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Abstract

Norm retrieval was introduced for Hilbert space frames for the first time
by Bahmanpour et. al. in the year 2015. In order for a subspace as
well as its orthogonal complement to do norm retrieval, it was proved
by Bahmanpour et. al. that norm retrieval is a necessary requirement.
Basically, norm retrieval refers to the process of reconstructing the signal’s
norm from the intensity measurements. We give a few characterizations
for norm retrieval by vectors and subspaces under the action of bounded
linear operators.
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1 Introduction

For any orthonormal basis {u1, u2, u3, . . . }, a vector v ∈ H can be explicitly
represented as v =

∑
i

〈v, ui〉ui. Thus orthonormal bases help to reconstruct a

vector. In a similar manner, frames, having more flexible structure, also help to
reconstruct a vector in a stable way. Duffin and Schaeffer [9] for the first time
introduced frames for Hilbert spaces in the year 1952. Frames provides us with
a reconstruction formula for lost signals. Daubechies et. al. popularized frames
through their work in [7]. Over the last few decades, frame theory has become
a prestigious area of research. Researchers worked various generalizations of
frames, for instance, K-frame [13], fusion frame [5], wavelet frame [6] and many
more. Basically, frames help us to recover and reconstruct the signal, that was
lost or distorted, in a stable manner.

Reconstruction of signal is one of the important and significant problems in
engineering especially in signal processing. Here a signal can be thought as a
vector. This process of regaining the original signal becomes challenging when
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there is a partial loss of information. Sometimes it happens that we only have
the intensity measurements or the phaseless measurements of the lost signal.
In such case, phase retrieval sequences help to reconstruct or regain the signal
from its intensity measurements or phaseless measurements. Phase retrieval was
introduced by Balan et al. [2] for Hilbert space frames in the year 2006. Since
then mathematicians have started to work in this area. Phase retrieval is one of
the challenging engineering problems. It includes a broad range of applications
in many fields, such as speech recognition technology, X-ray crystallography,
etc.

Norm retrieval means regaining or reconstructing the lost signal’s norm
from its intensity measurements or phaseless measurements. Norm retrieval
for Hilbert spaces was discussed for the first time by Bahmanpour et. al. [1] in
the year 2015. It was proved in [1] that norm retrieval is the necessary require-
ment for a subspace so that the subspace along with its orthogonal complement
do phase retrieval. We note that if a sequence does phase retrieval then it will
always do norm retrieval. In the last few years, it is observed that researchers
have worked on norm retrieval frames [10], norm retrieval subspaces in finite
dimensional Hilbert spaces [4]; and in infinite dimensional Hilbert spaces [15].
Apart from these, pertubation of norm retrieval frames is discussed in [11]. Be-
ing highly influenced as well as encouraged by the above mentioned work we
explore norm retrieval sequences for vectors under the action of bounded lin-
ear operators, T . We also provide a method for construction of norm retrieval
subspaces.

We stick to the following notations throughout paper. H,K represents sepa-
rable Hilbert spaces, B(H) represents the space of linear and bounded operators
from H to H. I,Λ,Λi represents a countable index set.

The paper is organised as follows. In Section 2, we give some preliminary
background on norm retrieval sequences for finite and infinite dimensional spaces
and we highlight some of the important results in these fields. We provide
characterizations of norm retrieval sequences and and norm retrieval subspaces
in Section 3.

2 Preliminaries

We recall the fundamental definitions and basic results that will be helpful for
the paper. Frames are mathematical tools that are used to reconstruct signals.

Definition 2.1. [6] Consider a sequence, say ϕ = {ϕi}i∈I , in H. If for all
x ∈ H, there exist constants 0 < A1 ≤ A2 <∞ such that ϕ satisfies

A1‖x‖2 ≤
∑
i∈I
|〈x, ϕi〉|2 ≤ A2‖x‖2.

Then ϕ is called a frame for H. Here the constants A1 is known as the lower
frame bound, A2 is known as the upper frame bound. The frame ϕ is called
Parseval frame if A1 = A2 = 1.
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For example, consider an orthonormal basis, say, {en} for H, then the se-
quence {e1, e1, e2, e3, e4, . . . } is a frame for H. The associated frame bounds are
A1 = 1, A2 = 2.

The frame operator, S, is a mapping S : H → H defined as

Sx =
∑
i∈I
〈x, ϕi〉ϕi, ∀x ∈ H.

The reconstruction formula given by frame operator and frame elements is as
follows:

x =
∑
i∈I
〈x, S−1ϕi〉ϕi =

∑
i∈I
〈x, ϕi〉S−1ϕi, ∀x ∈ H.

