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Abstract

Mathematical modeling is one of the most used techniques for analyzing and
preventing the transmission of COVID-19. To control this pandemic, it is essen-
tial to classify the infected population. So in this article, a new SEAIQHRDP
model was formulated to investigate the transmittal dynamics of COVID-19. This
model contains nine compartments Susceptible(S) class, Exposed(E) class, Asymp-
tomatic(A) class, Infected(I) class, Quarantined(Q) class, Hospitalized(H) class,
Recovered(R) class, Death(D) class, and Insusceptible (P) class. This model was
fitted to the daily and cumulative confirmed COVID-19 cases in the period between
30th January 2020 and 13th January 2021 in India. Sensitivity analysis concern-
ing R0 was performed to classify the significance of parameters. Contour plots for
R0 were executed and the effect of various parameters on the infected classes had
shown graphically. The necessity of stringent face mask usage and social seclusion
is highlighted by optimal control analysis as a key factor in the dramatic reduction
of infection rates. So the optimal control technique was adopted to lessen the dis-
ease mortality by taking both nonpharmaceutical and pharmaceutical intervention
strategies as control functions and comparing infectives and recoveries with and
without controls.

Keywords: : mathematical model, Stability analysis, Basic reproduction number, Sen-
sitivity analysis, optimal strategy
Subject Classification: 00A71

1 Introduction

The world has been trembling with a new infectious disease COVID-19. The World
Health Organization (WHO) has declared it was a universal pandemic on 11th March
2020 [14]. originally The COVID-19 disease was revealed in December 2019 in Wuhan,
Hubei, China. Later it increased rapidly and spread in all countries in the world. As of
August 28th, 2022, the total confirmed cases of 596,873,121 and death cases of 6,459,684
of COVID-19 had been reported to WHO [15]. On January 30th, 2020 the first COVID-19
case [28] was placed in Kerala, India. A total of 44,389,176 confirmed cases and 527,556
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death cases were placed in India as of August 28th, 2022. Initially, some countries
implemented strictly non-pharmacological interventions namely as use of face masks
social distancing, and hygiene to resist the extent of the COVID-19 pandemic. Due to
these safety measures, the virus spread slowed down gradually but not ceased completely.
Since the vaccination process had started, the COVID-19 cases decreased day by day
and it became under control. But still now in some countries COVID- cases raises
unexpectedly.

Mathematical modeling is a prominent technique for forecasting and controlling the
transmission dynamics of epidemic diseases. Alexander Krämeret al.[1] H.W. Hethcote
[16], R.M.May & R.M Anderson, [38] Brauer F & Chavez CC) [6]. Some standard math-
ematical models such as SIR, SEIR, SEIAR, SEIRD, etc. were broadly used to estimate
the future trend of a pandemic. The standard SIR model Kermack WO & McKendrick
[20] described the spread of the virus using the compartments of susceptible, infected,
and recovered. By incorporating the new compartments, we get new models to detect the
communication dynamics of contagious diseases. An SEIR model by Mwalili S et al. cite
26 was developed by adding an Exposed compartment to the SIR model which contained
distinctive reaction and administration activity factors. This model is used widely to
forecast the direction of the COVID-19 graph in China among other countries. Through
the SEIR model, the influence of control strategies was studied by Lin Q et al.[22] and
formulated the SEIR extension model. A generalized SEIR model Read JM et al.[34]
was advanced in the latent period to cover the communication dynamics of COVID-19.
During the incubation period, it consists of one more compartment as asymptomatic
individuals in the SEIR model. The isolated class in SEIJR was interchanged with the
asymptomatic class in SEIAR. By using this model, Bailey et al [2] displayed related
properties to the SEIJR model Peng L et al. [30]. General models such as SIR, SEIR,
SEIRD, SEIJR, etc. were not suitable for forecast the effect of the widespread disease
since they comprise a finite number of parameters and disregarded essential classes such
as asymptomatic infected, quarantine, Hospitalization, etc. SIDARTHE model of Gior-
dano et al.[11] is an extension of the SEIR model which consists of undetected as well as
detected infected populations.

