
Analysis of Tripled System of Fractional

Differential Equation using Certain Fixed Points

Theorems with Fractional Boundary Condition

Ashok Kumar Badsara1, Jagdev Singh2, Richa Sharma3

and Virendra Singh Chouhan4

December 26, 2022

Abstract

This paper presents the tripled system of differential equations of frac-
tional type with fractional integral boundary conditions as well as inte-
ger and fractional derivative. Here the Banach fixed points theorem and
Scheafer’s fixed points theorem are used as a main tool. To justify the
results we illustrate some examples.
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1 Introduction

Fractional differential equation are applicable in many streams of science
and engineering like as fitting of experimental data, e electromagnetics, physics,
viscoelasticity, lectro chemistry, biophysics, blood flow phenomena,porous me-
dia,biology, electrical circuits, etc. Therefore compare to models of integer order,
fractional order model become more practical and realistic. Thus there has been
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a significant developments in problems of boundary value for the existence and
uniqueness of fractional differential equations; see [1, 4, 5, 6, 8, 9, 10, 12]. and the
references therein. Many authors have worked on existence and uniqueness of
solution of tripled system of fractional differential equations [2, 3, 7, 11, 13, 14].
The tripled systems of fractional differential equation often exits in numerous
models such as Chemostats and Microorganism Culturing, Brine Tanks, Irregu-
lar Heartbeats, Chemical Kinetics, Lidocaine and Pesticides, Predator Prey etc.
[8] study fractional differential equations for Boundary value problems of non-
linear type and include nonlocal and integral boundary condition of fractional
type. Inspired by the problem [9],

CDa1x1(α) = e1(α, x2(α), x3(α)), α ∈ [0, 1]
CDa2x2(α) = e2(α, x1(α), x3(α)), α ∈ [0, 1]
CDa1x3(α) = e3(α, x1(α), x2(α)), α ∈ [0, 1]

x1(0) = x′1(0) = x1”(0) = 0,
CDp1x1(1) = γ1(J

q1x1)(1),

x2(0) = x′2(0) = x2”(0) = 0,
CDp2x2(1) = γ2(J

q2x2)(1)

x3(0) = x′3(0) = x3”(0) = 0,
CDp3x3(1) = γ3(J

q3x3)(1)

Where CDai Caputo fractional derivative with order ai, J
q represent the Riemann-

Liouville fractional integral whose order a1, a2 ∈ (4, 5], p1, p2, p3 ∈ (0, 4] q1, q2, q3 >

0, e1, e2, : [0, 1]×R→ R are smooth functions and γi ̸= Γ(qi+5)
Γ(5−pi)

, i = 1, 2, 3.

Existence and uniqueness of solution for the mentioned above tripled system of
nonlinear fractional order differential equations is main focus of the paper.

2 Preliminaries

Firstly we introduce some notation, lemmas and definitions.
Definition 2.1 [6] Caputo derivative whose fractional order is a for smooth
function e : [0,∞) → R is define as

CDae(α) =
1

Γ(n− a)

∫ α

0

(α− t)n−a−1e(n)(t)dt

gives e(n)(α) exist, where [a] represents the integer part of the real number a
and Γ is the Euler’s Gamma function.
Definition 2.2 [12] Riemann-Liouville fractional integral of the order a > 0
for a smooth function

Jae(α) =
1

Γ(a)

∫ α

0

(α− t)a−1e(t)dt.

Lemma 2.1 [2] Let f, g > 0 and e ∈ L1[a, b] then J
fJge = Jf+ge

2
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Lemma 2.2 [2] If e is continuous and n ≥ 0, then

CDnJne = e

It follows from Lemmas 2.1 and 2.2 that if e is continuous and γ > a, then
CDae = Jγ−ae.
Lemma 2.3 [2] Let γ > −1 and n > 0. Then

Jnzγ =
Γ(γ + 1)

Γ(n+ γ + 1)
zn+γ

Lemma 2.4 [2] Let γ ≥ 0 and m = [n] + 1, then

CDnxγ =


0, ifγ ∈ 0, 1, 2, . . .m− 1
Γ(γ+1)

Γ(γ+1−n) (z − a)γ−n, ifγϵNandγ ≥ m

orγ /∈ N, γ > m− 1

Lemma 2.5 [7] Let a > 0 then,

JaCDaV (α) = V (α) + h0 + h1α+ h2α
2 + · · ·+ hn−1α

n−1

for some hi ∈ R, i = 0, 1, 2, . . . n − 1, n is smallest integer grater than or equal
to a.

