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Tough difficulties in the trigonometric series convergence in L1 norm is ap-
pearance of trigonometric series as Fourier series, and its L1- convergence.
Many academics investigated trigonometric series separately by examining the
cosine & sine series , so as a result, modified cosine sums and sine sums were
developed to assess the sharp consequences on trigonometric series’s integrabil-
ity & L1-convergence, as improved sums approach respective limits closer than
traditional trigonometric sums. This work presents ‘KP’, a new class of Fourier
Coefficients, as well as advanced cosine and sine sums of trigonometric series
with real coefficients. As a result, necessary & sufficient criterion for Integrabil-
ity and L1-normed convergence for trigonometric functions is achieved. Here,
authors also discuss about L1-convergence of rth differential of newly defined
improved trigonometric sums with Fourier coefficients are from an enlarged class
KP r.
Keywords: L1- convergence; Integrability; Modified Sums; Dirichlet Kernel
Mathematics Subject Classifications: 42A20; 42A32

1 Introduction

Take a look at sine & cosine series

∞∑
κ=1

c∗κ sinκy (1.1)

c∗0
2

+
∞∑
κ=1

c∗κ cosκy (1.2)

and these equations collectively written as

∞∑
κ=1

c∗κψy (1.3)

1

192

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Priyanka et al 192-203



where ψy is sinκy or cosκy respectively.
ηth sum of

∑∞
κ=1 c

∗
κψy is represented as Sη(y). So limη→∞ Sη(y) = Z(y).

Kano’s[1] outcome is popularly known as sequence {c∗κ} fulfilling {c∗κ} → 0 as

κ→ ∞ &
∑∞

κ=1 κ
2|∆2

(
c∗κ
κ

)
|<∞ then

∑∞
κ=1 c

∗
κ sinκy and

c∗0
2 +

∑∞
κ=1 c

∗
κ cosκy

are known to us as Fourier Series.

Definitions:

Convex Sequence: {c∗τ} is called a convex sequence(seq.) satisfying

∆2c∗τ ≥ 0, where ∆c∗τ = c∗τ − c∗τ+1 and ∆2c∗τ = ∆c∗τ −∆c∗τ+1.

Quasi-Convex Sequence([2],Vol.2, page 204): A seq. {c∗τ} is called quasi-
convex satisfying

∞∑
τ=1

(τ + 1)|∆2c∗τ |< ∞.

Sequence {c∗τ} is known as generalised quasi-convex satisfying

∞∑
τ=1

τκ |∆2c∗τ |<∞ : κ = 0, 1, 2, ...

‘S’ Class([4]: sequence {c∗τ} follow class S by satisfying c∗τ = 0(1), τ mono-
tonically decreasing seq. converging to 0 → ∞ and ∃ a sequence {A∗

τ} s.t.

(a)A∗
τ is monotonically decreasing seq. converging to 0, asτ → ∞, (b)

∞∑
τ=0

A∗
τ<∞,

(c) |∆c∗τ | ≤ A∗
τ ∀ τ.

Convergence in L1-norm: The series L1-converges in (0,π) if ||f∗ − S∗
τ || =

o(1), τ → ∞.
Young[5] began to work on this issue in 1913 by examining a class of convex seq.,
which was followed by Kolmogorov[6] in 1923 by addressing a general class of
quasi-convex seq.Then Telyakovskii[4] analysed Sidon’s significantly weaker class
S rather than the previously defined classes for L1- normed convergence(cgs.)
of trigonometric series. Following theorems are famous about the L1- normed
cgs. of Fourier series:

Theorem 1.1:[2], Vol.2, page 204

If {c∗κ} is monotonically decreasing and {c∗κ} is convex/quasi-convex seq. , then

necessary & sufficient condition for L1-normed convergence of
c∗0
2 +
∑∞

κ=1 c
∗
κ cosκy

is c∗κ log κ = o(1) κ→ ∞.
Telyakovskˇii generalised Theorem 1.1 for expression (1.2) where the coefficients
of series (1.2) satisfy the requirements of class S[7] as follows:

2
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Theorem 1.2:[4]

When coefficients of
c∗0
2 +

∑∞
κ=1 c

∗
κ cosκy satisfying criterion of class S[7] then

criterion of its L1 convergence is that c∗κ log κ = o(1) as κ→ ∞

Many writers examined and generalised these findings by examining various
generalisations of seq. classes.Recently,the coefficient seq. SJ[8] was introduced
to study the integrability and L1-cgs. of modified cosine and sine sums, which
was further generalied by Krasniqi[9]. A contemporary class of Fourier coeffi-
cients is formulated in this study as:

