Nearly Projective Semimodules

Kareem A.L.Alghurabi¹, Asaad M.A.Alhossaini²

¹University of Babylon, College of Basic Education, Babil, Iraq, Email: kareem_alghurabi@uobabylon.edu.iq ²University of Babylon,College of Education for Pure Science, Babil, Iraq, Email: asaad_hosain@itnet.uobabylon.edu.iq

Received: 17.04.2024 Revised: 18.05.2024 Accepted: 20.05.2024

ABSTRACT

Other researchers have previously proposed and studied the concept of a nearly projective module. In this paper, the above concept will be analyzed for semimodules, along with related ideas. A semimodule Pis considered to beroughly projective if \forall surjective-hom α :A \rightarrow B, where A,B are any two semimodules, and \forall hom β : P \rightarrow B, $\exists \gamma$: P \rightarrow A homs.t $\pi\alpha\gamma=\pi\beta$ where π :B \rightarrow B/J(B) is the natural map.

Keywords: studied, semimodule, concept

1. INTRODUCTION

Naoum and Al-Mothafar [9] proposed the notion of a nearly projective module as a generalization of a projective module relative to Jacobson radical. A module P is nearly projective if \forall epimf:M \rightarrow N and homg:P \rightarrow N, \exists a homh:P \rightarrow M such that (fh-g)(a) \in J(N), \forall a \in P.M and N are arbitrary modules, and J(N) is the Jacobsonradical of the module N. It is clear that an equivalent condition to the condition "(h-g)(a) \in J(N), for each a \in P" is π fh= π g where π is the natural map of N onto N/J(N). This fact helps to define nearly projective semimodule. Characterizations of this concept are given with some properties. Some results relating nearly projective with projective semimodules(presented in a previous paper[8]) are concluded. Conditions for nearly projective semimodule to beprojective are proved. Finally, a nearly-quasi-projectivesemimodule is defined, and some properties are proved. It is proved that for the class of semimodules over a semiring in which the direct sum of any two nearly-quasi-projectivesemimodules is nearly-quasi-projective, in such class any nearly-quasi-projective nearly projective.

R is a semiring with identity in what follows, and the semimodules are unitary left R-semimodules.

2. Nearly Projective semimodules

Definition2.1. A semimodule P is said to be nearly projective (N-projective) if \forall surjective hom α :A \rightarrow B, where A,B are any two semimodules and \forall hom β : P \rightarrow B, \exists a home γ : P \rightarrow A such that $\pi\alpha\gamma=\pi\beta$ where π :B \rightarrow B/J(B) is the natural map.

Definition2.2. [5]. An R-semimodule Ais Artinian if any non-empty set of S-subsemimodules of A have minimal membersconcerning set inclusion.

Definition2.3. [6] An epim α :P \rightarrow M is called a projective cover of M \leftrightarrow P is projective, and α is a small epim. **Definition**2.4. [5]. A left R-semimodule N is retracted of a left R-semimodule M \leftrightarrow \forall a surjective R-hom θ :M \rightarrow N and an R-hom

 $\delta:N\to M$ satisfying the condition that $\theta\delta=1_N$.

Remark2.5.

1- Every projective semimodule is nearly projective.

2- If a semimodule P has no maximal subsemimodule, e.g., J(P)=P, $\beta(P)=\beta(J(P))\subseteq J(B)$, hence $\pi\beta=0$, that is, Pis nearly projective. Thus, an almost projective semimodule may not be projective.

Lemma2.6. If $\alpha:F\to P$ is a surjective hom of semimodule and $\theta\in \operatorname{End}(F)$ $\exists \ker\alpha\subseteq\ker\theta$, then $\exists \alpha':P\to F$ such that $\alpha'\alpha=\theta$.

Proof: Since $\alpha: F \to P$ is surjective, then P is isomorphic to $F/\ker \alpha$, so $\exists \delta: P \to F/\ker \alpha$, which is an isomorphism. Define $\beta: F/\ker \alpha \to F/\ker \theta$ as $\beta(x/\ker \alpha) = x/\ker \theta$ where is well defined, and define $\sigma: F/\ker \theta \to \theta(F) \le F \operatorname{aso}(x/\ker \theta) = \theta(x) \le F$.

