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Abstract

The classical Cantor’s intersection theorem states that in a complete
metric space X, intersection of every decreasing sequence of nonempty
closed bounded subsets, with diameter approaches zero, has exactly one
point. In this article, we deal with decreasing sequences {Kn} of nonempty
closed bounded subsets of a metric space X, for which the Hausdorff
distance H(Kn,Kn+1) tends to 0, as well as for which the excess of Kn

over X \Kn tends to 0. We achieve nonempty intersection properties in
metric spaces. The obtained results also provide partial generalizations of
Cantor’s theorem.
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1 Introduction

In metric spaces, there are some marvellous nonempty intersection theorems.
Cantor’s theorem (see [14]) asserts that in a complete metric space X, the inter-
section of every decreasing sequence {Kn} of nonempty closed subsets of X with
diameter δ(Kn)→ 0 has exactly one point. This intersection theorem is widely
used in the fields related to mathematical analysis. Kuratowski provided a gen-
eralization of Cantor’s theorem using Kuratowski measure of non-compactness,
α:

α(A) = inf {ε > 0 : ∃ Xi, i = 1, · · · , n,Xi ⊂ X, δ(Xi) < ε,A = ∪iXi} ,

where A is a subset of a complete metric space X. Kuratowski’s theorem (see
[6, 15]) states that for each decreasing sequence {Kn} of nonempty closed sub-

sets of a complete metric space X with lim
n→∞

α(Kn) → 0,
∞⋂
n=1

Kn is nonempty
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and compact. Later, this theorem is further generalized by Horvath [3] using
the same measure of compactness α. In [9], Mitrovic et al. have studied the
generalization of Horvath’s results; and they applied this generalization for best
approximation in [10]. Recently, Souza and Alves [15] extended both Cantor’s
theorem and Kuratowski’s theorem from metric spaces to admissible spaces.

An Atsuji space, which is more general than compact spaces, has the prop-
erty that each continuous function on it is uniformly continuous. A metric space
X is said to be an Atsuji space if the set of limit points X ′ is compact in X
and for each ε > 0 the complement of the set Nε(X

′) :=
⋃

x∈X′
B(x, ε), in X,

is uniformly discrete, where B(x, ε) denotes the open ball centered at x and
with radius ε. For a metric space, the property of being an Atsuji space lies
in between the compactness and the completeness. A detailed study on Atsuji
spaces can be found in [4].

This article presents various results on nonempty intersection of decreasing
sequence of nonempty closed bounded subsets in metric spaces and in Atsuji
spaces using Hausdorff distance H(A,B) and the functional d̂, defined as d̂(A) =
sup
x∈A

d(x,X \ A), where A,B are subsets of a metric space X. These obtained

results are also compared with the Cantor’s intersection theorem.
The article is organized as follows. Some preliminary results, needed for the

rest part of the article, are discussed in Section 2. In Section 3 and Section 4,
we consider decreasing sequence {Kn} of nonempty closed bounded subsets of
a metric space X and discuss their nonempty intersection results in the cases
for which the Hausdorff distance Hn := H(Kn,Kn+1) → 0, and d̂(Kn) :=
sup
x∈Kn

d(x,X \Kn)→ 0, respectively.

2 Preliminaries

Given a metric space (X, d), we denote the set of all nonempty bounded sub-
sets of X and the set of all nonempty bounded closed subsets of X by B(X)
and Cb(X), respectively. Further given A ⊂ X, A′, Ao, Nε(A) and ∂A denote
the set of all limit points, interior points, ε-neighborhood and boundary of A,
respectively. The diameter of A is given by δ(A) = sup

x,y∈A
d(x, y).

Definition 2.1. [2] The Hausdorff distance, H, of two nonempty subsets A,B
of a metric space (X, d) is defined as

H(A,B) = max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
,

where d(x,A) = inf
y∈A

d(x, y).

It is well-known that the distance function H is a metric, provided A,B are
closed and bounded.
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Definition 2.2. [7] A sequence {xn} in a metric space (X, d) is said to be
absolutely convergent sequence if

∑∞
i=1 d(xi, xi+1) is finite.

Lemma 2.3. [7] In a metric space X, every Cauchy sequence {xn} contains an
absolutely convergent subsequence.

Theorem 2.4. [5] A metric space X is an Atsuji space if and only if each
sequence {xn} with lim

n→∞
I(xn) = 0, has a limit point in X, where I(x) =

d(x,X \ {x}), x ∈ X.

