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Abstract

In this paper, Mexican hat wavelet transformation is defined on the
space of tempered generalized quotients by employing the structure of
exchange property. We study the exchange property for the Mexican hat
wavelet transform by applying the theory of the Mexican hat wavelet
transform of distributions. Further, different properties of Mexican hat
wavelet transform are investigated on the space of tempered generalized
quotients.
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1

1 Introduction

The wavelet transform (Wf)(b, a) of a square integrable function f , is given by

(Wf)(b, a) =

∫ ∞
−∞

f(t)ψb,a(t)dt, (1.1)

where

ψb,a(t) = (
√
a)−1ψ

(
t− b
a

)
, b, t ∈ Rn, and a > 0. (1.2)

The inversion formula for (1.1) is given by

2

Cψ

∫ ∞
0

[∫ ∞
−∞

(
√
a)−1(Wf)(b, a)ψ

(
x− b
a

)
db

]
da

a2
= f(x), x ∈ Rn, (1.3)
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where the admissibility condition Cψ is given by

Cψ
2

=

∫ ∞
0

|ψ̂(u)|2

|u|
dv =

∫ ∞
0

|ψ̂(−u)|2

|u|
du <∞ [3,p. 64].

The Mexican hat wavelet is constructed by taking the negative second derivative
of a Gaussian function and is given by [24]

ψ(t) = e−(
t2

2 )(1− t2) = − d2

dt2
e−(

t2

2 ) (1.4)

such that

ψb,a(t) = −a 3
2D2

t e
− (b−t)2

2a2 ,

(
Dt =

d

dt

)
. (1.5)

Thus, (1.1) can be reduced to

(Wf)(b, a) = −a 3
2

∫
R
f(t) D2

t e
− (b−t)2

2a2 dt, a ∈ R+ (1.6)

which then, under certain conditions on f is

(Wf)(b, a) = −a 3
2

∫
R
f (2)(t) e−

(b−t)2

2a2 dt, a ∈ R+. (1.7)

Let a function ka(b− t) be defined by

ka(b− t) =
1√
2πa

e

(
−(b−t)2

2a

)
, (1.8)

where t ∈ R, b = σ + iω and a ∈ R+. Then

D2
t ka2(b− t) =

1√
2πa

D2
t

(
e
−(b−t)2

2a2

)
. (1.9)

Therefore, by (1.5)

ψb,a(t) = −(2π)
1
2 a

5
2D2

t ka2(b− t)

and hence the Mexican hat wavelet transform is given by

(Wf)(b, a) = (2π)
1
2 a

5
2

∫
R
f(t)D2

t ka2(b− t)dt

= (2π)
1
2 a

5
2

∫
R
f (2)(t)ka2(b− t)dt

= (2π)
1
2 a

5
2 (f (2) ∗ ka2)(b), b ∈ C, a ∈ R+, (1.10)

where ka2(b− t) = 1√
2πa

e
−(b−t)2

2a2 .
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The most general theory of the MHWT is investigated on the generalized
function space (W γ

α,β)
′

developed by Pathak et al. [8]. It is proved that the

MHWT (Wf)(b, a) of f ∈ (W γ
α,β)

′
, is given by 〈f (2)(t), ka2(b− t)〉 is an analytic

function in the strip α
γ < Re b < β

γ for some α, β, γ ∈ R.

Recently, the wavelet transform has been comprehensively studied in many
functions, distributions, and tempered distribution spaces. Several interesting
properties and applications in generalized function spaces have been developed
(See, for example, [6, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21]. On the other hand,
Mikusiński’s algebraic approach gave a new transformation to the theory of
functional analysis. The space of generalized quotients (Boehmians) is the
recent generalization of the Schwartz distribution and the motivation for the
expansion is in the core of Mikusiński operators. Its application to function
spaces with the involvement of convolution provides different generalized func-
tion spaces. Hence, many integral transforms have been investigated in such
spaces [1, 5, 7, 14, 15, 16, 22, 23].

