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ABSTRACT 
Tomato leaf diseases stance a major threat to tomato cultivation, causing substantial yield losses and 
economic damage. Early and precise identification of leaf diseases is vital for appropriate intrusion and 
disease control. This study investigates the effectiveness of ML techniques MLP Neural Network in 
classifying tomato leaf diseases using shape and color features extracted from leaf images. Four different 
optimization algorithms (SGD, RMSProp, AMSGrad and Momentum SGD) were evaluated across three 
learning rates (0.5, 0.01 and 0.00001) for training a neural network model. The results demonstrated that 
RMSProp and AMSGrad outperformed SGD and Momentum SGD in terms of classification accuracy. 
RMSProp achieved the highest accuracy at a learning rate of 0.5, while AMSGrad excelled at both learning 
rates of 0.01 and 0.00001 with 95.00% accuracy. The proposed method using shape and color features 
and the AMSGrad optimizer can be an effective tool for early detection and control of tomato leaf diseases. 
 
Keywords: Tomato leaf disease classification, shape features, color features, machine learning, 
optimization algorithms. 
 
1. INTRODUCTION 
Tomato (Solanum lycopersicum) cultivation is of paramount importance in global agriculture, providing a 
vital source of nutrition and income for millions of people worldwide. Tomato leaf diseases pose a 
significant threat to tomato cultivation, causing substantial yield losses and economic damage [1]. 
However, the tomato crop is consistently threatened by a number of diseases that can considerably 
jeopardize crop yield and quality. The appropriate and exact detection of diseases affecting the leaves of 
tomato plants is pivotal for operative disease managing and the preservation of agricultural productivity 
[2]. Recent years have witnessed a transformative shift in the agricultural landscape, marked by the 
integration of advanced technology, specifically the application of machine learning and computer vision 
techniques, to tackle the challenging issue of plant disease detection. Machine learning methods have 
emerged as powerful tools capable of automating disease identification processes, offering a multitude of 
advantages, including rapid and non-invasive assessment, reduced reliance on manual labor and the 
facilitation of precision agriculture. This research paper is dedicated to the expansion and deployment of 
a machine learning-based approach for the detection of diseases on tomato plant leaves. Early and 
accurate identification of leaf diseases is crucial for timely intervention and disease control [3]. The 
primary objective is to provide a reliable and effective method for the early identification of diseases, 
thereby supporting farmers and agrarian specialists in making well-informed verdicts to control disease 
spread and mitigate crop damages. Experts' visual assessment is the basis of traditional disease diagnosis 
techniques, which can be laborious, subjective, and prone to human error. Machine learning techniques 
offer a promising alternative for automated disease detection and classification [4]. In this study, we 
explore the significance of early disease detection in tomato farming, investigate existing disease 
detection methods and present a novel approach that combines the power of machine learning with 
several optimization techniques. Specifically, we incorporate Stochastic Gradient Descent (SGD), 
AMSGrad, Momentum SGD and RMSprop, aiming to improve the exactness and efficiency of disease 
detection. These optimization techniques play a vital role in fine-tuning the machine learning models to 
achieve better convergence and more precise results. Throughout the following sections, we delve into 
the significance of early disease detection in tomato farming, assess the limitations of existing methods 
and introduce our machine learning-based approach, which leverages the aforementioned optimization 
techniques. Additionally, we discuss the dataset employed for model training and testing, the selection of 
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machine learning algorithms and the criteria used for evaluating the model's performance. This research 
contributes not only to the field of agriculture but also aligns with the broader context of applying 
cutting-edge technology to advance sustainable and precision agricultural practices [5]. 
 
