

2 Model Formation

In this study we proposed a new model SEITR by adding treatment T as fifth com-
partment to SEIR model to analyze the spread dynamics of epidemic Influenza in India.
The total populace N(t) at time t is separated into five different populaces , namely,
Susceptible populace S(t) at time t, Exposed populace E(t) at time t, Infected inhabi-
tants I(t) at time t, Treatment populace T (t) at time t, and Recovered populace R(t)
at time t. The susceptible (S(t)) populace are those who are at possibility to become
infected by virus. The exposed (E(t)) populace are those who are infested by virus but
not yet infectious that is not able to infect others. The infected populaces are those who

2

282

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

K. Arun Kumar 281-293



Figure 1: Schematic diagram of SEITR model

are diseased and able to infect others. The treatment populations are those who are
infected and taking treatment in hospitals. The recovered populations are those who are
recovered after treatment.
The flow diagram of influenza model was presented in fig1.

The susceptible human populace is created by the inflow rate of humans into the
populace (at the rate ∧) and the natural death rate µ. Therefore the incidence rate βSI
incorporate the transmission frequency at which susceptible individuals becomes exposed
and entered exposed populace without being infectious. Thus the rate of change of sus-
ceptible human populace is given by

dS

dt
= ∧ − βSI − µS

The exposed human populace at the rate α be the exposed rate which exposed
individuals becomes infected but not infectious and entered into infected populace and
the natural death rate µ. Thus the rate of variation of exposed human populace is spec-
ified by

dE

dt
= βSI − (α+ µ)E

The infected human populace at the rate γ be the people are joined in hospital for
treatment populace and the natural death rate µ. Thus the rate of variation of infected
human populace is specified by

dI

dt
= αE − (γ + µ) I

The treatment human populace at the rate σ be a rate at which the treatment
individuals recovered and entered into recovered populace. Hence the rate of variation
of treatment human populace is specified by

dT

dt
= γI − (σ + µ)T

Finally, the rate of variation of recovered human populace is specified by

dR

dt
= σT − µR

By using all above assumptions, a nonlinear structure of five differential equations for
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Table 1: Complete Description of relative parameters of the SEITR model

Parameter Depiction
∧ inflow rate of susceptible individuals
µ Normal death rate
β Rate at which susceptible populace becomes exposed
α Rate at which exposed populace becomes infected
γ Rate at which infected populace getting treatment
σ Rate at which treatment populace getting recovered

SEITR model is formed as follows

dS
dt = ∧ − βSI − µS
dE
dt = βSI − (α+ µ)E
dI
dt = αE − (γ + µ)I
dT
dt = γI − (σ + µ)T
dR
dt = σT − µR

(1)

Where the primary conditions S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0 and R(0) ≥
0. The total population N(t) = S(t) + E(t) + I(t) + T (t) + R(t) will be assumed as
constant.

3 Analysis of the SEITR model

In the segment, the elementary belongings of SEITR model 1 such as positivity
and boundedness of the solution, basic reproduction number and stability analysis were
discorsed.

3.1 Positivity and boundedness

Theorem 1. All the solutions (S(t), E(t), I(t), T (t), R(t)) ∈ R5
+ of the sturcture 1 with

primary condition S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, T (t) ≥ 0, and R(t) ≥ 0 are nonnegative
and uniformly bounded for all t ≥ 0.

Proof 1. Assume that (S(t), E(t), I(t), T (t), R(t)) ∈ R5
+ is a solution of 1 for t ∈

[0, t0), where t0 > 0.
Through 1st equation of system 1, we get

dS

dt
= ∧ − β∗S∗I − µ∗S ≥ ∧− ϕ(t)∗S.

where ϕ(t) = β∗I + µ
After integration, we get

S(t) = S0 exp

(
−
∫ t

0

ϕ(s)ds

)
+ ∧ exp

(
−
∫ t

0

ϕ(s)ds

)∫ t

0

e
∫ s
0
ϕ(u)duds ≥ 0 ≥ 0.

