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The study investigates the telegraph equations by considering space and time
fractional derivatives. Caputo’s concept of fractional derivatives is used here.
We are focusing to generalize the solutions of integer order telegraph equations
to fractional order telegraph equations. In this case, approximate solutions
for fractional order telegraph equations have been obtained using Taylor series
expansion. Additionally, it has been shown quantitatively how the solutions
converge by using the number of terms in the series solutions.
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1 Introduction

Recent research suggests that fractional order derivatives are essential for a
wide range of physical phenomena viz. rheology, damping law, heat-diffusion,
wave dynamics, signal processing, etc. Researchers have used different types of
analytical and numerical methods to handle such problems. Techniques includ-
ing modified extended tanh method [1], novel analytical technique [2], coupled
transformation method [3], Galerkin and collocation methods [4], etc. are some
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recent endeavors in this paradigm. Moreover, the semi-analytical homotopy
perturbation method (HPM) has been used to tackle fractional models such
as the heat-conduction equation [5], convection-diffusion problem [6], and wave
equation [7] etc. Additionally, Dubey et al. have used local fractional natu-
ral homotopy analysis method [8, 9] and some coupling techniques such as the
local fractional variational iteration technique with the local fractional natural
transform [10] and local fractional homotopy perturbation method with local
fractional natural transform operator [11] to solve various types of physical
problems.

The studied of fractional telegraph equations (FTEs) have gained popularity
due to various applications they can be applied to, such as modeling reaction
diffusion, transmission and propagation of electrical signals, etc.

The general FTE [12] is given as,

Dp
xϕ(x, t) = aDq

tϕ(x, t) + bDr
tϕ(x, t) + cϕ(x, t) + h(x, t)

,
where 1 < p, q ≤ 2, 0 < r ≤ 1, x, t ≥ 0, ϕ(0, t) = f1(t), ϕx(0, t) = f2(t) and

a, b, c are constants.

Various authors have solved telegraph equations using different numerical
and analytical techniques. The analytical solution for FTE with respect to time
has been obtained by chen et al. [13] by using method of separating variables.
The space-fractional telegraph equation (SFTE) and time-fractional telegraph
equation (TFTE) and related telegraph process have been disscussed by Ors-
ingher and Zaho [14] and Orsingher and Beghin [15]. Moreover, some other
methods such as variational iteration method [16], HPM [17], differential trans-
form method [18] have also been used to handle FTEs.

The Taylor series expansion method (TSEM) is applied by Demir et al. [19]
for different fractional partial differential equation (PDE). In this study, we use
Taylor series of an analytical solution of the integer order differential equation.
This Taylor series solution can be reach out to the approximate or exact solu-
tion of fractional differential equation (FDE). Our approach changes the terms
of Taylor series expansion for derivatives in the sense of fractionals and inte-
gers so that their relationship remains unaltered. Applications of this method
demonstrate that it may be used to solve any differential equation derived from
FDEs with ease and effectiveness, provided that the differential equation has an
analytical or approximative solution. Here, the Caputo concept of the fractional
derivative is utilised.

Here, Taylor series is applied on SFTEs and TFTEs. Firstly, the Taylor
series expansion for analytical solution obtained from integer order telegraph
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equation is determined and then the expansion has been extended for FDE.

The rest of the paper follows this format: Methodology of the Taylor series
expansion method is described in Section 2. Section 3 includes solutions of
SFTEs and TFTEs. This section also covers convergency tables and graphical
solutions. Finally, Section 4 concludes this article with a brief summary.

2 Taylor series expansion method

In this section, TSEM has been discussed to handle space and time fractional
PDEs.

2.1 Fundamental approach to solve space-fractional PDEs

Let us consider a genaral form space-fractional PDE as

Dα
xϕ(x, t) = η

(
ϕ,

∂ϕ

∂t
, · · · ∂

nϕ

∂tn
, x, t

)
, k − 1 < α ≤ k, x > 0, t > 0. (1)

To find the solution of Eq. (1), we must first calculate the solution to its
integer order version by using the expression α = k, which is represented as

Dk
xϕ(x, t) = η

(
ϕ,

∂ϕ

∂t
, · · · ∂

nϕ

∂tn
, x, t

)
, t > 0, x > 0. (2)

From the exact answer of Eq. (1), one can get the approximation or exact
solution (2). To do this, we must modify the terms in the Taylor series ex-
pansion of integer order differential equation (2). In the infinite Taylor series
expansion of the solution of Eq. (2), the first k terms remain the same. More-
over, the fractional derivative with respect to x is used in place of the integer
order derivative with respect to x in order to maintain the relationship between
the terms of the Taylor series and to satisfy the boundary conditions of the
fractional differential equation.