The field of FDEs has developed greatly over the past few decades as a result of its
applicability in numerous branches of research and technology. To study malaria trans-
mission, Rehman, Attiq ul, and colleagues devised a 9 compartment FDE model [35].
By considering both the government’s activity and the individual’s response, Danane,
Jaouad et al.[8] established a seven-compartment FDE model. Supriya, Yadav, and col-
leagues [42] created the FDE model to investigate the COVID-19 trend using an effective
and potent analytical q-HASTM approach. By Jagdev Singh, a fractional guava fruit
model with memory effect was developed [41]

In general, before showing any symptoms an individual exposed to the virus will
become infectious i.e. pre-symptomatic through an incubation period of 5 days Liu C
et al. [23]. Many reports have shown that a huge number of individuals who were
exposed to the virus did not show any symptoms i.e., they all remain asymptomatic.
The pre-symptomatic or asymptomatic individuals were capable to diffuse the virus
to others. Since the reported asymptomatic cases in India are high, it was necessary
to include the asymptomatic class in the epidemiological model. As for the total of
parameters and accurateness model, the above-discussed models were not perfect for
long-term predictions. Therefore one more compartment dead population had been
incorporated in the SEIAR model presented through Huang et al.[15] to improve the
accurateness model for long-term prediction.

Raj Kishore et.al [33] developed the SEIQRDP model by including the quarantine
class (Q) and insusceptible class (P) and predicted the number of active cases. By
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Figure 1: Flow Chart of SEAIQHRDP model

incorporating an asymptomatic class Singh HP et al [39] introduced the SEAIQRDT
model and forecast the confirmed cases. When the best optimal control technique is
used early in a pandemic, the intensity of epidemic peaks tends to decline, spreading
the maximum impact of an epidemic across a longer time. Massad, Eduardo et al [25]
developed an optimal control model to analyze the effect of vaccination on the zika virus.
To analyze the COVID-19 trend in the future, Bandekar SR and Minighosh [3] devised an
11 compartments mathematical model. They then employed an optimal control strategy
to reduce the disease fatality.

By taking into account all of the aforementioned discussions, We developed a
new SEAIQHRDP model by including a new class—hospitalization—to the SEAIQRDP
model in order to examine the transmission of COVID-19. Later an optimal control
strategy with three control variables was applied to the proposed model to moderate the
outspread of COVID-19 optimally.

The following sections in this manuscript were systematized as follows: SEAIQHRDP
model formulation was presented in section 2. In section 3 The elementary properties of
the recommended model such as positivity and boundedness, disease-free equilibrium’s
local stability, and R0 expression in various parameters were executed. Section 3 fin-
ished Parameter estimation, model fitting, and model justification. Sect.5 performed the
sensitive analysis concerning R0 and the impact of parameters on infected populations.
Section 6 implemented and solved an optimal control problem analytically. The work
ends with the conclusion in Section 7

2 Model formation

By considering all the above discussions, in this study, a new mathematical model
SEAIQHRDP was formulated. In this model, the class S(t) contained the susceptible
individuals at time t, the class E(t) contained exposed individuals (these were con-
taminated but does not contaminate others within the reaction time), the class A(t)
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contained asymptomatic infected individuals (despite no symptoms appeared in them
but capable to infect others), the class I(t) contains the symptomatic individuals (these
persons having symptoms and were capable to infect others ), the class Q(t) contained
the quarantined individuals (these were infected but isolated), the class H(t) contained
the hospitalization individuals (these were infected and undergo medical treatment), the
class R(t) contained the recovered individuals, the class D(t) contained the death indi-
viduals, and the class P(t) contained the insusceptible individuals those are incapable of
getting infected due to either pre-isolated or following the WHO rules strictly.

Let Λ and µ be the constant recruitment rate and normal death rate in the suscep-
tible population. Let β be the virus contact rate. Let ζa, ζq, and ζs be the adjustment
factors for asymptomatic infected, symptomatic infected, and quarantine populations.
βζa, βζq and βζh were the virus transmission factors of asymptomatic, symptomatic, and
quarantine populations to susceptible populations. These were time-dependent factors
in computations. This model has the potency of disease is △ =

ζaA+ζsI+ζqQ
N .

Let α be the protection rate at which the susceptible individuals move to insuscep-
tible individuals. This included the influence of control measures. Let θ be the fraction
at which the exposed individuals move to asymptomatic individuals. Then (1 − θ) is
the fraction at which exposed individuals move to symptomatic infected individuals at
a velocity ω. Let λa and λs be the quarantine rates at which the asymptomatically
infected individuals and symptomatically infected individuals were quarantined. Let ηs
and ηq hospitalization rates at which the symptomatic and quarantine populations had
certain complications due to severe symptoms shall be hospitalized. Let γa, γq, and γh
be the recovery rates at which the asymptomatic infected, quarantined, and hospitalized
individuals were recovered from the disease. There will be a possibility to die, in asymp-
tomatic individuals before getting symptoms and after admitting to the hospital. Let µa