2. LITERATURE REVIEW 
The detection of plant diseases, particularly those affecting tomato plants, is of utmost importance in the 
field of agriculture to ensure high crop yield and quality. With the advancement of machine learning and 
computer vision, researchers and practitioners have been exploring innovative approaches for early and 
accurate disease detection. In this section, we review some of the key studies and methodologies related 
to tomato plant leaf disease detection using machine learning techniques. 
Recent advances in agricultural technology have enabled plant disease detection using spectroscopy [6, 
9]. Plant nitrogen levels in the field can be determined using ground-level reflectance spectra. [10, 11]. 
Leaf spectral characteristics have been analyzed to predict crop yield, monitor leaf area index variations 
[13], describe the biophysical characteristics of agricultural crops parameters [14] and discriminate 
diseases [12, 15]. Distinct diseases often manifest as specific physiological and visual changes in their 
host plants. Studies have demonstrated the effectiveness of non-destructive methods for detecting leaf 
diseases on certain varieties [16, 17]. Technology used in computer vision is another efficient non-
destructive approach for plant detection, offering environmental benefits and cost-effectiveness. Probably 
the most prominent symptoms of plant disease is leaf scarring. Diseased leaves exhibit uneven leaf 
texture or colour compared to healthy leaves. Additionally, the disease spot shape on diseased leaves 
differs. In lab settings, several imaging techniques and stable lighting environments have been studied. 
Investigators have explored different imaging techniques Innovative methods for extracting disease 
features, utilizing scientific methods to capture leaf images and construct classification models [18, 19]. 
Currently, laboratory-based machine vision technology can achieve a classification accuracy of 100% for 
plant diseases [20], equaling the highest accuracy achieved by spectral techniques. However, image 
feature extraction or selection is computationally intricate. Precise structures provide high accuracy in 
characteristic convinced plant or disease types, but when the plant diversity or disease class’s changes, 
the feature extraction steps that need to be changed are spectral processing and image segmentation. 
Consequently, the accuracy of disease classification can decrease when dealing with new disease types. 
Presently, Plant disease classification problems make extensive use of deep learning (DL) methods, 
especially those that are based on convolutional neural networks (CNNs), a subset of DL [21, 22].  
Here, our goal is to expand on the current knowledge and advance the field of detecting leaf diseases in 
tomato plants by leveraging machine learning techniques and optimization algorithms. Our approach is 
grounded in the valuable insights gained from previous research and our own experimental findings. 
 
3. RESEARCH METHODOLOGY 
3.1 Dataset Used 
The Plant Village dataset [23] was utilized to obtain images of tomato diseases. In tomatoes, there are 
nine main categories of diseases, namely: 1) Target Spot, 2) Mosaic virus, 3) Bacterial spot, 4) Late blight, 
5) Leaf Mold, 6) Yellow Leaf Curl Virus, 7) Spider mites (Two-spotted spider mite), 8) Early blight and 9) 
Septoria leaf spot. In our proposed work, the training dataset comprises 10,000 images, the validation 
dataset includes 7,000 images and the testing dataset consists of 500 images. Among the 10,000 training 
images, 1,000 belong to the healthy category, while 1,000 images are allocated to each specific tomato 
disease category mentioned earlier. Each class is represented by 700 photographs in the validation set, 
and each class is represented by 50 images in the test set. 50 randomly chosen photographs from each 
training set class were taken out of their respective folders for testing. 
 We created our project training dataset from the leftover training dataset by keeping the same number of 
pictures (1,000) in each class. 
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Figure 1. Proposed Research Methodology 
 
When there were fewer than 1,000 photographs in a class, we created more images using data 
augmentation techniques. Using the Python Augmentor module, augmentation entails scaling, rotating, 
flipping, and cropping previous images to produce new ones that are similar. In cases where the number 
of When the number of images in a given class in the training dataset surpassed 1,000, we chose the top 
1,000 images. This same process was trailed aimed at the validation dataset, ensuring that every class 
possessed exactly 700 images all. Here, meticulous approach is essential to avoid bias toward any 
particular class during the training of the Artificial Neural Network (ANN). The size of all images is set at 
512 × 512 pixels and the format is JPEG. 
 

 
Figure 2. Plant Village dataset samples. 

 
A4 (210mm x 297mm) portrait page set-up should be used.  The left, right, top margins should be 25mm 
and bottom margins should be 15mm. Do not use any headers, footers or footnotes.  No page numbers. 
Single column.  All main text paragraphs, including the abstract, must be fully (left and right) justified.  All 
text, including title, authors, headings, captions and body, will be Times New Roman font. 
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3.2 Data Pre-Processing 
As shown in Figure 1. The acquired dataset comprises images with minimal noise, obviating the necessity 
to eliminate any noise. The resolution of the dataset images was adjusted to 512 x 512, enhancing the 
efficiency of the model training process and facilitating computational benefits. Normalization, whether 
applied to input or output variables, is crucial for expediting the training process. This process enhances 
numerical conditions related to normalization issues. Moreover, normalization aids in bringing all pixel 
values of images into a specific range by utilising the mean and standard deviation values. Image 
flattening is achieved through the utilization of a Gaussian Filter, which is a linear filter commonly 
employed for noise reduction and edge detection. The Gaussian filter proves beneficial in blurring, 
reducing disparity and softening boundaries. 
Otsu's thresholding method for adaptive image thresholding is implemented. Image thresholding is a 
simple yet efficient method for dividing an image into the foreground and background. This method, a 
form of image segmentation, transforms grayscale images into binary images, effectively segregating 
objects. Additionally, morphological transformations are employed for closing holes in binary images. 
Morphological transformations, consisting of basic operations based on image shape, are typically 
executed on binary images. The process involves two inputs: the original image and the structural 
component or kernel that determines how the process is conducted. 
 