To solve Eq. (2) with respect to x, a primitive Taylor series form is shown
below.

ϕ(x, t) =
∞∑

n=0

∂nϕ(0, t)

∂xn

xn

n!
. (3)

The solution of Eq. (1) is thus expressed in the following way:

ϕ(x, t) =

k−1∑
n=0

∂nϕ(0, t)

∂xn

xn

n!
+

∞∑
n=1

k−1∑
j=0

∂kn+jϕ(0, t)

∂xkn+j

xnα+j

Γ(nα+ j + 1)
. (4)
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2.2 Fundamental approach to solve time-fractional PDEs

Let us consider a genaral form time-fractional PDE as

Dα
t ϕ(x, t) = η

(
ϕ,

∂ϕ

∂x
, · · · ∂

nϕ

∂xn
, x, t

)
, k − 1 < α ≤ k, t > 0. (5)

For obtaing the solution of Eq. (5), we have to determine the solution for integer
order form of Eq. (5) by taking α = k, which is written as

Dk
t ϕ(x, t) = η

(
ϕ,

∂ϕ

∂x
, · · · ∂

nϕ

∂xn
, x, t

)
, t > 0. (6)

If we alter the terms of the Taylor series expansion in the solution of the integer
order differential equation, we can obtain the approximate or precise solution
of Equation (5) from the exact solution of Eq. (6). The initial k terms of the
infinite Taylor series expansion of solution of Eq. (6) are unaltered. Addition-
ally, in order to maintain the relationship between the terms of the Taylor series
and to satisfy the boundary conditions of the fractional differential equation,
the integer order derivative with respect to t is substituted by the fractional
derivative with respect to t.

For the solution of Eq. (6) with regard to t, the sketched Taylor series form
is shown below.

ϕ(x, t) =
∞∑

n=0

∂nϕ(x, 0)

∂tn
tn

n!
. (7)

Then the solution of Eq. (5) is given in the following format.

ϕ(x, t) =

k−1∑
n=0

∂nϕ(x, 0)

∂tn
tn

n!
+

∞∑
n=1

k−1∑
j=0

∂kn+jϕ(x, 0)

∂tkn+j

tnα+j

Γ(nα+ j + 1)
. (8)

3 Numerical examples

3.1 Solution of SFTE

Take a look at a general SFTE example [20].

∂2αϕ

∂x2α
=

∂2ϕ

∂t2
+ 4

∂ϕ

∂t
+ 4ϕ t ≥ 0, 0 < α ≤ 1, (9)

with initial conditions

ϕ(0, t) = 1 + e−2t, ϕx(0, t) = 2. (10)

The exact solution of Eq. (9) with initial conditions (10) is given as

ϕ(x, t) = e2x + e−2t. (11)
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The Taylor series expansion of the exact solution (11) is below.

ϕ(x, t) =

(
e−2t + 1 + 2x+

4x2

2!
+

8x3

3!
+ · · ·

)
. (12)

As discussed in the procedure, the solution to Eq. (9) is given by

ϕ(x, t) =

(
1 + e−2t +

2xα

Γ(α+ 1)
+

4x2α

Γ(2α+ 1)
+

8x3α

Γ(3α+ 1)
+ · · ·

)
. (13)

To demonstrate how well the approach works, we will check its convergence by
increasing the number of terms in the series solution. In perspective of this,
Convergency Table 1 contains values for the fractional value α, with α = 0.8
and a fixed value of t = 0.1, while x ranges from 0 to 1.

Table 1: Convergency chart for the solution of the SFTE.
x ϕ(x, t = 0.1)

3 terms 5 terms 7 terms 9 terms 13 terms 16 terms 17 terms
0 1.818730 1.818730 1.818730 1.818730 1.818730 1.818730 1.818730
0.1 2.159061 2.240025 2.241460 2.241473 2.241473 2.241473 2.241473
0.2 2.411281 2.680719 2.694812 2.695188 2.695194 2.695194 2.695194
0.3 2.638323 3.195128 3.249704 3.252453 3.252541 3.252541 3.252541
0.4 2.850420 3.793880 3.937923 3.949311 3.949894 3.949895 3.949895
0.5 3.052055 4.483454 4.791251 4.825739 4.828286 4.828291 4.828291
0.6 3.245725 5.268850 5.843929 5.929557 5.938111 5.938144 5.938144
0.7 3.433014 6.154317 7.133256 7.318560 7.342541 7.342702 7.342703
0.8 3.615007 7.143644 8.699801 9.062343 9.121244 9.121873 9.121876
0.9 3.792495 8.240293 10.587472 11.244084 11.374845 11.376950 11.376964
1.0 3.966073 9.447488 12.843557 13.962366 14.230392 14.236641 14.236689