We note that this representation is not unique, owing to the fact that frame
elements are not necessarily linearly independent. Frames are one of the essential
tools for restoring a signal. There are many different types of frames. One
special type of frame is the scalable frame [14]. A scalable frame is a frame,
ϕ, for H such that there exists scalars, say c1, c2, c3, . . . with ci ≥ 0 for which
{ciϕi}i∈I is a Parseval frame forH. We refer the readers [6] for more information
in frame theory.

Definition 2.2. [2] Consider a sequence ϕ = {ϕi}i∈I ∈ H. We say ϕ performs
phase retrieval for H, if for x, y ∈ H, ϕ satisfies

|〈x, ϕi〉| = |〈y, ϕi〉|, ∀ i ∈ I,

then x = cy and c satisfies |c| = 1.

The sequence of vectors {ei + ej}i<j , where ei’s are standard orthonormal
basis, performs phase retrieval for `2. If a sequence does phase retrieval in a
finite dimension space then it is also a frame, but it may not necessarily be a
frame in an infinite dimension space.

In [3], Cahill et. al. thoroughly discussed phase retrieval by subspaces or
projections.

Definition 2.3. [3] Suppose W = {Wi}i∈I ⊂ H is a collection of closed sub-
spaces with corresponding projections P = {Pi}i∈I . Then W or P does phase
retrieval whenever x, y ∈ H, P satisfies

‖Pix‖ = ‖Piy‖ ∀ i ∈ I,

we have x = cy and c satisfies |c| = 1.

Bahmanpour et. al. [1] introduced norm retrieval for frames in Hilbert
spaces in the year 2015. In his attempt to pass the phase retrieval condition
by subspaces to its orthogonal complements, Bahmanpour proved in [1] that
the property of norm retrieval is a necessary requirement. A norm retrieval
sequence helps to reconstruct partially lost signal’s norm.
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Definition 2.4. [1] A sequence of vectors ϕ = {ϕi}i∈I in H does norm retrieval
if for x, y ∈ H, ϕ satisfies

|〈x, ϕi〉| = |〈y, ϕi〉| ∀ i ∈ I,

then ‖x‖ = ‖y‖.

It is obvious for scalable frames, parseval frames, tight frames to do norm
retrieval. An orthonormal basis will always do norm retrieval for the corre-
sponding space. It is to be noted that if a sequence performs phase retrieval for
H then the sequence also performs norm retrieval for H, however the converse
is not true. For example, orthonormal bases do norm retrieval but not phase
retrieval.

Norm retrieval by projections is defined as follows.

Definition 2.5. [1] Consider a family of subspaces, say {Wi}i∈I , in an infinite
dimensional Hilbert space H and define the orthogonal projections, say {Pi}i∈I ,
onto {Wi}i∈I . Then {Wi}i∈I (or {Pi}i∈I) performs norm retrieval for H if for
x, y ∈ H, {Pi}i∈I satisfies ‖Pix‖ = ‖Piy‖, ∀ i ∈ I, we have ‖x‖ = ‖y‖.

Norm retrieval can be thought as having an advantage of one free measure-
ment when one tries to do phase retrieval.

The next proposition gives us a method to construct norm retrieval subspaces
with the help of dimension of the subspaces.

Proposition 2.6. [4] If {Wi}mi=1 are subspaces in Rn such that they do norm

retrieval then
m∑
i=1

dimWi ≥ n. Moreover, if ∃ k1, k2, . . . , km ∈ N with ki ≤ n

such that for some L ∈ N
m∑
i=1

ki = Ln then there exist subspaces {Wi}mi=1 that

perform norm retrieval in Rn where dimWi = ki for 1 ≤ i ≤ m.

The above result can easily be generalized as follows.

Theorem 2.7. Suppose {ki}mi=1 are natural numbers such that ki ≤ n and
m∑
i=1

ki ≥ n. If for some l ∈ N with 1 ≤ l ≤ m,
l∑

i=1

ki is a multiple of n, then

there exist subspaces {Wi}mi=1 in Rn satisfying dimWi = ki such that {Wi}mi=1

performs norm retrieval.

We recall the following properties of projection operators.

Lemma 2.8. [12] Consider any two Hilbert spaces, say, H1, H2 and T ∈
B(H1,H2). Consider a closed subspace, say, W1, of H1 and another closed
subspace, say, W2, of H2. Then the following statements are true.

(i) PW1
T ∗PW2

= PW1
T ∗ if and only if TW1 ⊂W2.

(ii) PW1T
∗PTW1

= PW1T
∗

4
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3 Main Results

We begin this section by studying norm retrieval sequences under the action of
bounded linear operators.