3 Supporting Result

In this part, we establish the result required in our main proofs.

Lemma 3.1 Let y ∈ H([0, 1],R) and γ ̸= Γ(q+5)
Γ(5−p) . Then the problem{

CDax(α) = y(α)α ∈ [0, 1]

x(0) = x′(0) = x′′(0) = x′′′(0) = 0,C Dpx(1) = γ(Jqx)(1)
(3.1)

has unique solution

x(α) =
1

Γa

∫ α

0

(α− t)α−1y(t)dt

− γΓ(5− p)Γ(5 + q)α3

24Γ(a− p)[γΓ(5− p)− Γ(q + 4)

∫ 1

0

(1− t)q+a−1y(t)dt

+
Γ(5− p)Γ(q + 5)α3

24Γ(a− p)[γΓ(5− p)− Γ(q + 5)]

∫ 1

0

(1− t)a−p−1y(t)dt (3.2)

Proof: From Lemma 2.2, (3.2) is similar to

x(α) = Jay(α)− h0 − h1α− h2α
2 − h3α

3 − h4α
4 (3.3)
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for some hi ∈ R, i from 0to4.
from x(0) = 0 it follows h0 = 0 also x′(0) = 0 =⇒ h1 = 0, x′′(0) = 0 =⇒
h2 = 0 and x′′′(0) = 0 =⇒ h3 = 0. Thus (3.3) becomes

x(α) = Jay(α)− h4α
4 (3.4)

Now

(CDpx) = Ja−py(α)− c4
Γ5

Γ(5− p)
α4−p

Jqx(α) = Jp+qy(α)− c4
Γ5

Γ(5 + q)
α4+q

From the boundary condition,

(CDpx)(1) = (Jqx)(1)

=⇒ Ja−py(1)− c4
Γ5

Γ(5− p)
= γJp+qy(1)− c4

Γ5

Γ(5 + q)

=⇒ c4

[
Γ5(γΓ(5− p)− Γ(5 + q))

Γ(5 + q)Γ(5− q)

]
= γJp+qy(1)− Ja−py(1)

=⇒ c4 =
Γ(5− q)Γ(5 + q)

24(γΓ(5− p)− Γ(5 + q)

[
γJp+qy(1)− Ja−py(1)

]
.

On substituting the value of c4 in (3.4) we find solution (3.2). It clear from
lemma (3) that solution of the tripled system (1.1) is given by the integral
equation,

x1(α) =
1

Γa1

∫ α

0

(α− t)a1−1e1(t, x2(t), x3(t))dt

− γ1R1α
3

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1e1(t, x2(t), x3(t))dt

+
R1α

3

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1e1(t, x2(t), x3(t))dt

x2(α) =
1

Γa2

∫ α

0

(α− t)a2−1e2(t, x2(t), x3(t))dt

− γ2R2α
3

24Γ(q2 + a2)

∫ 1

0

(1− t)q2+a2−1e2(t, x2(t), x3(t))dt

+
R2α

3

Γ(a2 − p2)

∫ 1

0

(1− t)a2−p2−1e2(t, x2(t), x3(t))dt

x3(α) =
1

Γa3

∫ α

0

(α− t)a3−1e3(t, x2(t), x3(t))dt

− γ3R3α
3

24Γ(q3 + a3)

∫ 1

0

(1− t)q3+a3−1e3(t, x2(t), x3(t))dt

+
R3α

3

Γ(a3 − p3)

∫ 1

0

(1− t)a3−p3−1e3(t, x2(t), x3(t))dt

4
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Where

Ri =
Γ(5− pi)Γ(qi + 5)

γiΓ(5− pi)− Γ(qi + 4)
,

for i =1, 2, 3.
Let X = H[0, 1] then (X, ∥.∥X) is Banach space fit out with the norm.