Let S (Rn) and S (Rn × R+) be the spaces of functions with continuous
derivatives which are rapidly decreasing on Rn and Rn ×R+. The dual of S is
represented by S ′ that is known as the space of tempered distributions. The
spaces S and S ′ have been introduced and developed in [2]. The class S ′

of tempered distributions is contained in (W γ
α,β)

′
. Therefore the Mexican hat

wavelet transform theory can be made applicable to S ′. Further, the Mexican
hat wavelet transform can be expanded to the space of tempered generalized
quotient, as the space is a natural expansion of tempered distributions. Here, we
extend the Mexican hat wavelet transformation to a class of generalized quotient
space that have quotients of sequences in the form of fn/ϕn, where the numer-
ator contains terms of the sequence from some set S ′ and the denominator is
a delta sequence such that it satisfies the following condition

fn ∗ ϕm = fm ∗ ϕm, ∀m,n ∈ N. (1.11)

Further, the delta sequences are defined as sequences of functions {ϕn} ∈ S
that satisfies

1.
∫
Rn ϕn(x)dx = 1 for all n = 1, 2, 3, · · ·.

2. There exists a constant C > 0 such that∫
Rn

|ϕn(x)| dx ≤ C for all n = 1, 2, 3, · · · .

3. limn→∞
∫
‖x‖≥ε ‖x‖

k |(ϕj(x))| dx = 0 for every k ∈ N and ε > 0.

In particular, we extend the transformation to generalized quotient space by
defining an exchange property for the Mexican hat wavelet transform. In the
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next section, we introduce some of the basic results required for the investigation
of MHWT on the generalized quotient space. Section 3 describes some algebraic
properties of MHWT in the context of tempered generalized quotients.

2 The exchange property

In this section, the space of tempered generalized quotients is constructed by
applying the exchange property. This construction for generalized quotients in-
dicates that the role of convergence is not necessary.

Theorem 2.1. For a function f ∈ S ′ and t ∈ R,

(Wf)(b, a) = (2π)
1
2 a

5
2 (f (2) ∗ ka2)(b) = (2π)

1
2 a

5
2 lim
n→∞

((f (2) ∗ ka2)e−
t2

2n )(b).

Proof. Consider,

(2π)
1
2 a

5
2 lim
n→∞

((f (2) ∗ ka2)e−
t2

2n )(b) = (2π)
1
2 a

5
2 lim
n→∞

∫
R
f (2)(t)ka2(b)e−

t2

2n dt

= a
3
2 lim
n→∞

∫
R
f (2)(t)e−

(b−t)2

2a2 e−
t2

2n dt

= a
3
2

∫
R
f (2)(t)e−

(b−t)2

2a2 dt.

Therefore,

(Wf)(b, a) = (2π)
1
2 a

5
2 lim
n→∞

((f (2) ∗ ka2)e−
t2

2n )(b).

Theorem 2.2. For f ∈ S
′

and ϕ ∈ S , we have

(W (f ∗ ϕ))(b, a) = (Wf)(b, a) ∗ ϕ.

Proof. By using [4, Lemma 4.3.8], (f ∗ ϕ) ∈ S ′ and hence (W (f ∗ ϕ))(b, a) is
defined. Also, by Theorem 2.1

(W (f ∗ ϕ))(b, a) = (2π)
1
2 a

5
2 lim
n→∞

(((f (2) ∗ ϕ) ∗ ka2)e−
t2

2n )(b).

Consider,

(2π)
1
2 a

5
2 (((f (2) ∗ ϕ) ∗ ka2)e−

t2

2n )(b) = (2π)
1
2 a

5
2

∫
R
(f (2) ∗ ϕ)(t)k(b− t, a2)e−

t2

2n dt

= a
3
2

∫
R

(f (2) ∗ ϕ)(t)e−
(b−t)2

2a2 e−
t2

2n dt

= a
3
2

∫
R
〈f (2)(s), ϕ(t− s)〉e−

(b−t)2

2a2 e−
t2

2n dt

= a
3
2

∫
R
〈f (2)(s), ϕ(t− s)〉ψn(t)dt, (2.1)

4
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where ψn(t) = e−
(b−t)2

2a2 e−
t2

2n .

By [8, Lemma 4.3], we have

a
3
2

∫ m

−m
〈f (2)(s), ϕ(t−s)〉ψn(t)dt = a

3
2

〈
f (2)(s),

∫ m

−m
ϕ(t− s)ψn(t)dt

〉
, ∀m > 0,

which converges to

a
3
2

〈
f (2)(s),

∫ m

−m
ϕ(t− s)ψn(t)dt

〉
as m→∞,

Therefore,∫ ∞
−∞
〈f (2)(s), ϕ(t− s)〉e−

(b−t)2

2a2 e−
t2

2n dt =

〈
f (2)(s),

∫ ∞
−∞

ϕ(t− s)ψn(t) dt

〉
= 〈f (2)(s), (ϕ ∗ ψn)(s)〉. (2.2)

Let us now consider,

(2π)
1
2 a

5
2 ((f (2) ∗ ka2) ∗ ϕ)(b) = (2π)