⇒S(t) ≥0.
From the 2nd equation of system 1, we develop

dE

dt
= βSI − (α+ µ)E ≥ − (α+ µ)E
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Which leads

E(t) = E0 exp

(
−
∫ t

0

(α+ µ) ds

)
≥ 0

⇒ E(t) ≥ 0
From the 3rd equation of system 1, we acquire

dI

dt
= αE − (γ + µ) ≥ − (γ + µ) I

Which leads

I(t) = I0 exp

(
−
∫ t

0

(γ + µ) ds

)
≥ 0.

⇒ I(t) ≥ 0
Similarly 4th and 5th equation of system 1

dT

dt
= γI − (σ + µ)T ≥ − (σ + µ)T

Which leads to

T (t) = T0 exp

(
−
∫ t

0

(σ + µ)

)
ds ≥ 0

⇒ T (t) ≥ 0

dR

dt
= σT–µR ≥ −µR

which leads to

R(t) = R0 exp

(
−
∫ t

0

µds

)
≥ 0

⇒ R(t) ≥ 0
Hence, the results (S, E, I, T , R) of 1 sustaining the primary conditions S(t) ≥ 0, E(t)
≥ 0, I(t) ≥ 0, T (t) ≥ 0, and R(t) ≥ 0 for all t ∈ [ 0, t0 ) are nonnegative in the section
[ 0, t0 ).
Now, we demonstrate that the boundedness of clarifications of system 1.
The positivity of the solutions indicates that
dS
dt ≤ ∧ - µS
From the beyond equation, we can write that limt→∞ supS ≤ ∧

µ and S ≤ ∧
µ .

Consider the total populations N = S + E + I + T + R.

On differentiation gives dN
dt ≤ ∧ -µN which leads to limt→∞ supN ≤ (∧)

(µ) .

Then, we get N ≤ ∧
µ

⇒ S + E + I + T + R ≤∧
µ

Therefore all the solution curves (S,E, I, T,R) sustaining by the primary conditions are
consistently bounded in R5

+ and in the section

Ω =
{
(S,E, I, T,R) ∈ R5

+ : 0 ≤ (S,E, I, T,R) ≤ ∧
µ

}
.

3.2 Basic Reproduction Number

A crucial factor for communicable disease is the Basic Reproduction Number (R0) which
is distinct as the middling number of subordinate cases obtained by distinct primary case
during the infectious dated in a susceptible populace. With R0, the epidemic growth
rate can be estimated and Stability of model will be analyzed [8]. R0 Value can be
determined through approach of Next Generation Matrix method [4], [13].
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R0 = FV −1

Where

F =

β + µ
0
0


and

V =

 (α+ µ)E
αE − (γ + µ) I
γI − (σ + µ)T


The Jacobian of F and V are dual matrices F and V which determined at an disinfection
state E = 0, I = 0 and T = 0, we have

F =

0 β µ
0 0 0
0 0 0


and

V =

(α+ µ) 0
α (γ + µ) 0
0 −γ (σ + µ)


FV −1 is βα

(α+µ)(γ+µ) +
ασµ

(α+µ)(γ+µ)(σ+µ)

Hence R0 = βα
(α+µ)(γ+µ) +

ασµ
(α+µ)(γ+µ)(σ+µ)

3.3 Local Stability of Disease Free Equilibrium

Theorem 2. For R0 < 1, the Disease-Free Equilibrium point E0=(∧µ , 0, 0, 0, 0) was

locally asymptotically stable and for R0 >1, it was unstable [17].