∥X∥X = (sup|x(α)|: α ∈ [0, 1])

Let B = X ×X ×X then (B, ∥.∥B) is also a Banach space equipped with the
norm.

∥(x1, x2, x3)∥B = ∥x1∥X + ∥x2∥X + ∥x3∥X

Let us define an operation F : B → B

f(x1, x2, x3)(α) = (f1x2(α)x3(α), f2x1(α)x3(α),

f3x1(α)x2(α)

Where

f1x2(α)x3(α) =
1

Γa1

∫ α

0

(α− t)a1−1e1(t, x2(t), x3(t))dt

− γ1R1α
3

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1e1(t, x2(t), x3(t))dt

+
R1α

3

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1e1(t, x2(t), x3(t))dt

f2x1(α)x3(α) =
1

Γa2

∫ α

0

(α− t)a2−1e2(t, x2(t), x3(t))dt

− γ2R2α
3

24Γ(q2 + a2)

∫ 1

0

(1− t)q2+a2−1e2(t, x2(t), x3(t))dt

+
R2α

3

Γ(a2 − p2)

∫ 1

0

(1− t)a2−p2−1e2(t, x2(t), x3(t))dt

f3x1(α)x2(α) =
1

Γa3

∫ α

0

(α− t)a3−1e3(t, x2(t), x3(t))dt

− γ3R3α
3

24Γ(q3 + a3)

∫ 1

0

(1− t)q3+a3−1e3(t, x2(t), x3(t))dt

+
R3α

3

Γ(a3 − p3)

∫ 1

0

(1− t)a3−p3−1e3(t, x2(t), x3(t))dt

We see fixed point of F are solution of tripled system(1.1). To simplify and our
convenience we put.

Λi =
1

Γ(ai + 1)
+

γ|Ri|
24Γ(qi + ai + 1)

+
|Ri|

24Γ(ai − pi + 1)

for i = 1, 2, 3

5
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4 Main Theorem

We will use well know Banach fixed points theorem to prove our first result.

Theorem 4.1 Suppose that γi ̸= Γ(qi+5)
Γ(5−pi)

, i = 1, 2, 3 and the following hypothesis

holds. (H 1) Assume that a non-negative continuous functions ki ∈ C[0, 1], i =
1, 2 exist such that

|ei(α, y1)− ei(α, y2)|≤ ki(α)|y1 − y2|
|ei(α, y2)− ei(α, y3)|≤ ki(α)|y2 − y3|
|ei(α, y3)− ei(α, y1)|≤ ki(α)|y3 − y1|

∀y1, y2, y3 ∈ Rand∀α ∈ [0, 1]

with Ii = sup ki(α)i = 1, 2, 3 α ∈ [0, 1] and I = max
i
Ii and if I(η1+η2+η3) < 1

where ηi, i = 1, 2, 3 and defined by (7) then on [0, 1] the tripled system (1) has
a unique. We shall show F is contraction.
Proof. Let (x1, x2, x3), (x

′
1, x

′
2, x

′
3) ∈ B then ∀α ∈ [0, 1]

|f1(x2)(x3)(α)− f1(x
′
2)(x

′
3)(α)|≤

1

Γa1

∫ α

0

(α− t)a1−1

|e1(t, x2(t), x3(t)− e1(t, x
′
2(t), x

′
3(t)|dt+

|R1|γ1
24Γ(q1 + a1)∫ 1

0

(1− t)q1+a1−1|e1(t, x2(t), x3(t)− e1(t, x
′
2(t), x

′
3(t)|dt

+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1|e1(t, x2(t), x3(t)

−e1(t, x′2(t), x′3(t)|dt

≤ I∥x2x3 − x′2x
′
3∥
[

1

Γa1

∫ α

0

(α− t)a1−1dt+
|R1|γ1

24Γ(q1 + a1)∫ 1

0

(1− t)q1+a1−1dt+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1dt

]
≤ ∥x2x3 − x′2x

′
3∥×

[
1

Γa1
+

|R1|
24Γ(q1 + a1)