Now $\alpha' = \sigma \beta \delta: P \rightarrow F$, then $\alpha' \alpha = \sigma \beta \delta \alpha = \theta$. Thus $\alpha' \alpha = \theta$. $[\theta \in End(F)]$.

Lemma2.7. If g:P \rightarrow B is a hom, then $\exists g':P/J(P)\rightarrow B/J(B)$ such that $g'\pi_1=\pi_2g$ where $\pi_1:P\rightarrow P/J(P)$ and $\pi_2:B\rightarrow B/J(B)$ are the natural maps.

Proof: Assum π_1, π_2 be two natural maps $as\pi_1:x\mapsto x/J(P)$, $\pi_2:y\mapsto y/J(B)$ and g is a hom of semimodules by assumption.

Define $g':P/J(P) \rightarrow B/J(B)$ as g'(x/J(P))=g(x)/J(B), since $g(J(P))\subseteq J(B)$, then g' is well-defined. $g'\pi_1(x)=g'(x/J(P))=g(x)/J(B)=\pi_2g(x)$, so $g'\pi_1=\pi_2g$.

Theorem 2.8. AssumePbe R-semimodule:

1. If P is nearly projective, then for each exact sequence

Such that F is free and K=ker α , \exists a home $\theta \in End(F)$ satisfies:

a. $\pi \alpha \theta = \pi \alpha$ where $\pi:P \rightarrow P/J(P)$ is the natural map.

b. $\ker \alpha \subseteq \ker \theta$.

2- If there is an exact sequence as above with k-regular α and $\theta \in End(F)$ satisfying (a) and (b) of (1), then P is N-projective.

Proof(1): Assume that P is nearly projective,in the diagram (1), $\exists \delta$: P \rightarrow Fhom, such that $\pi \alpha \delta = \pi I = \pi$(1), $take \theta = \delta \alpha$(2).

Then π $\alpha \theta = \pi$ $\alpha \delta \alpha = \pi$ α . For every $a \in \ker \alpha$ implies $a \in \ker \delta \alpha = \ker \theta$, thus $\ker \alpha \subseteq \ker \theta$.

(2) By assumption $\exists \theta \in \text{End}(F)$ satisfying (a) and (b).

Define $\alpha':P\to Fby$ $\alpha'(a)=\theta(x_a)$ where $\{x_a\}$ is a basis for F and $\{\alpha(x_a)=a\}$ is a generating set of P; if $\alpha(x_a)=\alpha(y_a)=a$, then $x_a+k=y_a+k'$ for some $k,k'\in \ker\alpha$ (Since $\alpha:F\to P$ is k-regular). So, $\theta(x_a)=\theta(y_a)$, that is, α' Is well-defined.

Since F is a projective R-semimodule, $\exists h'$: F \rightarrow A such that $fh'=g \alpha$. Define $h=h'\alpha'$. In diagram (2):

 $\pi_1:P\to P/J(P)$ and $\pi_2:B\to B/J(B)$ are the natural maps where $g^{'}\pi_1=\pi_2g$ by [Lemma1.3.] π_2 fh(a)= π_2 fh' $\alpha^{'}$ (a)= π_2 fh' $\theta(x_a)=\pi_2$ $\theta(x_a)=g^{'}\pi_1$ α $\theta(x_a)=g^{'}\pi_1$ $\alpha(x_a)=g^{'}\pi_1(a)=\pi_2g(a)$, that is, π_2 fh= π_2 g. So P is N-projective.

Definition.2.9.[5].A left R-semimodule N is a retract of R-semimodule M if and only if ∃a surjective Rhom θ :M→N and an R-hom δ :N→Msatisfying the condition that $\theta\delta$ is the identity map on N.

$$\delta \qquad \theta \\
N \longrightarrow M \longrightarrow N$$

Lemma 2.10. If $\theta \delta$ is an isomorphism where then there exist $\beta: N \to N$ such that $\theta \delta \beta = 1_N$.

Lemma 2.11. If P is a retract of a free semimodule, then P is projective. [Golan]

Proposition2.12.AssumePisan N-projective R-semimodule. If J(P) is small in P, P is projective[8].