and µh be the mortality rates of asymptomatic and hospitalized individuals. By using all
the above conditions, The relation between these nine compartments and corresponding
parameters were shown in Figure.1 and table 1
The arrangement of nonlinear differential equations for the proposed model in India was

ds

dt
= Λ− β △ S − (α+ µ)S (1.1)

dE

dt
= β △ S − (ω + µ)E (1.2)

dA

dt
= θωE − (λa + γa + µa + µ)A (1.3)

dI

dt
= (1− θ)ωE − (λs + ηs + µ)I (1.4)

dQ

dt
= λaA+ (λsI − (ηq + γq + µ)Q (1.5)

dH

dt
= ηsI + ηqQ− (γh+ µh + µ)H (1.6)

dR

dt
= γaA+ γqQ+ γhH − µR (1.7)

dD

dt
= µaA+ µhH (1.8)

dP

dt
= αS. (1.9)

with non negative primary conditions are S(0) = S0, E(0) = E0, A(0) = A0, I(0) == I0,
Q(0) = Q0, H(0) = H0 ,R(0) = R0, D(0) = D0and P (0) = P0.
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Table 1: SEAIQHRDP model parameter’s complete depiction.

parameter description

Λ Recruitment rate of human
θ Proportion of exposed individuals
ω Conversion rate of exposed to asymptomatically infected populace
α Protection rate of susceptible individuals to insusceptible populace
ζa,ζs,ζq Adjustment factor for asymptomatic, symptomatic and quarantine populace
β Transmission rate of virus
λa Quarantine rate of asymptomatic infected populace
λs Quarantine rate of symptomatic infected populace
ηs Hospitalization rate of symptomatic infected populace
ηq Hospitalization rate of quarantine infected populace
γa The rate of recovery from asymptomatic infected populace
γq The rate of recovery from quarantine populace
γh The rate of recovery from hospitalization populace
µa The rate of mortality from asymptomatic populace
µh The rate of mortality from hospitalization populace
µ Normal mortality rate of human populace

3 SEAIQHRDP model analysis

3.1 Positivity and boundedness

Theorem 1. All the solutions (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) ∈ R9
+

of the system (1) with primary conditions remain non negative and were uniformly
bounded in the region Ω for all time t ≥ 0.

Proof 1. Assumed that (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) ∈ R9
+ be a

solution of (1) for t ∈ [0, t0], where t0 ≥ 0.
From the equation (1.1),

ds
dt = Λ− (ζaA+ ζsI + ζqQ) S

N − (α+ µ)S ≥ Λ− ϕ(t)S

where ϕ(t) = β(ζaA+ ζsI + ζqQ) S
N + (α+ µ)

⇒ ds
dt ≥ Λ− ϕ(t)S

After integration, S(t) = S0 exp(−
∫ t

0
ϕ(s) ds)

∫ t

0
e
∫ s
0
ϕ(u) du) > 0.

Hence, for all t ∈ [0, t0), we get S(t) > 0
From the equation (1.2),

dE
dt = (ζaA+ ζsI + ζqQ) S

N − (ω + µ)E ≥ −(ω + µ)E

⇒dE
dt ≥ −(ω + µ)E

⇒ E(t) ≥ E0 exp(−
∫ t

0
(ω + µ) ds) ≥ 0

i.e, E(t) ≥ 0
From the equation (1.3),

dA
dt = θωE − (λa + γa + µa + µ)A ≥ −(λa + γa + µa + µ)A

⇒ dA
dt ≥ −(λa + γa + µa + µ)A

⇒ A(t) ≥ A0 exp(−
∫ t

0
(λa + γa + µa + µ) ds ≥ 0

i.e,A(t) ≥ 0
From the equation (1.4),

dI
dt = (1− θ)ωE − (λs + ηs + µ)I ≥ −(λs + ηs + µ)I

⇒ dI
dt ≥ −(λs + ηs + µ)I
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⇒ I(t) ≥ I0 exp(−
∫ t