Definition 2.5. [8] A subset S of a metric space X is said to be metrically
convex if for any distinct points x, y ∈ S, there is a point z ∈ S \ {x, y} that
satisfies d(x, y) = d(x, z) + d(z, y).

Theorem 2.6. [8] Consider a complete and metrically convex metric space X.
Then, for any distinct points x, y ∈ X, there is a metric segment with the end
points x, y.

3 Nonempty intersection results using Hausdorff
distance

By a decreasing sequence {Kn} of subsets of a metric space X, we mean Kn+1 ⊂
Kn, ∀ n ∈ N, and we denote H(Kn,Kn+1) by Hn. Clearly Hn ≤ δ(Kn).
The following theorem furnishes a partial generalization of Cantor’s intersection
theorem, which we will discuss in Subsection 3.1. It is well known that, in a
metric space X, if for each decreasing sequence {Fn} ⊂ Cb(X) with δ(Fn)→ 0,
∞⋂
n=1

Fn 6= ∅, then X is complete.

Theorem 3.1. A metric space X is complete if and only if for every decreasing

sequence {Kn} ⊂ Cb(X) with
∑∞
n=1Hn converges,

∞⋂
n=1

Kn 6= ∅.

Proof. Let X be a complete metric space. For a1 ∈ K1, ε > 0, there exists
a2 ∈ K2 such that d(a1, a2) ≤ H(K1,K2) + ε. Again, for a2 ∈ K2 and ε > 0 as
above, there exists a3 ∈ K3 such that d(a2, a3) ≤ H(K2,K3) + ε2. Proceeding
this way, we get d(ar, ar+1) ≤ H(Kr,Kr+1) + εr, r ≥ 1. This implies, {ai} is a

Cauchy sequence. Let ai → a ∈ X. Then, a ∈
∞⋂
i=1

Kn.

For the converse, consider a decreasing sequence {Fn} ⊂ Cb(X) with δ(Fn)→
0. Then, the sequence {xn} ⊂ X with xn ∈ Fn is a Cauchy sequence. So, by
Lemma 2.3, it has an absolutely convergent subsequence, say, {xpi}∞i=1. Let
Ki be the closure of the set {xpi , xpi+1 , xpi+2 , ...}, i = 1, 2, 3, ... . Observing
Hi ≤ d(xpi , xpi+1

), we have
∑∞
i=1Hi <∞. Then, by the hypothesis,

⋂
i∈N

Ki 6= ∅.

And hence,
⋂
n∈N

Fn 6= ∅. This completes the proof.

Following examples validate the statement of the above theorem.

3
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Example 3.2. Let Kn =
[
− 1
n ,

1
n

]
⊂ R. Then

∑∞
n=1Hn converges, and⋂

n∈N
Kn = {0}.

Example 3.3. Consider the sequence space X = (lp, ‖·‖p), for some p with
1 ≤ p ≤ ∞ and choose Kn = {ei}i≥n, where ei = (δij)

∞
j=1. Then {Kn} is a

decreasing sequence in Cb(X). It can be easily checked that
∑∞
n=1Hn doesn’t

converge and
∞⋂
n=1

Kn = ∅.

Example 3.4. Let X = Q with standard metric. Then X is not complete. Let
r be a fixed irrational. Define Kn = {x ∈ X : r − 1/n ≤ x ≤ r + 1/n}. Then

Kn ∈ Cb(X) and decreasing. Although
∑∞
n=1Hn converges,

∞⋂
n=1

Kn = ∅.

3.1 Comparison with Cantor’s theorem

It is worth noting that Examples 3.2-3.4 also validate the result of Cantor’s
intersection theorem. Therefore it is fairly natural to ask: What advantage
Theorem 3.1 provides over the Cantor’s theorem? The answer lies in the fact
that Hn ≤ δ(Kn).

In Cantor’s intersection theorem, δ(Kn) → 0 is the sufficient condition to
have nonempty intersection. But in the case when δ(Kn) 6→ 0, Cantor’s theorem

does not provide a conclusion whether
∞⋂
n=1

Kn is empty or nonempty. In such

case, if
∑∞
n=1Hn converges, then Theorem 3.1 ensures

∞⋂
n=1

Kn is nonempty. For

instance,

Example 3.5. Let Kn ⊂ R2 be the region (including boundaries) bounded by
the curves 4n(y− 1/n) = −x2, and 4n(y+ 1/n) = x2, n ∈ N. Then δ(Kn) 6→ 0,
and so Cantor’s theorem becomes inconclusive here. However,

∑∞
n=1Hn is

convergent, and
⋂
n∈N

Kn is the set {(x, 0) : −2 ≤ x ≤ 2}.