Proof: Since P is N-projective, then by [Theorem 1.4.] for each exact sequence

$$_{t}$$
 0 \longrightarrow K \longrightarrow F $\xrightarrow{\alpha}$ P \longrightarrow 0 such

F is free R-semimodule and K=ker $\alpha \exists a \text{ hom} \theta \in \text{End}(F)$ satisfying $\pi \alpha \theta = \pi \alpha$ where $\pi: P \rightarrow P/J(P)$ is the natural map and since α surjective $P=\alpha(F)$, $\pi(\alpha(F))=\pi(\alpha(\theta(F)))$ implies $P=\alpha(F)=\alpha(\theta(F))+J(P)$ but J(P) is small, so $\alpha(F) = \alpha(\theta(F))$, that is, Pis projective.

Corollary2.13.AssumePis a Hopfian N-projective R-semimodule; if J(P) is small,P is projective.Where Ris a semiring and MR-semimodule. If every surjectiveR-endomorphism of M is an isomorphism, one calls M Hopfian.

Proof: In the diagram, P is a Hopfian N-projective, and F is a free semimodule with α is surjective then by (Theorem 1.4.) $\alpha(\theta(P)=1_P(P)=P)$, that is, $\alpha\theta$ is surjective. Since P Hopfian and $\alpha\theta\in End(P)$, then $\alpha\theta$ is an isomorphismthat is P is a retract of F. By Lemma. 1.5.P is projective.

Lemma2.14. If Pis a finitely generated projective semimodule, J(P) is small in P.

Proof: Similar to the case's evidence in modules, see [7.p.159.].

Corollary2.15.AssumePis a finitely generated R-semimodule; P is projective only if P is N-projective.

Proof: Since Pis projective, then P is N-projective.

Conversely, Since P is finitely generated, it is Hopfian and J(P) is small in P. By [Lemma 1.5], P is projective. Corollary 2.16. Assume Pis an N-projective R-semimodule with I(P) is small in P; if P is a multiplication semimodule, P is projective.

Proof: Since P is an N-projective R-semimodule and J(P) is small in P, if we prove P Hopfian, then it will be projective by [Lemma 1.7.], now assume $fP \rightarrow P$ be a surjective map, then f(P)=P, assum K=ker f, then K=JP for some J \leq R, then f(K)=J f(P)=JP=K=0, so f is one-one, that is P is Hopfian. Hence, P is projective.

Theorem2.17. For any R-semimodule P, the following statements are equivalent.

- 1- P is an N-projective R-semimodule.
 - 2- For every family $\{a_i: i \in I\}$ of generators of P over R, $\exists a$ family $\{f_i: i \in I\}$, $f_i \in P^* = \text{Hom}(P,R)$ with
 - a- For all $a \in P$, $f_i(a) \neq 0$ only for finitely many $i \in I$.
 - b- For all $a \in P$, $\pi(\sum f_i(a)a_i) = \pi(a)$ where $\pi: P \to P/J(P)$ is the surjective map.

Proof: Assume that P is N-projective, and assumeFto be afree R-semimodule over P, assum $\{x_i:i\in I\}$ be a basis for F, and assum $\alpha:F\to P$ be surjective map $\alpha(x_i)=a_iF$ or all i.

Define homes $\alpha_i: F \to R$ as follows $\alpha_i(\sum r_i x_i) = r_i$ For all $I \in I$.

It is clear that α_i It is well-defined, and if we put r_j =0 in the case that the index does not appear in $\sum r_j x_j$ then for all x in F, x= $\sum r_i x_j$ and $\alpha_i(x) \neq 0$ for only finitely many $i \in I$. Moreover, x= $\sum \alpha_i(x) x_j$(*).

Now, since P is N-projective, then by definition [N-projective], $\exists a \text{ homh:} P \rightarrow F \text{ such that } \pi(\alpha(h(a))) = \pi(a)$, for all an in P (in the diagram) put $f_i = \alpha_i h$, $i \in I$, then $f_i \in P^*$ and for all $a \in P$, $f_i(a) = \alpha_i h(a) \neq 0$ for only finitely many $i \in I$, furthermore for all $a \in P$, $a = \sum r_i a_i = \sum r_i \alpha$ (x_i) . Thus $\pi(\sum f_i(a)a_i) = \pi(a)$ implies $\pi(\sum (\alpha_i h)(a)\alpha(x_i) = \pi(a)$, so $\pi(\alpha \sum \alpha_i h(a)x_i) = \pi(a)$.