Definition 1.3: A monotonically decreasing seq. {c∗η} with c∗η → 0 as η →
∞ is follow a new class KP if ∃ a seq. {A∗

η} satisfying

(i)A∗
η ↓ 0 (1.4)

(ii)
∑

ηA∗
η<∞ (1.5)

(iii)

∣∣∣∣∆( c∗ηη2
)∣∣∣∣ ≤ A∗

η

η2
(1.6)

Here, coefficient sequence KP r will be formulated that is enlargement of coef-
ficient sequence KP.
Definition 1.4:: A monotonically decreasing seq. {c∗η} with c∗η → 0 as η →
∞ is from a new class KP r if ∃ seq. {A∗

η} satisfying

(i)A∗
η ↓ 0 (1.7)

(ii)
∑

ηr+1A∗
η<∞ (1.8)

(iii)

∣∣∣∣∆( c∗ηη2
)∣∣∣∣ ≤ A∗

η

η2
(1.9)

Obviously, KP = KP r when r = 0. It is obvious that KP r+1 ⊆ KPr, but its
reverse does not hold.
Example. Define bη = 1

ηr+3, r = 0,1,2,... Firstly we are going to demonstrate

that{bη}/∈ KPr+1

As, bη = 1
ηr+3 → 0 as η → ∞.

Let ∃ Aη = 1
ηr+3 , r = 0, 1, 2, 3, ...s.t.

∞∑
η=1

ηr+2Aη =
∞∑
η=1

1
η is divergent, means

{bη} does not belong to KPr+1.
But, Aη is monotonically decreasing and converging to 0 η → ∞, &
∞∑
η=1

ηr+1A∗
η =

∞∑
η=1

1
η2<∞,

Also |∆(
bη
η2 )| ≤

A∗
η

η2 ,∀η.
Therefore, {bη} ∈ KPr.

3
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2 Main Results:

Now we will give proof of the succeeding statement:

Theorem 2.1: If the coefficients of series (1.3) meet the class KP criteria,
then it will be a Fourier series.

Explanation

∞∑
κ=1

κ2
∣∣∣∣∆2

(
c∗κ
κ

)∣∣∣∣ = ∞∑
κ=1

κ2
∣∣∣∣∆(c∗κκ

)
−∆

(
c∗κ+1

κ+ 1

)∣∣∣∣
=

∞∑
κ=1

κ2
∣∣∣∣c∗κκ −

c∗κ+1

κ+ 1
−
c∗κ+1

κ+ 1
+
c∗κ+2

κ+ 2

∣∣∣∣
c∗κ+2<c

∗
κ+1 and κ+ 2>κ+ 1 therefore

1

κ+ 2
<

1

κ+ 1

⇒
c∗κ+2

κ+ 2
<
c∗κ+1

κ+ 1


≤

∞∑
κ=1

κ2
∣∣∣∣c∗κκ −

c∗κ+1

κ+ 1

∣∣∣∣
=

∞∑
κ=1

κ2

∣∣∣∣∣κ c∗κκ2 − (κ+ 1)
c∗κ+1

(κ+ 1)
2

∣∣∣∣∣
<

∞∑
κ=1

κ3
∣∣∣∣ c∗κκ2 −

c∗κ+1

κ+ 12

∣∣∣∣
=

∞∑
κ=1

κ3
∣∣∣∣∆( c∗κκ2

)∣∣∣∣
≤

∞∑
κ=1

κ3
A∗

κ

κ2
by defined class KP of Fourier Coefficients.

=
∞∑
κ=1

κA∗
κ<∞

As c∗κ is null sequence, So by the result given by Kano[1], Theorem 1 holds. In
this study, we provide latest improved trigonometric sums.

Zη(y) =
c∗0
2 +

η∑
κ=1

[
η∑

j=κ

∆
(

c∗j cos jy

j2

)]
κ2,

rη(y) =
η∑

κ=1

[
η∑

j=κ

∆
(

c∗j sin jy

j2

)]
κ2.

4

195

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Priyanka et al 192-203



Also investigated their L1-convergence following the newly established class KP
of coefficient sequences

Theorem 2.2: Suppose that coefficients of series (1.3) follow class KP, then

lim
η→∞

Zη(y) = Z(y), exists for y ∈ (o, π] (2.2.1)

Z(y) ∈ L1(0, π] (2.2.2)

||Z(y)− Sη(y)|| = o(1), η → ∞ (2.2.3)

Theorem 2.3: If coefficients of a sequence (1.3) are from a class KPr, then

lim
η→∞

Zr
η(y) = Zr(y), exists for y ∈ (o, π] (2.3.1)

Zr(y) ∈ L1(0, π], (r = 0, 1, 2, ...) (2.3.2)

||Zr(y)− Sr
η(y)|| = o(1), η → ∞. (2.3.3)

3 Lemmas:

The subsequent lemmas are required to prove our main results.