3.2 Nonempty intersection in Atsuji space

In Theorem 3.1, we see that the condition “
∑∞
n=1Hn < ∞”, is sufficient to

have
⋂
n∈N

Kn 6= ∅, in complete metric spaces. A more general condition, namely

“Hn → 0”, is not sufficient to have the nonempty intersection. For instance,

Example 3.6. The functions ei, defined as ei(t) = ti, t ∈ [0, 1], i ∈ N, are in
the normed space X = (C[0, 1], ‖·‖∞), and the sets Kn := {ei}∞i=n, n ∈ N, are

closed bounded subsets of X. Here, Hn = ‖en − en+1‖∞→ 0, but
∞⋂
n=1

Kn = ∅.

However, in Atsuji spaces, which are also complete, “Hn → 0” is sufficient
to have the nonempty intersection.

4
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Theorem 3.7. If X is an Atsuji space, then for each decreasing sequence

{Kn} ⊂ Cb(X) with Hn → 0,
∞⋂
n=1

Kn 6= ∅.

Proof. Given a decreasing sequence {Kn} ⊂ Cb(X) such that Hn → 0. For the
sequence {Kn}, there exists an ∈ Kn (as in the proof of Theorem 3.1) such that
for any fixed ε ∈ (0, 1) and for all n ≥ 1 we have, d(an, an+1) ≤ Hn+ εn → 0, as

n→∞. If an = c, for infinitely many values of n, then c ∈
∞⋂
n=1

Kn. Otherwise,

if the terms of the sequence {an} are distinct, except for at most finitely many
n, then this implies I(an) → 0. Therefore, by Theorem 2.4, {an} has a limit

point lying in
∞⋂
n=1

Kn.

The converse of Theorem 3.7, in general, is not true. That means if “Hn →
0” suffices to have the nonempty intersection property, the space is not neces-
sarily an Atsuji space. This is evident from the following example.

Example 3.8. Consider X = N ∪M with the standard Euclidean metric on
R, where M = {n + 1/2m : m,n ∈ N}. Let {Ki} ⊂ Cb(X) be a decreasing
sequence with Hi → 0. Then, as in the proof of Theorem 3.7, there exists
ai ∈ Ki such that |ai−ai+1|→ 0. It can be shown that either {ai} is eventually
constant, say p ∈ X, or {ai} converges to some positive integer k. In either

case
∞⋂
i=1

Ki 6= ∅, as it contains either p or k. Thus we get, for each decreasing

sequence {Ki} ⊂ Cb(X) with Hi → 0,
∞⋂
i=1

Ki 6= ∅, but the space X is not an

Atsuji space because X ′ = N.

We notice that Theorem 3.7 provides a generalization of Cantor’s intersection
theorem in Atsuji spaces.

4 Nonempty intersection results using d̂

Jain and Kundu, in [4], considered a functional I : X → R defined as, I(x) =

d(x,X \ {x}). Here we consider a more general functional, d̂, acting on the

subsets of a metric space X, defined by d̂(A) = sup
x∈A

d(x,X \ A), A ⊂ X. This

is also known as the excess of A over X \A. This functional gives the radius of
the inscribed ball inside a regular body in the Euclidean space R2. For subsets
A,B of a metric space X, we conclude the following as well:

1. d̂(A) ≤ d̂(B), if A ⊂ B, and A ∈ B(X),

2. d̂(A) = 0 if and only if A = ∅ or A ⊂ [X \A]′,

3. For an unbounded set A, d̂(A) can be finite or infinite. For example, in
the euclidean space R2, consider A1 = {(x, 0) : x ∈ R}, and A2 = {(x, y) :

x, y ≥ 0}, then d̂(A1) = 0, and d̂(A2) =∞,
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4. If A = X, then d̂(A) is finite or infinite, depending on X is bounded or
unbounded, respectively. (We take d(x, ∅) = sup{d(x,A) : A ⊂ X}, x ∈
X.)

Proposition 4.1. Let A,B ∈ B(X). Then

(a) H(X \A,X \B) ≤ max{d̂(A), d̂(B)}.

