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ABSTRACT 
If X is a class of groups, then a group is said to be minimal non-X if it is not an X-group, while all its proper 
subgroups belong to X. The main result of this note is if G is a minimal non-ZAC group , then G is a finitely 
generated perfect group which has no proper subgroup of finite index and such that G/Frat(G) is an 
infinite simple group, where ZA ( respectively, C) denotes the class of hypercentral groups, (respectively,  
the class of Cernikov groups), and Frat(G) stands for the Frattini subgroup of G. 
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1. INTRODUCTION 
If X is a class of groups, then a group G is said to be minimal non -X if all its proper subgroups are in the 
class X, but G itself is not an X-group. We will denote minimal non-X-groups by MNX-groups. Many results 
have been obtained on minimal non-X-groups, for various choices of X, especially in the case of finite 
groups. For instance, finite minimal non-abelian, minimal non-nilpotent and minimal non-supersoluble 
groups have been completely described by G.A.Miller and H.C.Moreno [2], O..Schmidt [3] and K.Doerk[4] 
In particular, in [6] (respectively, in [5]) it is proved that if G is a finitely generated minimal non-nilpotent 
( respectively, non-(finite-by-nilpotent) group, then G is a perfect group which has no proper subgroup of 
finite index and such that G/Frat(G) is an infinite simple group, where Frat(G) denotes the Frattini 
subgroup of G.We generalize this last result to minimal non-hypercentral groups. We will prove. If G is a 
finitely generatednon- (Cernikov-by-hypercentral) group, then G is a perfect group which has no proper 
subgroup of finite index and such that G/Frat(G) is an infinite simple group. 
 
2. Finitely generated hypercentral-by-finite groups 
Lemma 2.1 Let G be a group whose proper subgroups are hypercentral-by-Cernikov. If N be a propre 
normal subgroup of G such that N is hypercentral group, Then G/N is an MNZAF. 
Proof: Let G be a group whose proper subgroups are hypercentral-by-Cernikov, let N be a propre  
normal hypercentral subgroup of G. Suppose that G/N is hypercentral-by-Cernikovgroup.  
Therefore there exists (K/N)⊲(G/N) such that (K/N) is hypercentral group and (G/K) is Cernikov , we 
obtain that G  is hypercentral-by-Cernikov group, as required 
Lemma 2.2 Let G be a group periodic whose proper subgroups are hypercentral-by-Cernikov. Then G it 
is locally finite. 
Proof: Let H be an finitely generated subgroup of G,so proper subgroup, then H is hypercentral-by-
Cernikov subgroup,there exists K is hypercentral  subgroup of H and (H/K) is Cernikovgroup. K an 
finitely generated hypercentral group so finite, and H/K is finitely generated Cernikov group then H  is 
finite. 
Lemma 2.3If G is a finitely generated minimal non ZAC-group, then G has no non-trivial finite factor 
hypercentral-by-Cernikov groups.  
Proof: Let G be an finitely generated MNZAC-group. Suppose that G has a normal proper subgroup N 
such that G/N is hypercentral-by-Cernikov group,So that G/N is finitely generated hypercentral-by-
Cernikov group, so it is locally nilpotent-by-finite group, since it is exist M⊲G such that M is hypercentral, 
M≠G and G/M is finite. Thus we deduce that G is hypercentral-by-Cernikov group. Contradiction. 
 
Theorem 2.1 Let G be a finitely generated minimal non-ZAC-group. Then: 
 i) G has no non-trivial finite factor. 
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 ii) G is perfect group 
 iii) G/Frat(G) is an infinite simple group. 
Proof: Let G be a finitely generated minimal non-ZAC-group. 
i) Suppose that G is finitely generated and admits N a proper normal subgroup of finite index in G. So N 

is hypercentral-by-Cernikovproper subgroup and it is also finitely generated. Hence N is 
hypercentral-by-Cernikov subgroup, so N is locally nilpotent-by-finite a finitely generated subgroup 
then there exists characteristic hypercentral subgroups M and N/M is finitely generated finite, so it is  
Cernikov group is it self G is hypercentral-by-Cernikov group . 

ii)  Suppose this statement is false. Then G≠G′, so G′ is hypercentral-by-Cernikov. Hence G/G′ is abelian, 
since it is locally graded. Now if G/G′ is finitely generated, then there exists H⊲G such that H≠G and 
G/H is finite. So G has a proper subgroup of finite index. Thus we deduce from (i) that G is 
hypercentral-by-finite. Contradiction. 

iii)  Let G be a minimal non-ZAC-group. It follows que G is a finitely generated perfect group which has no 
non trivial finite factor. Now we prove that G/Frat(G) is an infinite simple group. Since finitely 
generated groups have maximal subgroups, G/Frat(G) is non trivial and therefore infinite. Let N be a 
proper normal subgroup of G properly containing Frat(G). Then N is hypercentral-by-Cernikov. Hence 
there is a maximal subgroup M of G such that N is not contained in M. Then G=NM and we have 
(G/N)=(MN)/N)≃(M/(M∩N) 

so,G/N is hypercentral-by-Cernikov group. This is contradiction.Then G/Frat(G) is a simple group. 
 