Lemma 3.1[3]

Let η ≥ 1 & r ∈ Z+ ∪ 0, y ∈ [s,π] So |D̃r
η(y)| ≤ Cs

ηr

y Where Cs is +ve

constant rely upon s, 0<s<π & D̃r
η(y) is conjugate Dirichlet kernel.

Lemma 3.2[4]

Suppose {c∗η} is a sequence of ℜ s.t. |c∗η| ≤ 1 forall η. So the relation∫ π

π
η+1

|
η∑

κ=0

c∗κD̃κ(y)|dy ≤ N(η + 1)

exists, where N is perfectly constant.
By Bernstein’s inequality,∫ π

π
η+1

|
η∑

κ=0

c∗κD̃
r
κ(y)|dx ≤ N(η + 1)s+1 for s = 0,1,2,...

lemma 3.3[3]

||Ds
η(y)||L1 = o(ηs log η) + o(ηs), s = 0, 1, 2, ...., and Dr

η(y) shows the rth

differentials of Dirichlet Kernel.

5
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4 Proof of Main results:

4.1 Solution of theorem 2.1:

We will just show the evidence for cosine sums here, while the argument for sine
sums will be shown on parallel paths.
To prove (2.2.1), we notice that

Zη (y) =
c∗0
2

+

η∑
κ=1

 η∑
j=κ

∆

(
c∗j cos jy

j2

)κ2
=
c∗0
2

+

η∑
κ=1

 η∑
j=κ

(
c∗j cos jy

j2
−
c∗j+1 cos (j + 1) y

(j + 1)
2

)κ2
=
c∗0
2

+

η∑
κ=1

c∗κ cosκy −
η∑

κ=1

κ2
c∗η+1 cos (η + 1) y

(η + 1)
2

= Sη(y)−
c∗η+1 cos ({η + 1}y)η(η + 1)(2η + 1)

6(η + 1)2

lim
η→∞

Zη(y) = lim
η→∞

Sη(y)− lim
η→∞

c∗η+1η(2η + 1) cos ((η + 1) y)

6(η + 1)

Since cos(η + 1)y is bounded in (0, π] and limη→∞
2η+1
η+1 = 2 and

η
∣∣c∗η∣∣ = η3c∗η

η2
= η3

∞∑
κ=η

∣∣∣∣∆( c∗κκ2
)∣∣∣∣

≤
∞∑

κ=η

κ3
∣∣∣∣∆( c∗κκ2

)∣∣∣∣
≤

∞∑
κ=η

κ3
A∗

κ

κ2
=

∞∑
κ=η

κA∗
κ = 0(1)

as η → ∞

{if
∑

c∗η is convergent then lim
η→∞

c∗η = 0}

So, lim
η→∞

Zη(y) = lim
η→∞

Sη(y) = Z(y) where

Z(y) =
c∗0
2

+ lim
η→∞

η∑
κ=1

c∗κ cosκy

= lim
η→∞

Zη(y) = lim
η→∞

Sη(y)

= lim
η→∞

(
c∗0
2

+

η∑
κ=1

c∗κ cosκy)

6
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Now lim
η→∞

(

η∑
κ=1

c∗κ cosκy)

= lim
η→∞

(

η∑
κ=1

c∗κ
κ2
κ2 cosκy)

= lim
η→∞

(

η−1∑
κ=1

∆(
c∗κ
κ2

(−D
′′

κ(y)) +
c∗η
η2

(−D
′′

η (y)))

=
∞∑
κ=1

∆(
c∗κ
κ2

)(−D
′′

κ(y))

≤
∞∑
κ=1

∆(
A∗

κ

κ2
)(−D

′′

κ(y))

According to the provided hypothesis & lemma 1,
∑∞

κ=1 ∆(
A∗

κ

κ2 )(−D
′′

κ(y)) con-
verges. Therefore Z(y)exists for y ∈ (0,π]
This brings the proof of (2.2.1).