The surface of the graph in Fig. 1 depicts the exact solution of the telegraph
equation given in Eq. (11) for α = 1. Further, the surface of graphs in Figs.
2 and 3 show the approximate solutions of the SFTE for α = 0.5 and 0.3
respectively.
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Figure 1: Exact solution of SFTE (11) for α = 1

Figure 2: Approximate solution of SFTE (13) for α = 0.3
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Figure 3: Approximate solution of SFTE (13) for α = 0.5
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3.2 Solution of TFTE

Take a look at the following TFTE [20],

∂αϕ(x, t)

∂tα
=

∂2ϕ(x, t)

∂x2
− ∂ϕ(x, t)

∂t
− ϕ(x, t), x, t ≥ 0, 0 < α ≤ 2 (14)

with initial conditions

ϕ(x, 0) = e−x, ϕt(x, 0) = −e−x. (15)

This equation has the following exact solution for α = 2,

ϕ(x, t) = e−(x+t). (16)

The Taylor series expansion for exact solution (16) as below

ϕ(x, t) = e−2t

(
1− t+

4x2

2!
+

8x3

3!
+ · · ·

)
. (17)

The method allows us to arrive at the following solution to Eq. (14),

ϕ(x, t) = e−x

(
1− t+

tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
− t2α+1

Γ(2α+ 2)
+ · · ·

)
.

(18)
Here, we examine whether the approximation solution for the fractional value

of α is convergent. The calculated values of ϕ(x, t) for α = 1.7, x = 0.1, and t
ranging from 0 to 1 are shown in Table 2. This table indicates that the computed
result ϕ(x, t) converges up to four places of decimal in the approximation of the
tenth term.

The graphical illustration for exact and approximate solutions has been
shown. The graph in Fig. 4 has been plotted for the exact solution (16).
In Figs. 5 and 6, the surfaces of the graphs show the approximate solutions (18)
for α = 1.2 and 1.7.
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Table 2: Convergency chart for the solution of the TFTE.
t ϕ(x = 0.1, t)

2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
0 0.9048374 0.9048374 0.9048374 0.9048374 0.9048374 0.9048374 0.9048374
0.1 0.8426171 0.8499774 0.8482249 0.8485619 0.8485076 0.8485151 0.8485142
0.2 0.7888023 0.8057117 0.8016857 0.8024599 0.8023350 0.8023524 0.8023503
0.3 0.7390122 0.7665189 0.7599697 0.7612292 0.7610260 0.7610542 0.7610508
0.4 0.6920779 0.7309256 0.7216762 0.7234549 0.7231680 0.7232079 0.7232030
0.5 0.6473983 0.6981743 0.6860848 0.6884097 0.6880347 0.6880868 0.6880804
0.6 0.6045998 0.6677937 0.6527476 0.6556410 0.6551744 0.6552392 0.6552313
0.7 0.5634244 0.6394591 0.6213556 0.6248370 0.6242755 0.6243535 0.6243440
0.8 0.5236826 0.6129314 0.5916817 0.5957681 0.5951090 0.5952006 0.5951894
0.9 0.4852285 0.5880266 0.5635508 0.5682577 0.5674985 0.5676040 0.5675911
1.0 0.4479456 0.5645982 0.5368238 0.5421650 0.5413035 0.5414232 0.5414086

Figure 4: Exact solution of TFTE (16) for α = 2
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Figure 5: Approximate solution of TFTE (18) for α = 1.2

Figure 6: Approximate solution of TFTE (18) for α = 1.7
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4 Conclusion

If the integer order PDEs have analytical solutions, the Taylor series expansion
method works well enough for fractional order PDEs. Numerical examples of
this method demonstrate that it may be used to solve any differential equation
derived from FDEs with ease and effectiveness, provided that the differential
equation has an analytical or approximative solution. By extending the Taylor
series expansion of the analytical solution, this study has determined the ap-
proximate solutions of the SFTE and TFTE. Furthermore, the infinitive series
solution obtained in numerical examples 3.1 and 3.2 is identical to that given in
[20], confirming the validity of the considered method. Additionally, the con-
vergency Tables 1 and 2 demonstrate the efficacy of the method. As we can
observe that the recorded values in Tables 1 and 2 are being closure enough
if the number of terms increases. Furthermore, a graphic illustration is used
to show both the exact and approximative solutions for integer and fractional
values of α. Using the MATLAB programme, the 3D graphs for the solution of
SFTE and TFTE are shown. The discussed method can also be used to analyse
ODEs and PDEs with fractional derivatives with exponential and Mittag-Leffler
kernels in future iterations of the research.
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