0
(λs + ηs + µ) ds ≥ 0

i.e,I(t) ≥ 0
From the equation of (1.5),

dQ
dt = λaA+ (λsI − (ηq + γq + µ)Q ≥ −(ηq + γq + µ)Q

⇒dQ
dt ≥ −(ηq + γq + µ)Q

⇒ Q(t) ≥ Q0 exp(−
∫ t

0
(ηq + γq + µ) ds ≥ 0

i.e,Q(t) ≥ 0
From the equation (1.6),

dH
dt = ηsI + ηqQ− (γh + µh + µ)H ≥ −(γh + µh + µ)H

⇒ dH
dt ≥ −(γh + µh + µ)H

⇒ H(t) = H0 exp(−
∫ t

0
(γh + µh + µ) ds ≥ 0

i.e, H(t) ≥ 0
From the equation (1.7),

dR
dt = γaA+ γqQ+ γhH − µR ≥ µR

⇒dR
dt ≥ µR

⇒ R(t) ≥ R0 exp(−
∫ t

0
µ) ds ≥ 0

i.e,R(t) ≥ 0.
Similarly we can prove that D(t) ≥ 0 and P (t) ≥ 0.
Hence (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) of (1) with primary condi-

tions for all t ∈ [0, t0] are non negative solutions in Ω.
We prove that the boundedness of the solutions (S, E, A, I, Q, H, R,D,P) of system

(1).
The positivity of the solutions implies that dS

dt ≤ Λ− (α+ µ)S.
From the above equation, we can write that
limt→∞ supS ≤ Λ

(α+µ) and S ≤ Λ
(α+µ) .

consider the entire populationN = S + E +A+ I +Q+H +R+D + P .
By derivation of above equation gives dN

dt ≤ Λ− (α+ µ)N which leads to

limt→∞ supN ≤ Λ
(α+µ) .

This implies that N ≤ Λ
(α+µ) .

S + E +A+ I +Q+H +R+D + P ≤ Λ
(α+µ) .

Hence all the solution trajectories (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)
with primary conditions were uniformly bounded in the region

Ω = (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) ∈ R9
+ : 0 ≤ (S,E,A, I,Q,H,R,D, P ) ≤ Λ

(α+µ) .

3.2 Basic reproduction number

The basic reproduction number, symbolized as R0, was a prominent parameter in the
analysis of contagious disease and it was defined as the total number of secondary cases
arising through a primary case in susceptible individuals. If R0 > 1 then the secondary
cases were more than one, so that disease will continue in the population and become an
epidemic. If R0 < 1 then the secondary cases were less than one, so that disease cannot
spread and die out as soon as possible. If R0 = 1 then there is only one secondary
case so that the disease is stable. Since at protection rate α population was protected,
the susceptible individuals became S = N(1 − α). The disease-free equilibrium point
E0 = (N(1− α), 0, 0, 0, 0, 0, 0, 0) of system (1) exists. Through Next Generation Matrix
O.Diekmann et al [29] P.van den Driessche & Watmough [32] and Khajanchi, S et al
[21], R0 value will be calculated mathematically.
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F =


βζa(1− α) + βζs(1− α) + βζq(1− α)

0
0
0
0

&V =


(ω + µ)E

−θωE + (λa + γa + µa + µ)Ia
−(1− θ)ωE + (λs + ηs + µ)Is
−λaIa − (λsIs + (ηq + γq + µ)Q


At disinfection state E = A = I = Q = H = 0,The Jacobian of two matrices F and V are

F =


0 βζa(1− α) βζs(1− α) βζq(1− α)
0 0 0 0
0 0 0 0
0 0 0 0



V =


ω + µ 0 0 0
−θω λa + γa + µa + µ 0 0

−(1− θ)ω 0 λs + ηs + µ 0
0 −λa −λs ηq + γq + µ


Therefore R0 was obtained from equation R0 = ρ(FV −1),where ρ represented the matrix
FV −1 spectral radius. Hence, the reproduction number was

R0 = (1−θ)βωζs(1−α)
(λs+ηs+µ)(ω+µ) + βθωζa(1−α)

(λa+γa+µa+µ)(ω+µ)+
βζq((1−θ)(λa+γa+µa+µ)ωλs+(λs+ηs+µ)θωλa)(1−α)

(λa+γa+µa+µ)(λs+ηs+µ)(ηq+γq+µ)(ω+µ)

(1)

3.3 Disease-free equilibrium Stability analysis

The Jacobian matrix JE0 of the classification of equations (1) at the equilibrium point
E0(∆µ , 0, 0, 0, 0, 0, 0, 0, 0) was
JE0 =

−(α+ µ) 0 −βζa(1− α) −βζs(1− α) −βζq(1− α) 0 0 0 0
0 ω + µ βζa(1− α) βζs(1− α) βζq(1− α) 0 0 0 0
0 θω −(λa + γa + µa + µ) 0 0 0 0 0 0
0 (1− θ)ω 0 −(λs + ηs + µ) 0 0 0 0 0
0 0 λa λs −(ηq + γq + µ) 0 0 0 0
0 0 0 ηs ηq −(γh + µh + µ) 0 0 0
0 0 γa 0 γq γh −µ 0 0
α 0 0 0 0 0 0 0 0
0 0 0 µa 0 µh 0 0 0


