
1 
 

Generalized completely monotone functions on  

some types of white noise spaces 

 

Hossam. A. Ghany
1,*

,  Ahmed. M. Zabel
2
 and Ayat. Nassar

3 

 

 
Department of Mathematics, Faculty of Technology, Helwan University,  

Sawah Street (11282), Cairo, Egypt. 

*Corresponding author. h.abdelghany@yahoo.com 

 
Department of Mathematics, Faculty of Science, AzharUniversity,  

Naser City (11884), Cairo, Egypt. 

 
Department of Mathematics, Faculty of Science, KafrelSheikh University, 

Kafrel Sheikh, Egypt. 

 

Abstract: With this paper, we purpose to introduce and characterized some generalized classes 

of completely monotone functions on some types of white noise spaces. 

Keywords: White Noise; moment function; generalized functions. 

2010 Mathematics Subject Classification: 43A62, 60H40, 30G35. 

1. Introduction  

The basic features of the completely monotone functions constructed on some forms of white 

noise spaces are provided in this study. if for each       
   (  )| |   ( )     , then a 

function   is completely monotone on   
 ; see [3, 8, 12] for several features of completely 

monotone functions. According to Bernstein's theorem,   is completely monotone if and only if 

 ( )  ∫       

  

   ( )                                                           (   ) 

   is a positive measure that is based on a subset of   
 . Let   stand for a locally compact basis 

on the space      ( ) is a linear space of continuous bounded complex-valued functions which 

is a complete normed space compared to the norm 

‖ ‖       
   

| ( )|                                                                 (   ) 
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  defined on  , where The space of infinitely differential and bounded functions on   will be 

denoted by   
 ( ),Moreover, by  ( ), the linear subspace of   

 ( ) created by the set which 

contains functions on  like that      ( )       , with         
 and a constant     .The 

space of tempered distributions is represented by   ( ) , Which is linear and continuous 

functional on  ( ). There are numerous works that explore white noise spaces. Using the 

Wiener-Itô-Segal isomorphism and other Fock space riggings, some of these works are devoted 

to the building of test spaces, generalized functions, and operators having to act in these spaces 

[1,9].The study of PDEs and quantum field theory, where quantum fields are characterized as 

operator valued distributions, both depend heavily on distributions [5,11]. The works of 

Berezanskyi and Samoilenko [2] and Hida [9] are where the modern theory of generalized 

functions of infinitely many variables is derived. As infinite tensor products of one-dimensional 

spaces, the test and generalized function spaces in [2] were created. The theory of generalized 

functions was constructed using the classical method in [9], but all functions were functions of a 

point in the infinite-dimensional space on which the Gaussian measure was defined, which 

served the same purpose as the Lebesgue measure in the classical theory of generalized 

functions. The structure of this paper is as follows: section 2, we devoted to introduce and give 

the main properties of the class of double monotone functions defined on  ( ). In section 3, the 

main properties of the class of weak monotone functions defined on  ( ) are given.Section 4 

introduces a novel method for creating spaces of generalized functions. Section 5 concludes by 

deriving the principal relationships between the creation of hypercomplex systems and the theory 

of white noise analysis. 

 

2. Double completely monotone functions on  ( ) 

Rabidly decreasing functions are the name given to the components of  ( ), which has a family 

of seminorms for each          
  

‖ ‖          
   

|     ( )|                                                               (   ) 

Let          be a continuous double completely monotone function, i.e.,             and 

        are two completely monotone functions. We define 

〈      〉     ( )     ( )     

by 

〈      〉   ∫ ∫  (   )  ( )
 

 ( )̅̅ ̅̅ ̅̅ ̅   ( )  ( )                     (   )
 

 

where         ( ), the space of Radon measure on  . The inner product 〈      〉  satisfies the 

following conditions:  
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I. 〈      〉 in the first coordinate is complex linear and in the second conjugate 

complex linear i.e., for any          ( ) and any        

〈      〉      〈     〉 and〈      〉      ̅〈     〉  

 

II. 〈      〉  is conjugate symmetric i.e., for any          ( ) 

〈      〉    〈      〉̅̅ ̅̅ ̅̅ ̅̅ ̅
  

III. 〈      〉  is positive definite meaning that for any      ( ) 

 

〈     〉       ( )      

 

IV. For all      ( )such that 〈      〉      , then       

 

Theorem 2.1.  For any double completely monotone function   on  , the inner product space 

(  ( )  〈      〉  ) is a complex Hilbert space. 

Proof. We have that 〈   〉  is an inner product space and   ( ) is an infinite space so all we 

need to prove is the completeness for that space , so we assume that we have a Cauchy sequence 

*  + and should prove that this Cauchy sequence converges to a limit in (  ( ) 〈   〉 ) . 