1
2 a

5
2

∫
R
(f (2) ∗ ka2)(b− t)ϕ(t) dt

= (2π)
1
2 a

5
2

∫ M

−M
〈f (2)(s), ka2(b− t− s)〉ϕ(t) dt,

where supp ϕ ⊆ [−P, P ]. Now by [8, Lemma 4.3 ],

(2π)
1
2 a

5
2 ((f (2) ∗ ka2) ∗ ϕ)(b) = (2π)

1
2 a

5
2

∫ M

−M
〈f (2)(s), ka2(b− t− s)〉ϕ(t) dt

= (2π)
1
2 a

5
2

〈
f (2)(s),

∫ ∞
−∞

ka2(b− t− s)ϕ(t) dt

〉
= (2π)

1
2 a

5
2

〈
f (2)(s),

∫ ∞
−∞

1√
2πa

ψ(t− s)ϕ(t) dt

〉
= a

3
2

〈
f (2)(s),

∫ ∞
−∞

ψ(t− s)ϕ(t) dt

〉
= a

3
2 〈f (2)(s), (ϕ ∗ ψ)(s)〉. (2.3)

From (2.2) and (2.3), we obtain

(W (f ∗ ϕ))(b, a) = (Wf)(b, a) ∗ ϕ.

Definition 2.3. For a family {ϕj}j∈J , where ϕj ∈ S, we define

M

(
{ϕj}J

)
= {x ∈ Rn : ϕj(x) = 0, ∀j ∈ J} . (2.4)

5
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A family of pairs {(fj , ϕj)}J , where fj ∈ S ′ and ϕj ∈ S, have the exchange
property if

fj ∗ ϕk = fk ∗ ϕj ,∀j, k ∈ J. (2.5)

Let set A denotes the collection of {(fj , ϕj)}J , where fj ∈ S ′(Rn) and

ϕj ∈ S(Rn), ∀j ∈ J , with exchange property such that M

(
{ϕj}J

)
= ∅.

If M
(
{ϕj}J

)
= ∅ and M ({λk}K) = ∅, then M

(
{ϕj ∗ λk}J×K

)
= ∅.

Theorem 2.4. If {(fj , ϕj)}J ∈ A, then there exists a unique F ∈ S ′ (Rn × R+)
such that F is the Mexican hat wavelet transform of the family of functions
{(fj , ϕj)}J , i.e., F = (W{(fj , ϕj)}J) .

Proof. Let us consider family of sequences {(fj , ϕj)}J ∈ A, where fj ∈ S ′(Rn)
and ϕ ∈ S , ∀j ∈ J, with exchange property such that |ϕ(x)|> ε, for some ε > 0,
and x ∈M ({ϕj}J)

c
. Then, in some open neighborhood of x, we define

F =
(Wfj)

ϕj
. (2.6)

Case 1: We show that for some open neighborhood of x we have a quotient
F that is unique in that neighborhood, i.e., F does not depend on j ∈ J. Let
U and V be some open neighborhood of x such that |ϕj(x)|> ε, ∀x ∈ U and
|ϕk(x)|> ε, ∀x ∈ V. Then since {(fj , ϕj)} ∈ A, hence it satisfy the exchange
property and therefore,

fj ∗ ϕk = fk ∗ ϕj , ∀j, k ∈ J. (2.7)

Applying Mexican hat wavelet transform to (2.7), we get

(W (fj ∗ ϕk)) = (W (fk ∗ ϕj))
(Wfj) ∗ ϕk = (Wfk) ∗ ϕj (by Theorem 2.2)

(Wfj)

ϕj
=

(Wfk)

ϕk
. (2.8)

Hence, we get a quotient F =
(Wfj)

ϕj
on U ∩ V .

Case 2: We need to show that F ∈ S ′(Rn × R+) is unique. From (2.6) and
(2.8), for any j, k ∈ J, we have

(Wfk) = Fϕk, ∀k ∈ J (2.9)

such that there exists a unique F ∈ S ′(Rn×R+) which implies exchange prop-
erty.