The characteristic equation of the matrix JE0 was | JE0 − λI |= 0
(λ+ µ)(λ+ (α+ µ))(λ9 + a1λ

8 + a2λ
7 + a3λ

6 + a4λ
5 + a5λ

4 + a6λ
3 + a7λ

2a8λ+ a9) = 0
where a1 = (A+G+ J +K + t+ E + I)
a2 = (G+ J +K)t+A(G+ J +K + t+E + I) + (G+ J +K + I + t)E + (G+ J +K +
E + t)I +BF + CH +G(J +K) + JK),
a3 = A(G+ J +K + E + I)µ+GE + JE +GI +KE + JI +KI + EI +BF + CH +
GJ +GK + JK) + ...+ I(J +K)µ,
a4 = A(GEI + JEI +KEI + BFJ + CGH + BFK + CHJ + CHK +GJK + (EI +
BF + CH)µ+ ...+BFKI +GJKE +GJKI,
a5 = A(FKλaD+GHλsD+HKλsD+ (BFI +GJE +GKE +GJI + JKE + JKI +
FλaD)µ+ ...+ CHJKt+ hµDII,
a6 = A(BFJKI+GHKλsD+(BFJI+BFKI+GJKE+GJKI+FKλaD+GHλsD)µ+

7
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...+ (FKλaDI +BFJKI)µ,
a7 = A(GJKEI + CGHJK + FKλaDI +BFJKI +GHKλsD)µ,
a8 = 0 and a9 = 0
Here A = (α + µ),B=βζa(1 − α) and C = βζs(1 − α), D = βζq(1 − α), E = (µ + ω),
F = θω,
G = (λa+γa+µa+µ), H = (1−θ), I = (λs+ηs+µ), J = (ηq+γq+µ), K = ((γh+µh+µ).
Hence JE0 is singular because one of the eigenvalues is zero. Therefore at the disease-free
equilibrium, the stability of the system (1) does not exists by using eigenvalues.

Theorem 2. The Disease-Free Equilibrium E0 = (Λµ , 0, 0, 0, 0, 0, 0) was locally asymp-
totically stable for R0 < 1 and unstable for R0 > 1

Since the JE0 has zero eigen value, according to Kermack WO [20] and singh HP[39],
the theorem was satisfied that is the Disease-Free Equilibrium E0 = (Λµ , 0, 0, 0, 0, 0, 0)
was locally asymptotically stable for R0 < 1 and unstable for R0 > 1.

Table 2: Fitted parameters and their sensitivity indices list of SEAIQHRDP model

parameter value References sensitivity indices

π varies - -
ζa 0.4 Gumel AB et al.[12] 0.4547
ζs 0.4 Nadim SS et al.[27] 0.2416
ζq 0.3 Biswas, Sudhanshu Kumar et al [4] 0.3037
θ 0.7 Fergusonm.N et al. [10] -0.0015
ω 0.1 R. Li et al. [36] -0.1048
β 0.9714 evaluated 1.0000
α 0.0016 evaluated -0.07158
λa 0.4614 evaluated -0.1764
λs 0.1143 evaluated -0.0997
ηs 0.1840 evaluated -0.1418
ηq 0.0742 evaluated -0.0948
γa 0.1302 evaluated -0.2757
γq 0.1661 evaluated -0.2088
γh 0.1777 evaluated -0.2278
µa 0.0035 evaluated -0.0207
µh 0.1544 evaluated -0.0233
µ 0.0000391 Worldmeter.info/coronavirus [16] -0.1070

4 Numerical simulation

In this sector, the numerical simulation of confirmed cases of COVID-19 for India was
performed and the simulation results were compared with actual data [21] from 30th,
January 2020 to 13th, January 2021. The SEAIQHRDP model fitted to daily and cu-
mulative confirmed coronavirus cases in India which illustrates a satisfactory estimation.
The model parameters β, α, λa, λs, ηs, ηq, γa, γq, γh, µa, µh and µ were estimated by
using a nonlinear least squares regression method (LSQNONLIN function) in MATLAB.

8
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Figure 2: The model fitting of reported (a) daily confirmed cases and (b) cumulative
confirmed cases of COVID-19 in India.