For the converse,assume $\{a_i:i\in I\}$ be a set of generators for P. Assum $\{x_i:i\in I\}$ be a basis for F such that $\alpha(x_i)=a_i$. Define a map $\theta:F\to F$:assumenext show that $\ker \alpha=\ker \theta$. Assum $\pi\in F$ such that $\pi(\pi)=0$, then $\pi(\pi)=0$ for all I; thus, it is clear that $\pi(\pi)=0$. It follows from theorem (2.8.) that P is an N-projective R-semimodule.

3. Nearly-Quasi-Projective Semimodules

Definition3.1. An R-semimodule P is called nearly-quasi-projective

(NQ-projective), if for every R-semimodule B and surjective

homg:P→B

and any homf:P→B∃R-hom

h:P \rightarrow P such that $\pi gh=\pi f$, where π is the natural surjective map of B onto B/I(B).

Remark 3.1. Every nearly projective semimodule is nearly quasi-projective.

Remark 3.2. The retraction of the N-quasi projective is the N-quasi projective.

Proposition3.4.An R-semimodule P is nearly quasi-projective if and only if for any $K \le P$; $\beta: P \to P/K$, $\exists y: P \to P$ such that $\pi\alpha y = \pi\beta$.

Proof: In the diagram,assumePto be quasi-projective and $K \le P$; α surjectivehom and β any home, then there exist γ S-hom such that $\pi\alpha\gamma = \pi\beta$.

Proposition3.5.Any R-semimodule retract of any N-quasi projective is N-quasi projective.

Proof: Consider the diagram P is N-quasi projective P`Is a semimodule such that $\exists \gamma : P \rightarrow P$ ` and $\gamma` : P` \rightarrow P$ with $\gamma \gamma` = 1_{P`}$, then P` is N-quasi projective such that $\pi f \gamma h = \pi g \gamma$, assum $h` = \gamma h \gamma`$ so $\pi f \gamma` = \pi f \gamma h \gamma` = \pi g \gamma \gamma` = \pi g$, then P is N-projective.

Proposition 3.6. Assum R be a semiring such thatany R-semimodule has a projective cover, and the direct sum of any two N-quasi-projective R-semimodule is N-quasi-projective. Then any N-quasi-projective R-semimodule is N-projective R-semimodule.

Proof. Assume Misthe N-quasi-projective R-semimodule and P is the projective cover of M.

We must prove that M is N-projective. In the diagram:

 $M \! \oplus \! P$ is N-quasi-projective, then

 $\pi g \alpha h = \pi f \alpha$.

Assum $h = \alpha h'i$, then $\pi g h = \pi g \alpha h'i = \pi f \alpha i = \pi f$, then M is N-projective.

REFERENCES

- [1] Tsiba, SR, Sow D. On. Generators and Projective Semimodules. Int J Algebra 2010 Sep; 4 (24):1153-1167.
- [2] Chaudhari JN, Bonde DR. On Exact Sequence of Semimodules over Semirings. ISRN Algebra. 2013:1-5,
- [3] A. M. Alhossaini and Z. A.Alje Bory", Fully Duall stable semimodule", Journal of Iraqi Al-Khwarizmi, vol. 1, no. 1, pp, 92-100, 2017.
- [4] Faith, C., Walker, &. A .Direct Sum representations of injective modules.J. Algebra, 1967, 5: 203-221.
- [5] Jonathan-S.-Golan-auth.-Semirings-and-their-Applications-1999-Springer-Netherlands-libgen.lc (1).
- [6] Robert Wisbauer University of D"usseldorf 1991.
- [7] Kasch, F. Modules and Rings. L.M.S. Monograph. No. 17. New York: Academic Press, 1982.
- [8] Kareem A. L. Alghurabi and Asaad M. A. Alhossaini, Radical Projective Semimodule, send for publication, 2023.
- [9] Dr.Adil G. Naoum and Nahad S. Al-Mothafar, Nearly Projective Modules, Accepted 1999, No. 1, 2001.