In [1], it was shown that orthogonal projections preserve the norm retrieval
property. However in [4], it is shown that the norm retrieval property is not
preserved by invertible operators. For instance, ϕ = {(1, 0), (0, 1)} does norm
retrieval for R2; consider an invertible on R2 defined by T (x1, x2) = (x1+x2, x2);
but Tϕ = {(1, 0), (1, 1)} does not do norm retrieval for R2.

Remark 3.1. ϕ = {ϕi}i∈I perform norm retrieval for H ⇐⇒ for ci 6= 0,
cϕ = {ciϕi}i∈I perform norm retrieval for H. Indeed, this can be easily verified
from the fact that |〈x, ciϕi〉| = |〈y, ciϕi〉| ⇐⇒ |〈x, ϕi〉| = |〈y, ϕi〉|, ∀i ∈ I.

Theorem 3.2. Suppose {ϕi}i∈I performs norm retrieval for H. Consider T ∈
B(H), such that T is an isometry. Then {T ∗ϕi}i∈I performs norm retrieval for
H.

Proof. Suppose x, y ∈ H such that |〈x, T ∗ϕi〉| = |〈y, T ∗ϕi〉| =⇒ |〈Tx, ϕi〉| =
|〈Ty, ϕi〉|, ∀ i ∈ I. Using the fact that {ϕi}i∈I performs norm retrieval for H
and T is an isometry, we get ‖x‖ = ‖y‖.

Corollary 3.3. Suppose T ∈ B(H) is an unitary operator and let ϕ = {ϕi}i∈I
be a sequence of vectors in H. Then, ϕ doing norm retrieval for H is equivalent
to Tϕ doing norm retrieval for H.

In [8] it was shown that phase retrieval is preserved by non-zero idempotent
operators for the range space. Theorem 3.4 shows that idempotent operators
also preserves norm retrieval for the range space.

Theorem 3.4. Consider T ∈ B(H), a non-zero idempotent operator and let
ϕ = {ϕi}i∈I be a sequence of vectors in H. Then ϕ doing norm retrieval for
R(T ∗) is equivalent to {Tϕi}i∈I doing norm retrieval for R(T ∗).

Proof. We note that for every x1, x2 ∈ R(T ∗), there exists y1, y2 ∈ H such that
T ∗y1 = x1, T ∗y2 = x2. Then we have,

|〈x1, Tϕi〉| = |〈x2, Tϕi〉| ⇐⇒ |〈T ∗y1, Tϕi〉| = |〈T ∗y2, Tϕi〉|
⇐⇒ |〈T ∗y1, ϕi〉| = |〈T ∗y2, ϕi〉|
⇐⇒ |〈x1, ϕi〉| = |〈x2, ϕi〉|,

for all i ∈ I. Hence the theorem holds.

Theorem 3.5. Given a closed subspace W of a Hilbert space H, every norm
sequence for H can be uniquely decomposed into norm retrieval sequences for W
and W⊥.
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Proof. Suppose ϕ = {ϕi}i∈I does norm retrieval for H and Pw is the orthogonal
projection onto W . Then ϕ can be uniquely decomposed as Pwϕ and (I−Pw)ϕ,
where Pwϕ = {Pwϕi}i∈I . The conclusion follows from the facts that for x, y ∈
W ,

|〈x, ϕi〉| = |〈x, Pwϕi〉| = |〈y, Pwϕi〉| = |〈y, ϕi〉|, ∀ i ∈ I;

and for x, y ∈W⊥,

|〈x, ϕi〉| = |〈x, (I − Pw)ϕi〉| = |〈y, (I − Pw)ϕi〉| = |〈y, ϕi〉|, ∀ i ∈ I.

Corollary 3.3 shows that the norm retrieval property for vectors is preserved
by unitary operators. We now show that the norm retrieval property for sub-
spaces is also preserved by unitary operators.

Theorem 3.6. Consider W = {Wi}i∈I is a collection of closed subspaces in H.
Further, let T : H → K be unitary. If W does norm retrieval for H, then TW
does norm retrieval for K.

Proof. For y1, y2 ∈ K, let ‖PTWi
y1‖ = ‖PTWi

y2‖ for all i ∈ I. Since T is
surjective, ∃ x1, x2 ∈ H such that Tx1 = y1 and Tx2 = y2. We note that
for k = 1, 2, we have PTWiyk = PTWiTxk = PTWiTPWixk + PTWiTPW⊥

i
xk =

PTWi
TPWi

xk = TPWi
xk. Thus, we get ‖TPWi

x1‖ = ‖TPWi
x2‖. Using the fact

that T is isometry and {Wi}i∈I do norm retrieval, we obtain ‖y1‖ = ‖y2‖.