3. Infinitely generated hypercentral-by-finite groups 
Lemma 3.1 Let G be a infinitely generated MNZAC-group. Then G is F-perfect 
Proof:Let G be a infinitely generated whose proper subgroups are in the class ZAC. Suppose that G 
admits a proper normal  subgroup N of finite index in G , then N belongs to ZAC . so there exists  K be a 
proper normal subgroup of N such that K is hypercentral subgroup and  N/K is Cernikov. Let L be a Core 
of  K  in G such that  L=K g ; We have N/K is Cernikov so Nx/kx is Cernikov, and N⊲G so N=NX  
then, N/Kx is Cernikov, so N/∩Kx is Cernikov, hence N/L is Cernikov, so there exists normal subgroup L of 
G such that L is hypercentral, and G/N≈(G/N)/(N/L) is finite, so G/L is Cernikov, then G is hypercentral-
by-Cernikov, contradiction 
lemma 3.2  The class ZAF  of hypercentral-by-finite groups is N -{0 }-closed. 
proof:Let H and K be normal hypercentral-by-Cernikov subgroups of a group G, there exist hypercentral 
subgroups H₁ and K₁ of H and K, respectively, such that (H/(H₁) and (K/(K₁) are Cernikov. We put 
N=H1H=∩hH₁h⁻¹(respectively M=K1K=∩kK₁k⁻¹) so N⊲H (respectively M⊲k) and H/M (respectively K/M 
is finite, so NM is a normal Cernikov subgroup of HK. we have 
(HN/NM)≃(H/(H∩NM)≃(H/N)/(H∩NM)/N)and ((KM/NM))≃(K/(K∩NM))≃(K/M)/(K∩NM)/M) 
 are Cernikov, so HK/NM=(HM)/(NM)(NK)/(NM) is Cernikov as the class of Cernikov groups is {H, N₀}-
closed. Therefore, HK is hypercentral-by-Cernikov, as required. 
Remark 3.1 Let G be a infinitely generated MNZAF-group, then G/G′ is quasicyclic group. 
Proof:By lemma 3.2, G cannot be the product of two proper normal subgroups and by lemma 3.1. We 
deduce that G/G′ is quasicyclic group. 
Lemma 3.3 Let G be a group, if G/(Z(G) is hypercentral-by-Cernikov  then, G is hypercentral-by-Cernikov. 
Proof: If G/Z(G) is hypercentral-by-Cernikov, therefore there exists normal hypercentral subgroup 
N/Z(G) and G/N  is Cernikov, so (Z(N)/Z(G))⊲N/Z(G) and (N/Z(G)/Z(N)/Z(G))≈N/Z(N) is hypercentral, 
hence 
Zα(N/Z(N)=N/Z(N)⇒Zα+1(N)/Z(N)=N/Z(N), so Zα+1(N)=Z(N),  we have N is hypercentral and G/N is 
Cernikov, then G is hypercentral-by-Cernikov group. 
 
Theorem 3.1 Let G be infinitely generated, if G  is MNZAF. Then G is MNZAC. 
Proof: Let G be a locally nilpotent MNZAF -group,   let N be a proper subgroup of G it is hypercentral-by-
Cernikov. We have N is locally nilpotent and there exist normal hypercentral subgroup K  of N such that 
N/K  is Cernikov so it is finitely generated so N is hypercentral-by-Cernikov. 
 
REFERENCES 
[1] A. ASAR-Nilpotent-by-Chernikov, J. London Math. Soc 61 (2000), no. 2, p. 412-422. 
[2] B. Bruno and R. E. Phillips-On minimal conditions related to Miller-Moreno type groups, Rend. Sem. 

Mat. Univ. Padova 69 (1983), p. 153-168. 
[3] K.Doerk: " Minimal nichtuberauflosbare, endliche Gruppen" , Math. Z. (1966), 198-205 
[4] S.Franciosi, F.De Giovanni, Y.P.Sysak:" Group with many polycyclic-by-nilpotent subgroups", 

Ricerche di Mathematica, Vol XLVIII 



Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 6, 2024 
   

                                                                                 429                                             Bouchelaghem Mounia et al 427-429 

[5] H.A.Miller-G.C.Moreno: " Non-abelian groups in wgich every subgroup is abelian", Trans. Amer. 
Math. Soc. 4(1903), 398-404 

[6] M.F. Newman and J.Wiegold, Groups with many nilpotent subgroups, Archiv d; Math. 15(1964), 241-
250 

[7] D.J.S. Robinson - Finiteness conditions and generalized soluble groups, Springer-Verlag, 1972 
[8] O.I.Schmidt:"UberGruppen, derensamtlicheTeilerspezielle Gruppen sind" , Mat. Sbornik 31 (1924), 

366-372 
[9] H.Smith: "Groups with few non-nilpotent subgroups", Glashow Math. J.39(1997), 141-151 
[10] M.Xu, Groups whose proper subgroups are finite-by-nilpotent, Arch. Math. 66 (1996) 353-359; 