Feature Extraction 
Algorithms are employed in this section on image processing to identify and separate different desired 
areas or forms (features) of digitised images.  This technique made use of a variety of plant leaf 
characteristics, including colour and shape.  Features such as surface area, surface perimeter, and 
disfigurement are examples of shape features. Shape features are crucial since they reduce the quantity of 
data collected and offer several ways to define an image using its most important components. The 
contour approach can be used to extract shape features.  The variation in red, green, and blue is one of the 
colour features.  The model has little trouble classifying photos using colour features.  For every image, 
the quantity of pixels with the same colour value is calculated. As a result, using colour features for image 
classification is typical.  The image's red, green, and blue channels can each be used to extract colour 
details.  When it comes to optical character recognition or classification, feature extraction is very crucial. 
 
Color Features 
1. Color Mean: Calculate the mean value of pixel intensities in the red, green and blue channels using 

eq 1. 

 

Eq.1. 

2. Color Variance: Measure the spread of pixel intensities around the mean in each color channel 
calculated using eq 2. 

 

     

 

 
3. Color Histogram: Construct histograms for red, green and blue channels to represent the 

distribution of pixel intensities calculated by eq 3. 
       

 
 

Eq.3. 
 
 

Shape Features 
1. Contour-based Features: Compute the perimeter of the leaf contour by summing the distances 

between consecutive points and calculated using eq 4. 

 

Eq. 4. 

 
2. Area-based Features: Calculate the area of the leaf contour using the shoelace equation 5. 

 

Eq. 5. 

 
3. Elongation: Measure how stretched or elongated the leaf shape is calculated using Eq. 6. 
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Eq. 6. 

 
3.3 Feature Combination 
Combining features into a single feature vector often involves concatenating the individual feature values. 

The combined feature vector  can be represented as follows: 

F = [Meancolor, Variancecolor, Histogramcolor, Perimetershape,Areashape, Elongationshape] 
This is a simple concatenation of the individual feature values. If you have m color histogram bins and n 
features, the total length of the feature vector will be 3×m+n. 
 
4. RESULT AND DISCUSSION 
Optimization techniques play a vital role in training machine learning models, enabling them to converge 
efficiently towards optimal solutions. Here, Stochastic Gradient Descent (SGD), AMSGrad, Momentum SGD 
and RMSprop are some of the prominent optimization algorithms that address different challenges during 
training. 
 
4.1 Stochastic Gradient Descent (SGD) 
First we apply Stochastic Gradient Descent (SGD) is a modified of the gradient descent optimization 
algorithm that is frequently employed in training machine learning models. In contrast to conventional 
gradient descent, which computes the gradient using the full dataset, SGD updates the model parameters 
for each iteration based on a single randomly chosen training example. This presents randomness into the 
optimization process, which can lead to faster convergence and reduced computational requirements, 
particularly for large datasets [24]-[25]. 
Algorithm for Stochastic Gradient Descent (SGD): 

1. Input: Training dataset, learning rate, number of epochs. 
2. Output: Optimized model parameters. 
3. Algorithm Steps: 

a. Initialize model parameters randomly. 
b. Shuffle the training dataset randomly. 

For each epoch: 
c. Iterate over each mini-batch (a subset of the shuffled dataset). 

i. For each mini-batch: 
1. Calculate the loss function's gradient using the current mini-batch in 

relation to the parameters. 
2. Update the parameters expending the gradient and learning rate: 

parameter=parameter−learning_rate×gradientparameter=parameter−l
earning_rate×gradient. 

d. Repeat the mini-batch iteration for a specified number of mini-batches. 
e. Repeat the entire process for the specified number of epochs. 