Proof 2. The Jacobian matrix corresponding to the structure 1 at disease free equilibrium
E0 is

J(E0) =


−µ 0 −β 0 0
0 − (µ+ α) β 0 0
0 α − (γ + µ) 0 0
0 0 γ − (σ + µ) 0
0 0 0 σ −µ


The characteristic equation is

(λ+ µ)
2
(λ+ (σ + µ))

(
λ2 + a1λ+ a2

)
= 0

Where a1= 2µ+ α+ γ and a2 = (µ+ α) (γ + µ)− αβ.
There are 5 Eigen values for the Jacobian matrix J(E0) of which first three are -µ, -µ, -
(σ + µ), and the remaining two Eigen values are roots of quadratic equation (λ2+a1λ+a2)
= 0, which are negative.
Through Routh-Hurwitz criterion [20], all the roots of charateristics equation have de-
structive real part which revenues steady equilibrium if a1 > 0 and a2 > 0.
Since µ > 0, α > 0 and γ > 0 , we have 2µ+ α+ γ > 0 that is a1 > 0.
Since (µ+ α) (γ + µ)− αβ > 0 >0 that is a2 > 0.
If R0 <1, then

βα

(α+ µ) (γ + µ)
+

ασµ

(α+ µ) (γ + µ) (σ + µ) (α+ µ)
< 1

6

286

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

K. Arun Kumar 281-293



⇒ βα

(α+ µ)
<

βα

(α+ µ) (γ + µ)
+

ασµ

(α+ µ) (γ + µ) (σ + µ) (α+ µ)
< 1

⇒ βα

(α+ µ) (γ + µ)
< 1 ⇒ βα < (α+ µ) (γ + µ)

⇒ (µ+ α) (γ + µ)− αβ > 0thatisa2 > 0.

Therefore, a2 > 0 if R0 <1
Hence by Routh–Hurwitz Criteria, the disease free equilibrium point E0 is locally asymp-
totically stable if R0 <1.

3.4 Global Stability of Disease Free Equilibrium

Theorem 3. The disease-free equilibrium point E0=(∧µ , 0, 0, 0, 0) of structure 1 was

globally asymptotic stable if R0 <1 [19].

Proof 3. It can be detected that from the structure (1), the disease-free sections are S,
R and the infected sections are E, I, T. The system of equations (1) will be arranged as

dU

dt
= P (U, V ),

dV

dt
= G(U, V ), and G(U, 0) = 0 (2)

where U = (S,R) ∈ R2
+, V = (A, I,Q, J) ∈ R3

+.
By using the technique introduced by Castillo-Chavez [5], we derived global stability of the
disease-free equilibrium point E0 = (∧µ ,0,0,0,0). For the worldwide asymptotic stability
of E0 the succeeding two conditions should be satisfied.
1. dU

dt = P (U, 0) Where X∗ is world wide asymptotically steady.

2. G(U, V ) = KV - Ĝ(U, V ), Ĝ(U, V ) ≥ 0, where K = DV G(U∗, 0) is the Metzler
Matrix and (X,Y ) ∈ ω.
If the given system of equations 1 satisfies 2 then the equilibrium point E0 is a global
asymptotically stable for R0 < 1.
Hence, the system 1 can be rewritten as

P (U, 0) =

(
∧ − µS

0

)
,K =

(α+ µ) 0 0
α (γ + µ) 0
0 γ (σ + µ)

 and

Ĝ (U, V ) =

βI (S0 − S)
0
0


Since S0 > S, by observation, Ĝ ((U, V )) ≥ 0 (U, V ) ∈ Ω.
We can say that the matrix K is M matrix by the definition of M and also we able to
find that X∗ = (∧µ , 0) is globally asymptotic stable steady state of the limiting structure
dU
dt = P (U, 0).
Since the two conditions are fulfilled, disease-free steady state E0=(∧µ , 0, 0, 0, 0) of struc-
ture of equations 1 is globally asymptotic stable if R0 < 1.

3.5 Local Stability of Endemic Equilibrium point

We conclude the endemic steady state X∗= (S∗E∗, I∗, T ∗, R∗) with their possibility
conditions are

7
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S∗ = ∧
βI∗+µ ,

E∗ = βS∗I∗

(α+µ) ,

T ∗ = γI∗

(α+µ) ,

R∗ = σT∗

µ ,

I∗ = (∧αβ−µ(γ+µ))
(β(γ+µ(σ+µ))) = (∧(R0−1)−ασµ)

(β(γ+µ)(σ+µ))

Theorem 4. When R0 > 1,then Endemic Equilibrium point X∗ is locally asymptotically
steady and unstable if R0 < 1.