The minimizing error was

R(Φ) =
n∑

t=1

(Qt(Φ)− ¯Qt(Φ))
2 (2)

where Qt(Φ) and ¯Qt(Φ) were a cumulative number of confirmed cases through actual
data and model prediction. In Table 2, the values for the estimated and fixed parameters
were shown. The fundamental reproduction numberR0 was determined as 2.089 using
the fixed and model parameters in Table 2.

In Figure.2 the curve fitting was taken from 30th, January 2020 to 13th, January 2021
in apicovid19india.org [13] in India. The black curve represented the reported COVID-19
cases and the red curve denoted the model simulation COVID-19 cases.

5 Sensitivity analysis

Sensitivity analysis was used in defining the impact of different factors in the spread
of COVID-19. This analysis was used to identify the growth and reduction in basic
reproduction numbers concerning numerous parameters. A complete chapter on the
sensitivity analysis of the dengue virus was obtained in Rodrigues H et al. [37] and
Burattini, M.N et al [6]. Whenever the significant parameters were recognized, different
strategies will be executed to get optimum results. To identify such parameters, the
sensitivity index of R0 concerning various parameters was estimated. The normalized
sensitivity index of R0 is defined as

ΓR0
q =

∂R0

∂q
× q

R0
.

where q was the significant parameter, whose sensitivity on R0 obtained by using nor-
malized forward sensitivity index method Biswas, S et al [5].

The highest sensitive parameter on reproduction number was the parameter whose
index was high in magnitude. If the sensitivity of parameter q was positive, R0 was
increased whenever the parameter q increased. Similarly, the sensitivity of parameter
q was negative, R0 was decreased whenever the parameter q increased. From Figure.3
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Figure 3: Normalized local sensitivity indices ofR0 with respect to each model parameter.

it was observed the parameters θ, λa, λs, ηs, ηq, γa, γq, µa have negative indices with
R0 and the parameters ζa, ζs , ζq, β, ω, µ share positive indices with R0. So that R0

value increased as the parameters ζa, ζs and ζq increased and R0 value decreased as the
parameters θ, ηs, ηq and γq increased. Hence the sensitive analysis determined that the
parameters ζa, ζs, ζq, β, θ, ηs,γa and γq were more effective parameters. The sensitivity
indices of various parameters had been displayed in Table 2.

Figure.4(a) represented that R0 Contour Plot with respect to virus transmission
rate (β) and quarantine rate (λs) from symptomatic population. This figure described a
reduction in R0 with a decrease in virus transmission rate (β) and an increase in quar-
antine rate (λs) from the symptomatic population. Figure.4(b) explained R0 Contour
Plot with respect to virus transmission rate (β) and hospitalization rate (ηs) from symp-
tomatic population. This figure described a reduction in R0 with a decrease in virus
transmission rate β and an increase in hospitalization rate (ηs) from the symptomatic
population. Figure.4(c) displayed R0 Contour Plot with respect to quarantine rate (λa)
from asymptomatic population and recovery rate (γq) from quarantine population. This
figure demonstrated reduction in R0 with an increase in quarantine rate (λa) from an
asymptomatic population and an increase in recovery rate (γq) from quarantine pop-
ulation. Figure.4(d) expressed the Contour Plot of the Basic Reproduction Number
concerning hospitalization rate (ηs) from symptomatic population and hospitalization
rate (ηq) from quarantine population. This figure illustrated R0 rises with a decrease in
hospitalization rate (ηs) from the symptomatic population and hospitalization rate (ηq)
from the quarantine population.

5.1 COVID-19 Prevalence changes with various parameters

From Figure.5 to Figure.9, It was perceived that the asymptomatic infected and symp-
tomatic infected individuals were reduced if the protection rate (α) from susceptible
individuals, quarantine rate (λa) from asymptomatic individuals, quarantine rate (λs)
from symptomatic individuals, hospitalization rate (ηq) from quarantine individuals and
hospitalization rate (ηs) from symptomatic individuals increased.

10

105

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO.1, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

M. Ankamma Rao 96-116



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.5

1

1.5

2

2.5

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

0.5

1

1.5

2

2.5

3

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

(c)

0 0.02 0.04 0.06 0.08 0.1

s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

q

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

(d)

Figure 4: Contour plots of basic reproduction number R0 with respect to (a) (β, λs),
(b) (β ηs), (c) (λa, γq) and (d) (ηs, ηq).
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Figure 5: Effect of parameter α on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 6: Effect of parameter λa on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 7: Effect of parameter λs on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 8: Effect of parameter ηq on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 9: Effect of parameter ηs on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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6 Optimal control