4. Output: Optimized model parameters after training. 
We obtained the following results for Stochastic Gradient Descent at 0.5, 0.01 and 0.00001 Learning rate. 
 

Table 1. SGD at 0.5, 0.01 and 0.00001 learning rate 

SGD 

Learning 
Rate 

1st run 2nd run 3rd run Mean 

0.5 0.93 0.92 0.85 0.9000 
0.01 0.92 0.91 0.85 0.8933 
0.00001 0.94 0.86 0.89 0.8967 

 
4.2 RMSprop (Root Mean Square Propagation) 
It addresses the problem of declining rates of learning in traditional GD. It splits the learning rate by the 
squared gradient average that decays exponentially, allowing for better handling of different parameter 
scales. This can lead to more stable training, particularly in deep neural networks [26]. 
Algorithm for RMSProp (Root Mean Square Propagation): 

1. Input: Training dataset, learning rate, decay rate, number of epochs. 
2. Output: Optimized model parameters. 
3. Algorithm Steps: 

i. Initialize model parameters randomly. 
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ii. Initialize the moving the squared gradients' average for each parameter to zero. 
For each epoch: 

a. Iterate over each mini-batch (similar to SGD). 
i. For each mini-batch: 

1. Calculate the loss function's gradient using the current mini-batch in 
relation to the parameters. 

2. Update the moving average of squared gradients using exponential decay: 

. 
3. Calculate the scaling factor for the moving average of squared gradients-

based learning rate: 

(epsilon is a small constant for 

numerical stability) 
4. Update the parameters using the scaled learning rate: 

 
b. Repeat the mini-batch iteration for a specified number of mini-batches. 
c. Repeat the entire process for the specified number of epochs. 

4. Output: Optimized model parameters after training. 
We obtained the following results for Root Mean Square propagation at 0.5, 0.01 and 0.00001 Learning 
rate. 
 

Table 2. RMSProp at 0.5, 0.01 and 0.00001 learning rate 
 
 
       RMSProp 

Learning 
Rate 

1st run 2nd run 3rd run Mean 

0.5 0.96 0.87 0.92 0.9167 
0.01 0.93 0.86 0.93 0.9067 

0.00001 0.92 0.85 0.93 0.9000 

 
4.3 AMSGrad (Adaptive Moment Estimation with a Stable Gradient) Algorithm 
It is an adaptation of the well-liked optimization technique known as the Adam optimizer, which is 
employed in deep neural network training. AMSGrad aims to address a potential issue in the original 
Adam optimizer where the learning rates for some parameters can become very small, leading to slow 
convergence in some cases [27]. 
 
Initialization 

i. Initialize the model's parameters θ. 
ii. Initialize the first and second moments for each parameter to zero. 

iii. Initialize a small constant ε to prevent division by zero. 
iv. Set the time step. 
v. Choose hyperparameters: learning rate α (e.g., 0.001), β1 (normally close to 1, e.g., 0.9), β2 

(normally close to 1, e.g., 0.999). 
 
Repeat Until Convergence 

i. Increment the time step 
ii. Determine the loss's gradient in relation to the parameters.. 

iii. Update the first moment approximation: 
iv. Update the second moment estimate with a new element-wise maximum operation: 
v. Correct for bias in the first and second moment estimates: 

vi. Compute the update for each parameter: 
vii. Update the parameters: 

viii. Repeat the above steps until convergence or for a predetermined number of times. 
We obtained the following results for Adaptive Moment Estimation with a Stable Gradient at 0.5, 0.01 and 
0.00001 Learning rate. 
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Table 3. AMSGrad at 0.5, 0.01 and 0.00001 learning rate 

 
 
     AMSGrad 

Learning 
Rate 

1st run 2nd run 3rd run Mean 

0.5 0.91 0.86 0.94 0.9033 
0.01 0.94 0.94 0.95 0.9433 
0.00001 0.96 0.96 0.93 0.9500 

 
4.3 Momentum Stochastic Gradient Descent (Momentum SGD) optimization algorithm  
Momentum SGD (Stochastic Gradient Descent) is a popular optimisation approach for deep neural 
network and other machine learning model training. It is an extension of the basic SGD algorithm that 
helps accelerate convergence, especially when dealing with high-dimensional and non-convex 
optimization problems. 
Initialization:  

i. Initialize model parameters randomly. 
ii. Set the initial velocity vector to zero. The velocity vector has the same dimensions as the model's 

parameters. 
Hyperparameters: 

i. Choose a momentum factor beta (normally a value between 0 and 1). 
ii. Choose a learning rate learning_rate. 