(b) max{d̂(A), d̂(B)} ≤ H(A,B), provided A ∩B = ∅.

Proof. (a) For A,B ∈ B(X), we have

H(X \A,X \B)

= max{ sup
p∈X\A

d(p,X \B), sup
q∈X\B

d(X \A, q)}

= max{ sup
p∈B\A

d(p,X \B), sup
q∈A\B

d(q,X \A)} (4.1)

≤ max{sup
p∈B

d(p,X \B), sup
q∈A

d(q,X \A)}

= max{d̂(B), d̂(A)}. (4.2)

(b) Suppose A ∩B = ∅, then

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A, y)}

≥ max{sup
x∈A

d(x,X \A), sup
y∈B

d(X \B, y)}

= max{d̂(A), d̂(B)}.

Remark 4.2. For two subsets A,B with A ⊂ B in a metric space X, in general,
d̂(B) and H(A,B) are not comparable, even in Atsuji spaces.

Theorem 4.3. Let X be an Atsuji space. Then, for each decreasing sequence

{Kn} ⊂ Cb(X) with d̂(Kn)→ 0,
∞⋂
n=1

Kn 6= ∅.

Proof. Consider xn ∈ Kn. Then, I(xn) = d(xn, X \ {xn}) ≤ d(xn, X \Kn) ≤
sup
x∈Kn

d(x,X \Kn) = d̂(Kn), which by the hypothesis tends to 0. Hence, using

Theorem 2.4, the sequence {xn} has a limit point lying in
∞⋂
i=1

Kn.

The converse of Theorem 4.3, in general, does not hold.

Example 4.4. Consider the set X as in Example 3.8, with the standard Eu-
clidean metric d on R. Let {Ki} ⊂ Cb(X) be a decreasing sequence with

d̂(Ki) → 0. Then, as in the proof of Theorem 4.3, there exists xi ∈ Ki \Ki+1

such that I(xi) → 0. If the range set, R = {xi}i≥1, is infinite and R ⊂ M ,
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consider xi = ni + 1/2mi. If {mi}i≥1 = {p1, p2, ..., pq}, a finite set, then
d(ni+1/2pj , X\{ni+1/2pj}) = d(ni+1/2pj , ni+1/2(pj+1)) = 1

2d(1/pj , 1/(pj+
1)) ≥ inf

1≤j≤q
1
2d(1/pj , 1/(pj + 1)) > 0, which is a contradiction to I(xi) → 0.

Hence, there is a subsequence {mti} of {mi} with mti →∞ as i→∞. And so,
it can be proved that in the case either R ⊂ M or R 6⊂ M ; the sequence {xi}
has a subsequence converging to some p ∈ N. Therefore p ∈

∞⋂
i=1

Ki. Thus we

get, for each decreasing sequence {Ki} ⊂ Cb(X) with d̂(Ki) → 0,
∞⋂
i=1

Ki 6= ∅.

Although, the space X is not an Atsuji space.

Theorem 4.5. If X is a metric space, and for each decreasing sequence {Kn} ⊂
Cb(X) with d̂(Kn)→ 0,

∞⋂
n=1

Kn 6= ∅, then X is complete.

Proof. Consider a decreasing sequence {Fn} ⊂ Cb(X) with δ(Fn) → 0. Then,
the sequence {xn} with xn ∈ Fn is a Cauchy sequence in X. Let Kn be the
closure of the set {xi}i≥n. Since {xn} is Cauchy, for each ε > 0, there is an
N ∈ N such that sup

n≥N+1
d(xN , xn) < ε, that is, sup

x∈KN+1

d(xN , x) < ε, which

further implies d̂(KN+1) = sup
x∈KN+1

d(x,X \ KN+1) < ε. Thus d̂(Kn) → 0.

So, by the hypothesis
∞⋂
n=1

Kn 6= ∅. Hence,
∞⋂
n=1

Fn 6= ∅ and this completes the

proof.

4.1 Comparison with Cantor’s theorem

We observe that, in general, d̂ and δ are not comparable. For instance,

Example 4.6. Consider a set X = {x, y}, x 6= y, equipped with a metric d.

Let A = {x}. Then, d̂(A) = d(x, y) > 0, and δ(A) = 0.
But if X = R2, with standard Euclidean metric, and A = B[0, r], then

d̂(A) = r < 2r = δ(A).