6.1 Optimal control problem

The effectiveness of control techniques was crucial in decreasing the spread of the
COVID-19 virus. It was essential to improve a policy that minimizes both the number
of infected populations and related costs. In this phase, the optimal control technique
was a tremendously useful tool for defining such a strategy. Now we study the impact
of pharmacological interventions to diminish the spread of the virus. To achieve this,
the system(1) can be extended by including three control variables u1(t), u2(t) and u3(t)
where
(a) Control u1(t) represented the degree of protection provided by government interven-
tions. The function of this control variable was to enhance the protection rate α.
(b) Control u2(t) described the treatment of asymptomatic infected individuals. The
function of this control variable was to develop the quarantine rate (λa) from asymp-
tomatic infected individuals.
(c) Control u3(t) characterized the treatment of symptomatic infected ( both quarantine
and hospitalization) individuals. The function of this control variable was to improve the
quarantine rate (λs) and hospitalization rate (ηs) from symptomatic infected individuals.
The three control variable values were assumed between 0 and 1.
There was no efforts made in these controls if u1 = u2 = u3 = 0 and maximum efforts
had been placed if u1 = u2 = u3 = 1
By considering all the above suppositions, the optimal control model was formulated as

ds
dt = π − β

(ζaA+ζsIs+ζqQ)S
N − (α+ u1 + µ)S

dE
dt = β

(ζaA+ζsIs+ζqQ)S
N − (ω + µ)E

dA
dt = θωE − (λa + u2)A+ γa + µa + µ)A
dI
dt = (1− θ)ωE − (λs + u3 + ηs + u3 + µ)I
dQ
dt = (λa + u2)A+ (λs + u3)I − (ηq + γq + µ)Q
dH
dt = (ηs + u3)I + ηqQ− (γh + µh + µ)H
dR
dt = γaA+ γqQ+ γhH − µR
dD
dt = µaA+ µhH
dP
dt = αS

Now we detect u1(t), u2(t) and u3(t) ’s optimal values that minimize the objective func-
tional
J (u1(t), u2(t), u3(t))=

∫ tf
0

(C1A+ C2I + C3Q+ C4H + 1
2 (C5u

2
1 + C6u

2
2 +C7u

2
3) dt

subject to the system (2), which contained the sum of asymptomatic infected, symp-
tomatic infected, quarantined, and hospitalized population, besides the optimal controls
u1(t), u2(t) and u3(t). These were bounded and Lebesgue integral functions Kirschner
D et al [9] and S. Lenhart and J.T.Workman [40]). Here The positive coefficients C1,
C2, C3, C4, C5, C6 and C7 were corresponding balancing weight constants parameters
of stated infected variables and optimal controls.
The main purpose was to determine the optimal controls variables u∗

1(t),u
∗
2(t),u

∗
3(t) such

that

J (u∗(t)) = min
u1,u2,u3∈U

J ((u1(t), u2(t), u3(t))

where Φ= {u1, u2, u3: u1, u2, u3/ u1, u2, u3 : [0, tf ] → [0, 1] are lebsegue integrable}.

Through Pontryagin’s maximum principle Pontryagin, L et al [31], we derived the
essential conditions for this optimal control problem. The Lagrangian function was given
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by
L(S,E,A, I,Q,H,R, u1(t), u2(t), u3(t)) = C1A+C2I+C3Q+C4H+ 1

2 (C4u
2
1+C5u

2
2+C5u

2
3

The Hamiltonian function H obtained as
H = C1A+C2I +C3Q+C4H + 1

2 (C4u
2
1 +C5u

2
2 +C5u

2
3 +λ1

dS
dt +λ2

dE
dt +λ3

dA
dt +λ4

dI
dt +

λ5
dQ
dt + λ6

dH
dt + λ7

dR
dt + λ8

dD
dt + λ9

dP
dt

where λ1 λ2, λ3 , λ4, λ5, λ6 and λ7 are the adjoint variables.
The of differential equation form of adjoint variables were as follows.
dλ1

dt = −∂H
∂S = (λ1 − λ2β(

(ζaA+ζsIs+ζqQ)
N + (λ1 − λ8(α+ u1) + λ1u1

dλ2

dt = −∂H
∂E = (ω + µ)λ2 − λ4 − λ3θω − λω

dλ3

dt = −∂H
∂A = −C1 + (λ1 − λ2)β

ζaS
N + (λ3 − λ5)(λa + u2) + ((λ3 − λ8)µa + µλ3

dλ4

dt = −∂H
∂I = −C2 + (λ1 − λ2)β

ζsS
N + (λ4 − λ5)(λs + u3) + (λ4 − λ6)(ηs + u3) + µλ4

dλ5

dt = −∂H
∂Q = −C3 + (λ1 − λ2)β

ζqS
N + (λ5 − λ6)ηq + (λ5 − λ7)γq + µλ5

dλ6

dt = − ∂H
∂H = −C4 + (λ6 − λ7)γh + (λ6 − λ8)µh + µ)