Now||Z(y)− Zη(y)|| =
∫ π

0

|Z(y)− Zη(y)|dy

=

∫ π

0

|
∞∑

κ=η+1

c∗κ cosκy +
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

= lim
m→∞

∫ π

0

|
m∑

κ=η+1

c∗κκ
2 cosκy

κ2
+
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

We obtain by employing Abel’s Transformation

=

∫ π

0

|
∞∑

κ=η+1

∆

(
c∗κ
κ2

)(
−D

′′

κ(y)
)
+
c∗η+1D

′′

η (y)

(η + 1)2

+
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

≤
∫ π

0

|
∞∑

κ=η+1

∆

(
c∗κ
κ2

)(
−D

′′

κ(y)
)
|dy +

∫ π

0

|
c∗η+1D

′′

η (y)

(η + 1)2
|dy

+

∫ π

0

|
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

= (i) + (ii) + (iii)

Evidence of part (i)

∫ π

0

|
∞∑

κ=η+1

∆

(
c∗κ
κ2

)(
−D

′′

κ(y)
)
|dy =

∫ π

0

|
∞∑

κ=η+1

A∗
κ

κ2 ∆
(

c∗κ
κ2

)(
−D′′

κ(y)
)

A∗
κ

κ2

|dy

7
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Implementing Abel’s Transformation Once More

=

∫ π

0

|
∞∑

κ=η+1

∆
A∗

κ

κ2
)

κ∑
j=1

∆
c∗j
j2

(
Aj

j2 )
(−D

′′

j (x))|dy

≤
∞∑

κ=η+1

∆

(
A∗

κ

κ2

)∫ π

0

|
κ∑

j=1

∆
(

c∗j
j2

)
A∗

j

j2

(D′′

j (y)
)
|dy

Now by given assumption

≤
∞∑

κ=η+1

∆

(
A∗

κ

κ2

)
M(κ+ 1)3

= o

( ∞∑
κ=η+1

(κ+ 1)3∆

(
A∗

κ

κ2

))
= o(1) as {c∗κ} ∈ new defined class.

Validation of (ii) component

c∗η+1

(η + 1)2

∫ π

0

|D
′′

η (y)|dy =
c∗η+1

(η + 1)2

(
4

π
(η2 log η) +O(η2)

)
≤ c∗η+1

(
4

π

η2 log η

(η + 1)2
+

1

(η + 1)2
o(η2)

)
≤ c∗η+1

(
4

π

η2 log η

(η + 1)2
+ o(1)

)
= o

(
c∗η+1 log η

)
Now log η ≤ η ∀ η ≥ 1
And ηc∗η = o(1) as η → ∞ as already proved above.
Proof of (iii)part
(iii) part is equal to o(ηc∗η+1) which is equal to o(1) as η → ∞.
Therefore ||Z(y)− Zη(y)|| = o(1) as η → ∞
Therefore Z(y) ∈ L1(0, π]
This concludes (2.2.2).
Now we shall provide evidence of (2.2.3)

||Z − Sη|| = ||Z − Zη + Zη − Sη||
≤ ||Z − Zη||+ ||Zη − Sη||

= ||Z − Zη||+ ||η(2η + 1)

6(η + 1)
c∗η+1 cos (η + 1)y||

≤ ||Z − Zη||+
η(2η + 1)

6(η + 1)
c∗η+1

∫ π

0

| cos (η + 1)y|dy

→ o(1) as η → ∞

8
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by employing the assertion (2.2.1) and (2.2.2). This brings the proof of (2.2.3)
to a close. Apparently theorem 2 is developed for feeble class than class S, yet
conclusions are produced for L1 -convergence by not employing condition like
c∗η log η = o(1), as η → ∞.

4.2 Explanation of theorem 2.3:

We will just show the evidence for cosine sums here, while the argument for sine
sums will be shown on parallel paths.

Zη (y) = Sη(y)−
c∗η+1 cos ((η + 1)y)(η)(2η + 1)

6(η + 1)

Zr
η (y) = Sr

η(y)−
c∗η+1 cos (((η + 1)y) + r π2 )(η)(2η + 1)(η + 1)r

6(η + 1)

Since Aκ is monotonically decreasing and converging to 0 as κ→ ∞ &
∞∑
κ=1

κr+1Aκ<∞,

So, we got κr+2Aκ → 0, as κ→ ∞ and

ηr+1c∗η = ηr+3
∞∑

κ=η

|∆(
aκ
κ2

)| ≤
∞∑

κ=η

κr+3|∆(
c∗κ
κ2

)| ≤
∞∑

κ=η

κr+3(
A∗

κ

κ2
) = o(1), η → ∞.