We shall show that in metrically convex metric spaces, d̂ is always dominated
by δ.

Lemma 4.7. Let (X, d) be a metric space. Then, for all x, y ∈ X and r ∈
[0, d(x, y)], B[x, r]∩B[y, d(x, y)− r] = S[x, r]∩S[y, d(x, y)− r], where S[x, r] :=
{z ∈ X : d(x, z) = r}.

Proof. Let us denote B[x, r] ∩ B[y, d(x, y) − r] and S[x, r] ∩ S[y, d(x, y) − r]
by B∩ and S∩, respectively. If B∩ is empty, there is nothing to prove. Let
B∩ 6= ∅ and z ∈ B∩. We claim z 6∈ B1 ∪ B2, where B1 = B[x, r] \ S[x, r],
B2 = B[y, d(x, y)− r] \ S[y, d(x, y)− r]. If possible, let z ∈ B1. Then d(x, y) ≤
d(x, z) + d(z, y) < r + d(x, y)− r = d(x, y), which is a contradiction. Similarly,
we prove z 6∈ B2. Thus, z ∈ B∩ ∩ [B1 ∪ B2]c = B∩ ∩ [B1

c ∩ B2
c], where Bc

7
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denotes the complement of a set B in X. This implies z ∈ S∩, and so B∩ ⊂ S∩.
Hence, B∩ = S∩.

Theorem 4.8. Let A be a nonempty bounded proper subset in a complete
metrically convex space X. Then d̂(A) ≤ δ(A).

Proof. Let (X, d) be an metrically convex space. By Theorem 2.6, X is a con-
nected metric space too. We shall achieve the conclusion in the following steps.

Step 1 : First we show that for each ε > 0 the set Nε(A) \A is not empty.
Step 2 : We show that for each ε > 0 we have B(a, r + ε) = Nε(B), where
B = B(a, r).

Step 3 : Finally we prove that d̂(A) ≤ δ(A).

Step 1. On the contrary, let us assume Nε(A) \ A = ∅. This implies, A
is open and for all x ∈ A, B(x, ε) ⊂ A. Since A is open, ∂A 6⊂ A. This
implies, “∃ b ∈ ∂A such that b 6∈ B(x, ε) for all x ∈ A”, which is a contradictory
statement in itself.

Step 2. Observe that, Nε(B) ⊂ B(a, r+ε) follows from the triangle inequal-
ity. Conversely, suppose y ∈ B(a, r + ε). If y ∈ B then y ∈ B(y, ε) ⊂ Nε(B).
Suppose y ∈ B(a, r+ ε) \B. Then, consider the ball B(y, ε). If B(y, ε)∩B = ∅,
then B(y, ε) ∩ ∂B = ∅. Therefore, d(q, y) ≥ ε, for all q ∈ ∂B. By Theorem 2.6
and Lemma 4.7, since r ∈ [0, d(a, y)], there is a u ∈ X such that ψ(r) = u ∈
B[a, r]∩B[y, d(a, y)−r] = S[a, r]∩S[y, d(a, y)−r] = ∂B∩S[y, d(a, y)−r], where
ψ is an isometry from [0, d(a, y)] to X. This implies d(a, y) = d(a, u)+d(u, y) ≥
r + ε, a contradiction. Hence, B(y, ε) ∩ B 6= ∅, and therefore y ∈ B(z, ε) for
some z ∈ B. Thus, B(a, r + ε) ⊂ Nε(B).

Step 3. Since ∂B 6= ∅, inf
p∈X\B

d(a, p) = d(a, q) = r, for some q ∈ ∂B.

Now, let x be an element in A. If x ∈ Ao, then consider a ball B(x, r′),
where r′ = sup{r > 0 : B(x, r) ⊂ A}. There must be a point in Nε(B(x, r′))
which lies in Nε(A) \ A. Hence, [Nε(B(x, r′)) \ B(x, r′)] ∩ [Nε(A) \ A] 6= ∅.
Therefore, d(x,X \ A) = r′ ≤ δ(A). On the other hand, if x ∈ ∂A, then

d(x,X \A) = 0 ≤ δ(A). Hence, d̂(A) ≤ δ(A).

Since the metric spaces with Takahashi’s convex strustures ([12]) and the
normed spaces are metrically convex metric spaces, so Theorem 4.8 is applicable
to these spaces too. Due to Theorem 4.8, Theorem 4.3 induces a generalization
of Cantor’s intersection theorem in metrically convex Atsuji spaces.