dλ7

dt = −∂H
∂R = µλ7

dλ8

dt = −∂H
∂D = 0

dλ9

dt = −∂H
∂P = 0

we minimize Hamilton function relating to control variables u∗
1(t),u

∗
2(t) and u∗

3(t) .
Using the optimal conditions ∂H

∂u1
= 0, ∂H

∂u2
= 0 and ∂H

∂u3
= 0, we get

∂H
∂u1

= C5u1 − αλ1 + αλ9S = 0 ⇒ u∗
1 = (λ1−λ9)αS

NC5

∂H
∂u2

= C6u2 − λ3A+ λ5A = 0 ⇒ u∗
2 = (λ3−λ5)A

C6

∂H
∂u3

= C7u3 − ((λ4 − λ5 + (λ4 − λ6)I = 0 ⇒u∗
3 = ((λ4−λ5)+(λ4−λ6))I

C7

6.2 Optimal control model simulation

With the values of the parameters mentioned in Table 2, numerical simulation was
conducted for the optimal control problem (2) in MATLAB by using an iterative fourth-
order Runge-Kutta method (Kamien, M et al [19] and Lukes, D.L.[24]) for the period
[0,400]. The baseline weight parameters were taken as C1 = 1, C2 = 1, C3 = 1, C4 =
1,C5 = 40, C6 = 40 and C7 = 45.

In Figure.10, variations of exposed, asymptomatic infected, symptomatic infected,
quarantine, hospitalization, and dead populace with and without control had performed.
This figure shows that, in comparison to the infected population without control, the
infected population decreased quickly under control.

In Figure.11, variations of recovered and insusceptible Populace with and without
control were executed. This graph demonstrates that the disinfected population under
control swiftly rose in comparison to the disinfected population without control.

According to Figure.12, the best controls, u1,u2 and u3 combined their efforts
extremely well to increase the protection rate (α) from susceptible individuals, the quar-
antine rates (λa, λs )from asymptomatic infected and symptomatic infected individuals,
and the hospitalization rates (ηq, ηs) from symptomatic and quarantine individuals.

From these figures we perceived that in the presence of optimal control strategy
the number of susceptible, exposed, asymptomatic infected, symptomatic infected, quar-
antined, hospitalized, and dead individuals were reduced rapidly while the number of
recovered and insusceptible individuals were increased swiftly comparing with the pop-
ulations without control strategy.
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Figure 10: Variations of (a) exposed (b) asymptomatic (c) symptomatic infected (d)
quarantine (e) hospitalization and (f) dead populations with and without control
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Figure 11: Variations of (a) recovered (b) insusceptible population with and without
control

Figure 12: Dynamics of Optimal Controls u1, u2 and u3
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7 Conclusion

Epidemiological models aid in understanding the dynamics of infectious illness trans-
mission. The deterministic mathematical model with 9 compartments was thoroughly
studied in this paper. First, the elementary properties of the model such as the posi-
tivity and boundedness of the SEAIQHRDP model, the expression of R0, and the local
stability of the disease-free equilibrium were performed. Our suggested model has 18 pa-
rameters, but we only calculated 11 of them based on the sensitivity analysis. Through
sensitivity analysis, it was observed that just eight parameters are very sensitive con-
cerning clinically unwell or infected patients. The time series behavior of the infected
populations for 400 days was examined concerning variations in parameters. From this,
the spread of infections can be slowed down by increasing the protection rate, hospital-
ization rate, and quarantine rate. The best optimal control analysis was then carried out
by including three control factors, one of which was increased protection, and the other
two were improved quarantine and medical facilities for both identified and unidentified
affected people. Through the Optimal control strategy, it was found that the infected
populations were reduced rapidly, and disinfected populations were increased compared
with the infected and disinfected populations without optimal control technique. When
the best control approach is used early in a pandemic, the intensity of epidemic peaks
tends to decline, spreading the maximum impact of an epidemic across a longer period.
Finally, this study leads to the conclusion the rising of infections can be controlled only
if the implementation of rapid testing, quarantine centers, and medical facilities. Addi-
tionally, we intend to increase the scope of our modeling work by including vaccination
and the impact of environmental contaminants in the future.
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