Proof 4. The Jacobian matrix corresponding to the system 1 at endemic equilibrium
point X∗ is

J(X∗) =


(−βI∗ + µ) 0 −βS∗ 0 0

βI∗ − (µ+ α) βS∗ 0 0
0 α − (γ + µ) 0 0
0 0 γ − (σ + µ) 0
0 0 0 σ −µ


The characteristic equation is

(γ + µ) (γ + (σ + µ))
(
λ3 + b1λ

2 + b2λ+ b3
)
= 0

Where b1=βI∗ + 3µ+ α+ γ,
b2= (α+ µ) (γ + µ)− αβS∗ + (γ + µ) (βI∗ + µ) and
b3 = (βI∗ + µ) ((α+ µ) (γ + µ)− αβS∗) –β2S∗I∗

Hence the first two Eigen values are – µ,-(σ + µ) and remaining three Eigen values are
the roots of the

(
λ3 + b1λ

2 + b2λ+ b3
)
= 0.

Yet over again if the constants of specific equation a1 > 0, a2 > 0, a3 > 0 and a1a2 >
a3 are true, formerly by Routh-Hurwitz criterion, altogether the roots of the specific
equation have negative real portions and hence a stable equilibrium. Therefore Endemic
equilibrium at X∗ is locally asymptotically stable if R0 > 1

4 Numerical Simulation

Numerical simulation was performed in order to establish analytical result. We assumed
some parameter values and initial conditions of proposed SEITR model and it can be
shown table 2.

4.1 Analysis of results

The basic reproduction number for this set of limitation is R0 = 2.806. The dynamical
performance of the system will be observed in 2 with the help of MATLAB programming.
From Fig. 2, we observed that the dynamics behavior of susceptible, exposed, Infected,
treatment and recovered classes. This graph demonstrated that when the treatment rate
rose, the infected population decreased and joined either the treatment population or
the recovered population.

4.2 Discussion of results

From Fig.3 it was observed that the infected population(Fig.3b), exposed population(Fig.3c)
and treatment population(Fig.3d) were decreased while the susceptible population(Fig.3a)
was increased whenever the treatment rate increases.
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Table 2: Influenza parameters values of the SEITR model

Parameter Values Source
β 1.2 [16],[30]
α 0.2 [9],[30]
γ 0.4 [16],[30]
σ 0.1 [16],[30]
µ 0.01 [26],[29]

S(0) 1 Assumed
E(0) 0.2 Assumed
I(0) 0.01 Assumed
T (0) 0.4 Assumed
R(0) 0.3 Assumed

Figure 2: Dynamic behavior various compartments of SEITR model
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(a) (b)

(c) (d)

Figure 3: Effect of treatment rate γ on susceptible, exposed, Infected and treatment
population
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5 CONCLUSION

The epidemiological models are enabled us a noble knowledge to understanding the
spread dynamics of infectious disease in better way. In this article, a five compartment
epidemiological model SEITR was proposed and the basic properties were discussed.
The basic reproduction number R0 value was determined. The positivity and uniform
boundedness were performed. The existence of disease free equilibrium point E0 was
discussed and showed that it is locally also globally asymptotically stable for R0 < 1
. Similarly the endemic equilibrium point X∗ be real and local asymptotically stable
for R0 > 1. The transmission dynamics of influenza has been observed. The result
of treatment rate on the susceptible, exposed, infected and treatment populaces has
been examined and it has a positive effect on the infected population. The reproduction
number R0 = 2.806 > 1 indicates that the outbreak has gotten out of hand and that there
are currently more sick people than ever before. Therefore, the only method to reduce
the rate of illness spread is to enhance the rate of treatment, which includes the quick
hospitalisation of infections that are dangerously ill. The outcome of the SEITR model
on the disease program mechanism can be investigated in next studies. Additionally,
future research can be done to ascertain the most effective management strategies for
the sickness spread model and the belongings of medications and immunizations on the
SEITR model.
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