Example 4.9. Consider the metric space X = {(x, y) ∈ R2 : −3 ≤ x, y ≤ 3},
with standard Euclidean metric on R2. The space X is a metrically convex
Atsuji space. Let Kn ⊂ X be the region (including boundaries) bounded by the
curves n(1 + 1

n )2(y − 1/n) = −x2, and n(1 + 1
n )2(y + 1/n) = x2, n ∈ N. Here

δ(Kn) 6→ 0, and so Cantor’s theorem becomes indecisive. However, d̂(Kn)→ 0,
and

⋂
n∈N

Kn is the set {(x, 0) : −1 ≤ x ≤ 1}.
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5 Conclusion

For a pair of consecutive elements Kn, Kn+1 from a decreasing sequence {Kn}
of nonempty closed bounded subsets of a metric space, it is observed that Hn

is less than or equal to the diameter of Kn, where Hn is the Hausdorff distance
between Kn and Kn+1. Therefore, Hn → 0 is the necessary condition for
Cantor’s intersection theorem. However, the condition Hn → 0 in not sufficient
to have nonempty

⋂
n∈N

Kn in complete metric spaces; extra conditions on Hn is

required for that. We have shown that the condition
∑∞
n=1Hn <∞, is sufficient

to have nonempty intersection in complete metric spaces; while, Hn → 0 is
sufficient to have nonempty intersection in Atsuji spaces. Further, in Atsuji
spaces, we have provided sufficient condition for nonempty

⋂
n∈N

Kn using the

concept of excess of a set.

Nonempty intersection theorems, and the generalizations of such theorems
like Cantor’s theorem, Kuratowski’s theorem, Horvath’s theorem, etc. play
an important role to study the best approximations, fixed point results, etc.
(for example, see [3, 9, 10, 13]). In case of set-valued mappings, researchers
have been studying the fixed point results for mappings from a metric space to
the subspaces of the hyperspace of nonempty closed subsets endowed with the
Hausdorff distance (for example, see [1, 11]). Findings of this manuscript, can
further be applied in these directions.

References

[1] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings
of contractive type, Pacific J. Math., 43, 553–562 (1972).

[2] J. Henrikson, Completeness and total boundedness of the Hausdorff metric,
MIT Undergrad. J. Math., 1, 69-80 (1999).

[3] C. Horvath, Measure of non-compactness and multivalued mappings in
complete metric topological vector spaces, J. Math. Anal. Appl., 108, 403–
408 (1985).

[4] T. Jain, S. Kundu, Atsuji completions: Equivalent characterisations, Topol-
ogy Appl., 154, 28–38 (2007).

[5] S. Kundu and T. Jain, Atsuji spaces: Equivalent conditions, Topology Proc.,
30, 301–325 (2006).

[6] K. Kuratowski, Sur les espaces complets, Fund. Math., 15, pp. 301–309
(1930).

[7] H. M. MacNeille, Extensions of measure, Proc. Natl. Acad. Sci., 24, pp.
188–193 (1938).

9

125

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO.1, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

A. Gupta 117-126



[8] A. Martinon, Distance to the intersection of two sets, Bull. Austral. Math.
Soc., 70, pp. 329–341 (2004).

[9] Z. D. Mitrovic and I. D. Arandjelovic, Existence of generalised best ap-
proximations, Nonlinear Convex Anal., 15, pp. 787–792 (2014).

[10] Z. D. Mitrovic and I. D. Arandjelovic, Generalized scalar equilibrium prob-
lem with applications to best and coupled best approximations, J. Fixed
Point Theory Appl., 19, pp. 1613–1624 (2017).

[11] S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30,
pp. 475–488 (1969).

[12] W. Phuengrattana and S. Suantai, Existence and convergence theorems for
generalized hybrid mappings in uniformly convex metric spaces, Indian J.
Pure Appl. Math., 45, pp. 121–136 (2014).

[13] T. Shimizu and W.Takahashi, Fixed points of multivalued mappings in
certain convex metric spaces, Topol. Methods Nonlinear Anal., 8, pp. 197–
203 (1996).

[14] G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw-
Hill, New York, 1963.

[15] J. A. Souza and R. W. M. Alves, CantorKuratowski theorem in admissible
spaces, Topology Appl., 252, pp. 158–168 (2019).

10

126

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO.1, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

A. Gupta 117-126