Where 

〈   〉   ∫ ∫  (   )  ( )
 

 ( )̅̅ ̅̅ ̅̅ ̅   ( )  ( )
 

 

      ( ),      ( ) the space of Radon measure on  . 

  ‖     ‖  〈           〉

  ∫ ∫  (   )(     )( )
 

(     )( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    ( )  ( )
 

 

          ∫ ∫  (   )|  ( )    ( )| 
 

   ( )  ( )
 

 

                                                    

        . This implies 

|  ( )    ( )|    

          So 

|  ( )    ( )|     

        .Since *  + is a Cauchy sequence and we have  that   ( ) is a complete space 

which means that                   i.e |  ( )   ( )|           , which tends to 

that   belongs to(  ( ) 〈   〉 ) , so this space is complete. 
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Corollary 2.2. For any double completely monotone function   on  , the space     

 (  ( ) 〈   〉 )is a subspace of Hilbert space   ( ). 

Proof. We want to prove      ( ) so let         and we need to reach to these functions 

in   ( ).Assume that 

∫| (   )|

 

  ( )                    

and 

∫| (   )|

 

  ( )                    

and by using (   ) 

|〈   〉 |   |∫ ∫  (   )  ( )
 

 ( )̅̅ ̅̅ ̅̅ ̅   ( )  ( )
 

| 

Where by using (Cauchy – young inequality:   If 
 

 
 

 

 
           

  

 
 

  

 
           ) 

i.e., 

               | ( ) ( )̅̅ ̅̅ ̅̅ ̅|  
|  ( )| 

 
 

| ( )| 

 
 

                                      ∫ ∫
| (   )|

 
  ( )| ( )| 

 
  ( )

 
  ∫ ∫

| (   )|

 
  ( )| ( )| 

  
  ( ) 

                                      
  

 
‖ ‖  ( )

  
  

 
‖ ‖  ( )

  

So       ( ) . 

 

Let    stand for the set of all continuously real-valued functions   on    that fulfill the 

requirements listed below: 

1)      ( )     (   )     ( )   ( )          

2) ∫
 ( )

(  | |)   
   

      

3)   ( )            (  | |) for some constant     

4)  ( ) is radial.  

with the weight function   in    and open set        Bj ̈rck extend the Schwartz space by the 

space   of all     function       (  )  

    ( )      
     

   ( ) |   ( )|     

And 
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    ( )      
     

   ( ) |   ̂( )|     

and    
  the dual space of   . Let   be a double completely monotone function and 

   ( )       (    | ( )|)                                     (   ) 

for     we denote by   
   

 the set of all generalized distributions        
   

 || || 
       , ∫      ( )| ̂( )|     

  

 - 
 
                     (   ) 

Theorem 2.3. The space   
   

is a Hilbert space with an inner product denoted by 

〈    〉 
       ∫      ( ) ̂( ) ̂( )̅̅ ̅̅ ̅̅   

  

                       (   ) 

Proof. We need to prove that the space   
   

 is complete, so we assume that we have a Cauchy 

sequence *  + in   
   

 and we want to prove that this Cauchy converges to a limit    in   
   

 , 

where norm defined as: 

‖ ‖ 
    [ ∫      ( )

  

| ̂( )|   ]

 
 

 

So 

‖    ‖ 
    [ ∫      ( )

  

| ̂ ( )   ̂( )|   ]

 
 

 

From (   ), we have  

‖    ‖ 
    [ ∫(  | ( )|)  

  

| ̂ ( )   ̂( )|   ]

 
 

 

      [ ∫(  | ( )|)   (   )

  

| ̂ ( )   ̂( )| (  | ( )|) (   )  ]

 
 

 

    (  | ( )|)  (   )  ⁄ | ̂ ( )   ̂( )| [ ∫(  | ( )|) (   )  

  

]

 
 

 

                       ‖ ̂   ̂‖  
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                         ‖    ‖      

 

Where     (   )  ⁄  , we find that ‖    ‖    as           , which come from 

that   
  is dense in   , then     

   
 which proves the completeness in it and so   

   
 is a 

Hilbert space. 

 

Lemma 2.4.  Let      
   

 ,          
   

 is the conjugate linear functional on    which 

uniquely extends to conjugate linear functional on   
   

 satisfying  

1) 〈〈     〉〉 
       (  )  ∫      ( ) ̂( ) ̂( )̅̅ ̅̅ ̅̅   

    

2)  | 〈〈     〉〉 
   |    || || 

    || || 
            

          
    

 

3) 〈〈     〉〉 
      〈〈      〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 
   

 

 

Theorem 2.5. The space     is dense in   
   

for all     . 

Proof. To prove that    is dense in   
   

 we need to check two things the first is that      
   

 

and the second is that   
̅̅̅̅    

   
, for the first let we have a bijective map           ,  

      ( ) ̂. With (   ) and   is a continuous double completely monotone function. 