The following two examples show that if we drop the condition that T is
isometry or the condition that T is surjective then we may lose the property of
norm retrievality of {TWi}i∈I .

Example 3.7. Consider the subspaces W1 = x-axis and W2 = y-axis in
R2. Clearly, {W1,W2} does norm retrieval for R2. Define T1 : R2 → R2 as
T1(x1, x2) = (x1 + x2, x2). Thus T1 is not an isometry. Now T1W1 = x-axis
and T1W2 = span{(x, x) : x ∈ R}. However {T1W1, T1W2} does not do norm
retrieval in R2. This can be easily verified at (1, 1) and (1,−3).

Example 3.8. Consider the subspaces W1 = x-axis and W2 = y-axis in R2.
We note that {W1,W2} does norm retrieval for R2. Define T2 : R2 → R3 as
T2(x1, x2) = (x1, x2, 0). Clearly T2 is not surjective. Now T2W1 = x-axis and
T2W2 = y-axis in R3. But {T2W1, T2W2} does not do norm retrieval in R3.
This can be easily verified for (0, 0, 1) and (0, 0, 2).

Let {Pi}mi=1 be projections onto subspaces {Wi}mi=1 of Cn. Consider any
orthonormal bases {ϕij}Iij=1 of {Wi}mi=1 and a sub collection S ⊆ {(i, j) : 1 ≤
i ≤ m, 1 ≤ j ≤ Ii}. It was shown in [4] that if {Pi}mi=1 does norm retrieval
and x ⊥ span{ϕij}(i,j)∈S , y ⊥ span{ϕij}(i,j)∈Sc then Re〈x, y〉 = 0. In fact
〈x, y〉 = 0 for an arbitrary Hilbert space, this is eveident from the following
result. A similar result for weaving norm retrival subspaces was proved in [8].
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Theorem 3.9. Let {Pi}i∈Λ be projections onto subspaces {Wi}i∈Λ of H. Given
any orthonormal bases {ϕij}j∈Λi of {Wi}i∈Λ and a sub collection S ⊂ {(i, j) :
i ∈ Λ, j ∈ Λi}. If {Pi}i∈Λ does norm retrieval then {ϕij}⊥(i,j)∈S ⊥ {ϕij}⊥(i,j)∈Sc .

Proof. Given S ⊂ {(i, j) : i ∈ Λ, j ∈ Λi}. Let x ∈ {ϕij}⊥(i,j)∈S and y ∈
{ϕij}⊥(i,j)∈Sc . We note that for each i ∈ Λ,

‖Pi(x + y)‖2 =
∑
j∈Λi

|〈x + y, ϕij〉|2 =
∑
j∈Λi

(i,j)∈Sc

|〈x, ϕij〉|2 +
∑
j∈Λi

(i,j)∈S

|〈y, ϕij〉|2.

=
∑
j∈Λi

|〈x− y, ϕij〉|2

= ‖Pi(x− y)‖2.

Therefore, we get ‖x + y‖2 = ‖x− y‖2 for all i ∈ Λ. Thus Re〈x, y〉 = 0.
Similarly, we obtain ‖Pi(x + iy)‖2 = ‖Pi(x − iy)‖2 =⇒ ‖x + iy‖2 =

‖x− iy‖2 =⇒ Im〈x, y〉 = 0 for all i ∈ Λ. Hence, x ⊥ y.

Corollary 3.10. Consider a sequence of vectors ϕ = {ϕi}i∈I in H. For non-
trivial J ⊂ I, let W1 = span{ϕi}i∈J and W2 = span{ϕi}i∈Jc . If ϕ does norm
retrieval then W⊥1 ⊂W2.

Proof. Since ϕ does norm retrieval, so by Theorem 3.9 we have W⊥1 ⊥ W⊥2 .
Hence the conclusion follows.

In [4], it has been proved that corollary 3.11 is true for Rn. We extend it to
Hn where Hn is an n-dimensional Hilbert space.

Corollary 3.11. Every norm retrieval set with n elements is orthogonal in Hn,
where Hn is an n-dimensional Hilbert space.

Proof. Consider a norm retrieval collection {ϕi}ni=1 in Hn. If possible, suppose
for some k with 1 ≤ k ≤ n, ϕk is not orthogonal to another element of this
collection. Let W1 = span{ϕi}i6=k and W2 = span{ϕk}. Then W⊥1 can not be
a subset W2, a contradiction to Corollary 3.10.
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