+
|R1|γ1

Γ(a1 − p1)

]
Thus

∥f1(x2)(x3)− f1(x
′
2)(x

′
3)∥≤ Iη1∥x2x3 − x′2x

′
3∥x

Similarly

∥f2(x1)(x3)− f2(x
′
1)(x

′
3) ≤ Iη2∥x1x3 − x′1x

′
3∥

and

∥f2(x1)(x2)− f2(x
′
1)(x

′
2) ≤ Iη2∥x1x2 − x′1x

′
2∥

6
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∥f(x1, x2, x3)− f(x′1, x
′
2, x

′
3)∥B≤

I(η1 + η2 + η3)∥(x1, x2, x3)− (x′1, x
′
2, x

′
3)∥B

As I(η1 + η2 + η3) < 1 therefore f is a contradiction and by Banach fixed point
result, f must have unique fixed point i.e. the tripled system (1.1) has unique
solution.
Theorem 4.2 Assume γi ̸= Γ(qi+5)

Γ(5−pi)
, i = 1, 2, 3 and the following hypothesis

holds.
(H 2) there exist non negative continuous function l1, l2, l3 ∈ C[0, 1] such

that |ei(α, y)|≤ li(α) ∀y ∈ R and ∀α ∈ [0, 1] with Li = sup
α∈[0,1]

li(α), i = 1, 2, 3.

Then the tripled system (1.1) defined on [0, 1] has at least one solution
Proof: To prove this result we take help of Schaefer fixed point theorems.
Step-1 F is smooth.
Since e1, e2 and e3 are smooth therefore f is also smooth.
Step-2 Under the mapping f bounded set of B are mapped into bounded sets
of B.
Let ωξ = (x1, x2, x3) ∈ B; ∥(x1, x2, x3)∥B≤ ξ
where ξ > 0 Now for (x1, x2, x3) ∈ ωξ and ∀α ∈ [0, 1]

|f1(x1)(x2)(x3)|≤
1

Γa1

∫ α

0

(α− t)a1−1|e1(t, x2(t), x3(t)|dt

+
|R1|γ1

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1|e1(t, x2(t), x3(t)|dt

+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1|e1(t, x2(t), x3(t)|dt

≤ ω1

[
1

Γa1

∫ α

0

(α− t)a1−1dt+
|R1|γ1

24Γ(q1 + a1)∫ 1

0

(1− t)q1+a1−1dt+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1dt

]
≤ ω1

[
1

Γa1
+

|R1|γ1
24Γ(q1 + a1)

+
|R1|

Γ(a1 − p1)

]
Thus

∥f1(x2)(x3)∥X≤ ω1η1

similar

∥f1(x1)(x3)∥X≤ ω2η2

and

∥f1(x1)(x2)∥X≤ ω3η3

=⇒ ∥f1(x1, x2, x3)∥X≤ ω1η1 + ω2η2 + ω3η3

7

186

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Ashok Kumar Badsara et al 180-191



i.e. ∥f1(x1, x2, x3)∥X≤ ∞ Step-3. F : B → B is completely continuous opera-
tor. Let (x1, x2, x3) ∈ ωξ and α1, α2, α3 ∈ [0, 1] with α1 < α2 < α3, then

|f1(x2)(α2)− f1(x2)(α1)|≤
ω1

Γa1

∫ α1

0

[
(α2 − t)a1−1 − (α1 − t)a1−1

]
dt

+
ω1

Γa1

∫ α1

0

(α2 − t)a1−1 +
ω1γ1|R1|∥α3

2 − α3
1∥

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1dt

+
ω1γ1|R1|∥α3

2 − α3
1∥

24Γ(q2 − p1)

∫ 1

0

(1− t)a1−p1−1dt ≤ ω1

Γ(a1 + 1)
[(α2 − α1)

a1 (4.1)

+(αa1
2 − αa1

1 )] +
(α2 − α1)

a1

Γ(a1 + 1)
+
ω1γ|R1|∥α3

2 − α3
1∥

24Γ(q1 + a1 + 1)
+

ω|R1|∥α3
2 − α3

1∥
24Γ(a1 − p1 + 1)