Iteration: 
i. For each iteration of training: 

ii. Sample a mini-batch of training data and determine the loss’s gradient in relation to the model's 
parameters. 

iii. Update the velocity vector:   
iv. Velocity = beta * velocity + learning_rate * gradient. 
v. Update the model constraints by the velocity: 

a. Parameters = parameters – velocity. 
The momentum term (beta * velocity) acts as a "memory" that accumulates the historical gradients and 
guides the updates in the direction that has shown consistent gradients over time. This facilitates the 
removal of local minima and accelerates convergence in the optimisation process. In summary, the 
Momentum SGD algorithm introduces a velocity term that helps the optimization process to accumulate 
past gradients and move more consistently in the direction of the gradients, enabling faster convergence 
and better handling of irregular optimization landscapes. The hyperparameters beta and learning_rate 
play a vital character in defining the behavior of the optimization process. We obtained the following 
results for Momentum SGD at 0.5, 0.01 and 0.00001 Learning rate. 
 

Table 4. Momentum SGD at 0.5, 0.01 and 0.00001 learning rate 
 
 
  Momentum SGD 

Learning 
Rate 

1st run 2nd run 3rd run Mean 

0.5 0.89 0.93 0.88 0.90 
0.01 0.91 0.89 0.85 0.8333 
0.00001 0.93 0.90 0.88 0.9033 

 
Results & Evaluation: Here the comparative analysis of SGD, RMSProp, AMSGrad and Momentum SGD 
are given. 
 

Table 5. Comparative Analysis SGD, RMSProp, AMSGrad and Momentum SGD 
 
 
SGD 

Learning 
Rate 

1st run 2nd run 3rd run Mean 

0.5 0.93 0.92 0.85 0.9000 
0.01 0.92 0.91 0.85 0.8933 
0.00001 0.94 0.86 0.89 0.8967 

 
RMSProp 

0.5 0.96 0.87 0.92 0.9167 
0.01 0.93 0.86 0.93 0.9067 
0.00001 0.92 0.85 0.93 0.9000 

 
AMSGrad 

0.5 0.91 0.86 0.94 0.9033 
0.01 0.94 0.94 0.95 0.9433 
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0.00001 0.96 0.96 0.93 0.9500 
 
Momentum SGD 

0.5 0.89 0.93 0.88 0.90 
0.01 0.91 0.89 0.85 0.8333 
0.00001 0.93 0.90 0.88 0.9033 

 

 
Figure 3.Comparative Analysis SGD, RMSProp, AMSGrad and Momentum SGD at different learning rate 

0.5, 0.01 and 0.00001. 
 
After Applying and evaluating above mentioned existing optimization techniques we can concluded as:  
1. The accuracies obtained from training the model for 15 epochs, 3 times for each learning rate and each 

optimizer as well as the mean of the results from the 3 runs.  
2. In this series of experiments, we investigated the performance of four different optimization 

algorithms (SGD, RMSProp, AMSGrad and Momentum SGD) across three dissimilar learning rates (0.5, 
0.01 and 0.00001) in the context of training a neural network.  

3. RMSProp optimizer achieves higher accuracy at learning rate 0.5. AMSGrad optimizer achieves the 
higher accuracy at learning rate 0.01 while Momentum SGD and SGD performs badly due to over 
fitting.  

4. Again AMSGrad optimizer achieves the higher accuracy at learning rate 0.00001. It converge faster to 
the local minima to find out the optimal solution. 

Further explore the performance of the proposed method, we compare its results with those of several 
established techniques in Table 6. 
 