Clearly, for a total sequence, say {ϕj}N, where ϕj ∈ S(Rn) for all j ∈ N,
there is an fj ∈ S ′(Rn) such that (Wfj) = ϕjF. Hence, {(fj , ϕj)}N ∈ A and
F = (W ({(fj , ϕj)}N)).
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For the family of pairs of sequences {(fj , ϕj)}J , {(gk, λk)}K ∈ A has an
Equivalence Relation, i.e., {(fj , ϕj)}J {(gk, φk)}K if

fj ∗ λk = gk ∗ ϕj , ∀j ∈ J, k ∈ K. (2.10)

Theorem 2.5. Let {(fj , ϕj)}J , {(gk, λk)}K ∈ A. Then {(fj , ϕj)}J ∼ {(gk, λk)}K
iff (W ({(fj , ϕj)}J)) = (W ({(gk, λk)}K)).

Proof. Let {(fj , ϕj)}J ∼ {(gk, λk)}K , hence, they satisfy the exchange property,
defined as

fj ∗ λk = gk ∗ ϕk, ∀j ∈ J, k ∈ K.

Let F and G denotes the Mexican hat wavelet transform of some family of
sequences such that F = (W ({(fj , ϕj)}J)) and G = (W ({(gk, λk)}K)). Now,
consider,

ϕjF ∗ λk = (Wfj) ∗ λk
= (W (fj ∗ λk))

= (W (gk ∗ ϕj))
= (Wgk) ∗ ϕj
= λkG ∗ ϕj .

Now, by applying Lemma 2, we get F = G.
Conversely, we need to show that the family of sequences {(fj , ϕj)}J and {(gk, λk)}K
are equivalent. Let us consider

F = G

=⇒ (Wfj) ∗ λk = (Wgk) ∗ ϕj
=⇒ (W (fj ∗ λk)) = (W (gk ∗ ϕj))
=⇒ fj ∗ λk = gk ∗ ϕj . (2.11)

Hence, {(fj , ϕj)}J ∼ {(gk, λk)}K .

From the above theorem it is shown that there is an equivalence relation on
A and hence splits A into equivalence classes. The equivalence class contains the

generalized quotient
fn
ϕn

and is denoted by

[
fn
ϕn

]
. These equivalence classes are

called generalized quotients or Boehmians and the space of all such generalized
quotients is denoted by B.

Definition 2.6. Let X =

[
fn
ϕn

]
∈ B, then the MHWT of X as a generalized

quotient is defined by,

Y = (WX)(b, a) =

[
(Wfn)(b, a)

ϕn

]
.
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It is well defined since, if X =
[
fn
ϕn

]
= Y =

[
gn
ψn

]
in B, then

fm ∗ ψn = gn ∗ ϕm ∀m,n ∈ N
(W (fm ∗ ψn))(b, a) = (W (gn ∗ ϕm))(b, a)

(Wfm)(b, a) ∗ ψn = (Wgn)(b, a) ∗ ϕm (by Theorem 2.2)[
(Wfn)(b, a)

ϕn

]
=

[
(Wgn)(b, a)

ψn

]
.

Further, by considering the map f →
[
f∗δn
δn

]
, any f ∈ W ′(−∞,∞) can be

considered as an element of B by [4, Theorem 4.3.9], i.e., if X =
[
f∗δn
δn

]
, then

(WX)(b, a) =

[
W (f ∗ δn)(b, a)

δn

]
=

[
(Wf)(b, a) ∗ δn

δn

]
= (Wf)(b, a).

This definition extends the theory of MHWT to more general spaces than
(W γ

α,β)
′
.

From Theorem 2.4 and Theorem 2.5, it is clear that the Mexican hat wavelet
transform is a bijection from the space of generalized quotients to the space of
distributions.

Theorem 2.7. For every X ∈ BS ′ (Rn) there exists a delta sequence (ϕn) such

that X = [{(fn, ϕn)}N] for some fn ∈ S ′(Rn).

Proof. Let (φn) ∈ S (Rn), be a delta sequence and X ∈ BS ′(Rn). Then, (WX)∗
φn ∈ S ′, since (WX) ∈ S ′. Consequently, (WX) ∗ φn = (Wgn) for some
gn ∈ S ′. Therefore, we have

X =

[
gn ∗ φn
φn ∗ φn

]
. (2.12)

Hence, fn = (gn ∗ φn) ∈ S ′ and by using the property of delta sequences
φn ∗ φn ∈ S is a delta sequence. This completes the proof.

Conclusions

The space of generalized quotients includes regular operators, distributions,
ultra-distributions and also objects which are neither regular operators nor dis-
tributions. It may be concluded here that the space of tempered generalized
quotient is constructed in a simple way by using the exchange property. This
new construction is further used to represent the Mexican hat wavelet transform
of tempered generalized quotients with its algebraic properties. This space of
generalized quotient can be applied to examine Mexican hat wavelet transfor-
mation on various manifolds.
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