(4.2)

right- hand side tends to zero when α1 → α2.
Thus ∥f1x2(α2)− f1x2(α1)∥X→ 0 as α1 → α2.
Similarly ∥f2x1(α2)− f2x1(α1)∥X→ 0 as α1 → α2

∥f3x1(α2)− f3x1(α1)∥X→ 0 as α1 → α2.
Thus ∥f(x1, x2, x3)(α2)− f(x1, x2, x3)(α1)∥B→ 0 as α1 → α2

Similarly ∥f(x1, x2, x3)(α3)− f(x1, x2, x3)(α1)∥B→ 0 as α1 → α3

Combining step 1 to 3 and by reaction of Arzela - Ascoli theorem, F : B → B
is completely continuous operation.
Step-4
Let

ψ = {(x1, x2, x3) ∈ B : (x1, x2, x3) = ϕF (x1, x2, x3)

for some ϕ ∈ (0, 1) we shall show that set ψ is bounded. Let (x1, x2, x3) ∈
ψ =⇒ (x1, x2, x3)(α) = ϕf(x1, x2, x3)(α) for some ϕ ∈ (0, 1). Then we have

x1(α) = ϕf1x2x3(α)

x2(α) = ϕf2x2x3(α)

x3(α) = ϕf3x2x3(α),∀α ∈ [0, 1]

∥x1(α)∥= |ϕf1x2x3(α)|≤ ϕω1

[
1

Γa1

∫ α

0

(α− t)a1−1dt

+
γ1|R1|

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1dt+
|R1|

24Γ(a1 − p1)∫ 1

0

(1− t)a1−p1−1dt

]
≤ ω1

[
1

Γ(a1 + 1)
+

γ1|R1|
24Γ(q1 + a1 + 1)

+
|R1|

24Γ(a1 − p1 + 1)

]
(4.3)

Thus

∥x1∥X≤ ω1η1

8
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Similarly

∥x2∥X≤ ω2η2

and

∥x3∥X≤ ω3η3

Hence, we get

∥(x1, x2, x3)∥X ≤ ω1η1 + ω2 + ω3η3η2

∥(x1, x2, x3)∥B ≤ ∞

Thus Scheafer’s fixed point result present ϕ is bounded set. f must have mini-
mum one fixed point which is solution of tripled system (1.1).

Example 4.1. Take the following tripled system

CD
17
4 x1(α) =

1
α2+16

|x2(α)x3(α|)
1+|x2(α)x3(α)|

CD
9
2x2(α) =

1
α2+25 tan

−1(x1(α)x3(α)), α ∈ [0, 1]
CD

13
2 x3(α) =

1
α2+49 cot

−1(x1(α)x3(α)), α ∈ [0, 1]

x1(0) = x′1(0) = x′′1(0) = 0,C D
1
2x1(1) =

15
16 (J

5
2x1)(1)

x2(0) = x′2(0) = x′′2(0) = 0,C D
3
2x2(1) =

16
17 (J

7
2x2)(1)

x3(0) = x′3(0) = x′′3(0),
C D

4
3x3(1) =

17
18 (J

9
2x3)(1)

a1 = 17
4 , p1 = 1

2 , q1 = 5
2 , γ1 = 15

16 ̸= Γ(q1+5)
Γ(5−p1)

= 160.875

a2 = 9
2 , p2 = 3

2 , q2 = 7
2 , γ2 = 16

7 ̸= Γ(q2+5)
Γ(5−p2)

= 422.96

a3 = 13
2 , p3 = 4

3 , q3 = 9
2 , γ3 = 17

8 ̸= Γ(q3+5)
Γ(5−p3)

= 4558.125

(4.4)

for α ∈ [0, 1] and y1, y2, y3 ∈ R.

|ei(α, y1)− ei(α, y2)|≤
1

α2 + 16
|y1 − y2|

|ei(α, y2)− ei(α, y3)|≤
1

α2 + 25
|y2 − y3|

|ei(α, y3)− ei(α, y1)|≤
1

α2 + 49
|y3 − y1|

So, we can take K1 = 1
α2+16 ,K2 = 1

α2+25 ,K3 = 1
α2+49

I1 = sup
α∈[0,1]