Table 6. Comparison of Tomato Leaf Disease Detection Accuracy across Different Approaches 
Paper Approach Dataset Diseases Accuracy 
28 VGG-19, VGG-16, ResNet, 

InceptionV3 
Laboratory & Field Multiple (4) 75%-90% 

(Lab), 60%-
75% (Field) 

29 AlexNet, GoogLeNet, ResNet N/A Multiple (3) 97.28% 
(ResNet) 

30 BRBFNN N/A Multiple (7) 99.4% 
31 DCGAN + GoogLeNet Plant Village Multiple (5) 94.33% 
32 CNN with K-Means, SVM, RBF, 

MLP, NN, BPNN 
N/A Multiple (7) 99.4% 

33 CNN Dataset of 14240 
images 

Multiple (9) 95.53% 

34 Deep CNN Dataset of 39 
plant species 

Multiple (39) 83.12% 

35 Residual CNN & Attention Plant Village Multiple (3) 98% 
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CNN 
36 MFORS-based SVM N/A N/A 91.5% 
37 Lightweight CNN Plant Village Multiple (10) 98.4% 
38 Ensemble of VGG16 & VGG19 N/A Multiple (2) 98.7% 
39 Gabor Wavelet Transform & 

SVM 
Custom dataset Powdery 

mildew & 
Early blight 

99.5% 

40 DNN with PCA & PCA-WOA N/A N/A 90% (testing) 
41 Modified-Xception                 

(Transfer Learning) 
Plant Village Multiple (10) 99.55% 

Propo
sed 
Metho
d 

Color & Shape features + 
Optimization                               
(Multi-Layer Perceptron 
(MLP) Neural Network) 

Plant Village Multiple (9) 95.00% 

 
Table 6. Compares the accuracy of various approaches for detecting tomato leaf diseases. It show cases 
models achieving up to 99.55% accuracy, utilizing diverse techniques like deep learning, color/shape 
features and optimization algorithms. Notably, proposed work using Multi-Layer Perceptron (MLP) 
Neural Network based on shape and color features achieves 95% accuracy, demonstrating its 
competitiveness while potentially offering an efficient and interpretable approach compared to some 
complex deep learning models. 

 

 
Figure 4. Comparison of proposed Tomato Leaf Disease Detection Accuracy. 

 
We have proposed an innovative approach for the early detection and control of tomato leaf diseases, 
centering on the integration of shape and color features coupled with optimization techniques in neural 
network training. The research investigates the performance of four optimization algorithms—SGD, 
RMSProp, AMSGrad and Momentum SGD—across three different learning rates (0.5, 0.01 and 0.00001). 
The results underscore the pivotal role of selecting an appropriate optimization algorithm and learning 
rate to achieve optimal accuracy in disease identification. Notably, our work contributes a unique 
emphasis on optimization techniques, complementing existing research that employs diverse 
methodologies, including transfer learning, GANs and novel CNN strategies, for disease detection in 
tomato plants. The comparative analysis with other studies, such as those employing Adam, RMSprop and 
SGD optimizers, as observed in related works [2, 8 and 14], showcases the significance of our approach in 
the broader landscape of agricultural disease detection. 
The significance of our work lies in its comprehensive exploration and estimation of various advanced 
convolutional neural network models for the automatic detection and classification of diseases in tomato 
plants. By conducting a meticulous comparative analysis of models such as VGG-19, VGG-16, ResNet and 
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Inception V3 on both controlled laboratory and real-world field datasets, our research not only provides 
insights on the advantages and disadvantages of many architectures but likewise addresses the 
challenges posed by varying environmental conditions. Moreover, our findings highlight the importance 
of parameter tuning over feature extraction, shedding light on a crucial aspect of model optimization. The 
emphasis on the practical applicability of our results, particularly in the context of real-world field data, 
distinguishes our work, making it an important addition to the area of agricultural disease detection. The 
proposed extension of optimizing these models for improved concert in actual field-oriented scenarios 
underscores the forward-looking nature of our research, offering a roadmap for future activities in 
enhancing the efficiency of automated plant disease identification systems. 
 
5. CONCLUSIONS 
The proposed method using shape and color features and the optimization techniques for effective and 
early detection and control of tomato leaf diseases, potentially contributing to improved tomato crop 
yields and reduced economic losses. This study investigated the performance of four optimization 
algorithms (SGD, RMSProp, AMSGrad and Momentum SGD) across three learning rates (0.5, 0.01 and 
0.00001) in the context of training a neural network. The results demonstrated that RMSProp and 
AMSGrad outperformed SGD and Momentum SGD in terms of accuracy. RMSProp achieved the maximum 
accuracy at a learning rate of 0.5, while AMSGrad excelled at both learning rates of 0.01 and 0.00001. The 
superior performance of AMSGrad is attributed to its ability to reach the local minima more quickly and 
find the optimal solution. These findings highlight the significance of choosing the right optimization 
algorithm and learning rate for attaining optimal performance in neural network training. 
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