(4.2.1)
As cos ((η + 1)y + r π2 ) is finite in (0,π]. So,

zr(y) = lim
η→∞

zη
r(y)

= lim
η→∞

Sη
r(y)

= lim
η→∞

(

η∑
κ=1

κrc∗κ cos(κy + r
π

2
))

After using Abel’s Transformation, obtained as

lim
η→∞

(

η∑
κ=1

κrc∗κ cos(κy + r
π

2
)) = lim

η→∞
[

η−1∑
κ=1

∆(
c∗κ
κ2

)(−Dr+2
κ(y)) +

c∗η
η2
Dr+2

η(y)]

=
∞∑
κ=1

∆(
c∗κ
κ2

)(−Dr+2
κ(y)) + lim

η→∞

c∗η
η2
Dr+2

η(y)

≤
∞∑
κ=1

A∗
κ

κ2
(−Dr+2

κ(y)) + lim
η→∞

c∗η
η2
Dr+2

η(y)

Using the provided assumptions, lemma 1 & (4.2.1), the series
∞∑
κ=1

A∗
κ

κ2 (−Dr+2
κ(y))

converges.

9
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So, the limit zr(y) exists for y ∈ (0, π] and (2.3.1) follows.
Take the following consideration to establish (2.3.2).

zr(y)− zη
r(y) =

∞∑
κ=η+1

κrc∗κ cos(κy + r
π

2
) +

c∗η+1 cos (η + 1)y + r π2 η(2η + 1)(η + 1)r

6(η + 1)

=
∞∑

κ=η+1

∆(
c∗κ
κ2

)(−Dκ
r+2(y)) +

c∗η+1

(η + 1)2
Dr+2

η (y)

+
η(η + 1)r(2η + 1)

6(η + 1)
c∗η+1 cos((η + 1)y + r

π

2
)

=
∞∑

κ=η+1

A∗
κ

κ2
∆(

c∗κ
κ2 )

A∗
κ

κ2

(−Dκ
r+2(y)) +

c∗η+1

(η + 1)2
Dr+2

η (y)

+
η(η + 1)r(2η + 1)

6(η + 1)
c∗η+1 cos((η + 1)y + r

π

2
)

=

∞∑
κ=η+1

∆(
A∗

κ

κ2
)

κ∑
j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y)) + (

A∗
η+1

η + 1
)

η∑
j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y))

+
c∗η+1

(η + 1)2
Dr+2

η (y) +
η(η + 1)r(2η + 1)

6(η + 1)
c∗η+1 cos((η + 1)y + r

π

2
)

After applying the lemma 2 & lemma 3

||zr(y)− zη
r(y)|| ≤

∞∑
κ=η+1

∆(
A∗

κ

κ2
)

∫ π

0

|
κ∑

j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y))|dy

+ (
A∗

η+1

η + 1
)

∫ π

0

|
η∑

j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y))|dy +

∫ π

0

|
c∗η+1

(η + 1)2
Dr+2

η (y)|dy

+
η(η + 1)r(2η + 1)

6(η + 1)
|c∗η+1|

∫ π

0

| cos((η + 1)y + r
π

2
)|dy

= O(
∞∑

κ=η+1

κr+3∆(
A∗

κ

κ2
)) +O(ηr+3(

A∗
η+1

η + 12
)) +O(ηrc∗η+1 log η)

+
η(η + 1)r(2η + 1)

6(η + 1)

∣∣∣∣c∗η+1|
∫ π

0

| cos
(
(η + 1)y + r

π

2

)∣∣∣∣ dy
Using the reasoning provided in the explanation of theorem 2, researchers may

conclude that
∞∑

κ=η+1
κr+3∆(Aκ

κ2 ) converges.∫ π

0
| cos((η + 1)y + r π2 )|dy ≤ 2

η+1 and for η ≥ 1, ηr+1c∗η log η ≤ ηr+2c∗η = o(1) as
η → ∞. This implies that

||zr(y)− zη
r(y)|| = 0(1) as η → ∞. (4.2.2)
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Because,zη
r(y) is a monomial, so zr(y) ∈ L1(0, π] which completes (2.3.2). We

are now proceeding on to the evidence of (2.3.3)

||zr − Sη
r|| = ||zr − zη

r + zη
r − Sη

r||
≤ ||zr − zη

r||+ ||zηr − Sη
r||

= ||zr − zη
r||+ ||η(η + 1)r(2η + 1)

6(η + 1)
|c∗η+1 cos((η + 1)y + r

π

2
)||

≤ ||zr − zη
r||+ η(η + 1)r(2η + 1)

6(η + 1)
|c∗η+1|

∫ π

0

| cos((η + 1)y + r
π

2
)|dy

Further ||zr(y)−zηr(y)|| = 0(1) as η → ∞ by using (1.11),
∫ π

0
| cos((η+1)y+

r π2 )|dy ≤ 2
η+1 and c∗η is a seq. converging to 0,so the (2.3.3)part of theorem 2.3

holds.
Note The scenario r = 0 in main result 2.3 gives output of main result 2.2.
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