K1(α) =
1

16

I2 = sup
α∈[0,1]

K2(α) =
1

25

I3 = sup
α∈[0,1]

K3(α) =
1

49

9
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and then, we have

I = max{I1, I2, I3} =
1

16

Further,

|R1| =
Γ(5− p1)Γ(q1 + 5)

|Γ(5− p1)− Γ(q1 + 5)|
=

2786582
√
π

1467322
= 3.37

|R2| =
Γ(5− p2)Γ(q2 + 5)

|Γ(5− p2)− Γ(q2 + 5)|
=

8968428
√
π

9624241
= 1.65

|R3| =
Γ(5− p3)Γ(q3 + 5)

|Γ(5− p3)− Γ(q3 + 5)|
=

7525863
√
π

9569341
= 1.39

Iη1 = I

[
1

Γ(a1 + 1)
+

α1|R1|
24Γ(q1 + a1 + 1)

+
R1

24Γ(a1 − p1 + 1)

]
=

1

16
[0.078 + 0.0034 + 0.0007]

=
1

16
[0.08211]

= 0.00513

Iη2 = I

[
1

Γ(a2 + 1)
+

α2|R2|
24Γ(q2 + a2 + 1)

+
R2

24Γ(a2 − p2 + 1)

]
=

1

16
[0.4357 + 0.0046 + 0.0036]

=
1

16
[0.44066]

= 0.027

Iη3 = I

[
1

Γ(a3 + 1)
+

α3|R3|
24Γ(q3 + a3 + 1)

+
R3

24Γ(a3 − p3 + 1)

]
=

1

16
[0.00742 + 0.0000127 + 0.00332]

=
1

16
[0.010752]

= 0.005376

and then

I(η1 + η2 + η3) = 0.005131 + 0.027 + 0.005376 = 0.0375087 < 1

Hence all assumptions of Theorem 4.1 are justify and consequently the tripled
system (4.4) must have unique solution defined on [0, 1].
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Example 4.2. Now consider the following tripled system

CD
5
2x1(α) =

cos x2x3(α)
7+α

CD
11
4 x2(α) =

sin x1x3(α)
4+α2

CD
17
4 x3(α) =

cos 2πx2x3(α)
7+α3

x1(0) = x′1(0) = x′′′1 (0) = 0,C D
1
2x1(1) =

13
4 (J

13
2 x1)(1)

x2(0) = x′2(0) = x′′′2 (0) = 0,C D
3
2x2(1) =

9
8 (J

9
2x2)(1)

x3(0) = x′3(0) = x′′′3 (0),C D
5
2x3(1) =

6
7 (J

7
2x3)(1)

a1 = 5
2 , p1 = 1

2 , q1 = 13
2 , α1 = 13

4 ̸= Γ(q1+5)
Γ(5−p1)

= 1023014.17

a2 = 11
4 , p2 = 3

2 , q2 = 9
2 , α2 = 9

8 ̸= Γ(q2+5)
Γ(5−p2)

= 35.895.23

a3 = 17
4 , p3 = 5

2 , q3 = 7
2 , α3 = 6

7 ̸= Γ(q3+5)
Γ(5−p3)

= 10557.42

(4.5)

for α ∈ [0, 1] and B ∈ R, we get

|e1(α,B)|= | cosB
7 + α

|≤ 1

7 + α

|e2(α,B)|= | sinB
4 + α2

|≤ 1

4 + α2

|e3(α,B)|= |cos 2πB
7 + α

|≤ 1

9 + α3

so we can take l1(α) =
1

7+α , l2(α) =
1

4+α2 , l3(α) =
1

9+α3 and then, we have

w1 = sup
α∈[0,1]

l1(α) =
1

7

w2 = sup
α∈[0,1]

l2(α) =
1

4

w3 = sup
α∈[0,1]

l3(α) =
1

9

Hence all assumption of Theorem 4.2 are satisfied therefor the tripled solution
(4.5).
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