We have from the definition of map that       ( ) ̂         which leads to      
   

 . 

Secondly we want to prove that   
̅̅̅̅    

   
, so we must prove that   

  * +( orthogonal 

complement for    ). Where    
  {    

    〈〈     〉〉 
            } . We want to get to 

that    . i.e.     
   

 with     
   lead to 〈〈     〉〉 

             . We have 

〈〈     〉〉 
    〈    ( ) ̂     ( ) ̂〉  

 ,  

Since    is bijective ,       ,we find 〈    ( ) ̂  〉  
   , since   is dense in   ,     

 .which mean that     ( ) ̂   , So    , i.e.   
  * +,   so   

̅̅̅̅    
   

. Which complete the 

proof.  

 

Note that   is dense in    comes from that        .and that   
  is dense in   . 

 

Corollary 2.6    
       

   
for     , the inclusion is continuous and has dense image. 
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3. Weak completely monotone functions 

The purpose of this section is to discuss the idea of Weak completely monotone functions on the 

Schwartz spaces. Let       be an open interval,       ( ̅) and      ( ), where 

  ( )    *      (    )       ( )    *    ( )    + ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              + 

Using integration by parts, we will get 

∫  ́ ( ) ( )̅̅ ̅̅ ̅̅    

 

   ∫    ( ) ́( )̅̅ ̅̅ ̅̅    

 

 

Since,  ( )is the space of test functions which is dense in    ( ) for          , so we can 

rewrite the above equation using the scalar product of   ( ) as 

〈 ́ |  〉      〈  | ́〉 

We call a function   that satisfies 〈  |  〉     〈  | ́〉 a weak derivative of  . Let        

open,       ( ̅) and     ( ), then  

〈
 

    
  |  〉      〈  | 

 

    
  〉 

Applying Gauss Theorem, we similarly obtain  

〈    |  〉    (   )| |〈    |    〉 

 

Theorem 3.1. For any multi-index      the differential    is a continuous and linear operator 

from   
   

 to   
    | |

. 

Proof. Where the linearity of the operator is obvious, so all we need to prove is that  

‖   ‖ 
    | |

  ‖ ‖ 
                           (   ) 

From (   ), we have, 

‖ ‖ 
    | |

 [ ∫   (  | |)  ( )

  

| ̂( )|   ]

 
 

 

So 

‖   ‖ 
    | |

 [ ∫   (  | |)  ( )

  

|   ̂( )|
 
  ]

 
 

 

Which equivalent to                                 
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‖   ‖ 
    | |

 ‖ (  | |)  ( )   ̂( )‖
  

 

For a particular case let     

‖ (   )  ( )  ̂( )‖
  

 ‖ (   )  ( )   ̂( )‖
  

 

                                                                               ‖    ( ) ̂( )‖
  

 

                     ‖ ‖ 
   

 

 
i.e., 

‖   ‖ 
       ‖ ‖ 

   
 

where  by using induction on | | we can generalize this for any multi index     .which follow 

from this that the linear operator    is  continuous from   
   

 to   
    | |

 . 

 

Theorem 3.2. The pairing 〈〈     〉〉 
   

 identifies   
    

isometrically with the antidual of   
   

. If 

   ́ 
 then     

   
 if and only if there is a constant   such that | ( )|   ‖ ‖ 

    
 for    

  

. 

proof. Let the anti-dual of   
   

 be (  
   )

 
 we will define a map     

     (  
   )

 
 as 

  ( )  〈   〉  (  )  ∫  ̂( )  ̂( )̅̅ ̅̅ ̅̅     

So we will show firstly that          is bijective. Let    ( )        〈   〉         

(  )  ∫  ̂( )  ̂( )̅̅ ̅̅ ̅̅      

This implies 

(  )  ∫      ( ) ̂( )     ( ) ̂( )̅̅ ̅̅ ̅̅       

and 

(  )  ∫      ( ) ̂( )  ( )                    

       in  ́         in   
    

. So,    is one to one. Then we will show that   is surjective. 

Let   (  
   )

 
           

   
 we need to reach to      

    
 such that    

   . So from 

Resize representation theorem we have,  ( )  〈〈    〉〉 
                

   
. From the 
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continuous linear function on    then there exists      
    

such that  ̂ ( )       ( ) ̂ ( ) 

at most, so this leads to 

 ( )  〈〈    〉〉 
   

 

                                                    (  )  ∫      ( ) ̂ ( )  ̂( )̅̅ ̅̅ ̅̅     

                                                                          (  )  ∫      ( )       ( ) ̂ ( ) ̂( )̅̅ ̅̅ ̅̅     

                                                                          〈    〉     
( )                         

   
 

Hence, 

     
 

So   is surjective. Next we will show the isometry of  . Let     
   

 and     
    

 such that  

 ̂( )        ( ) ̂( ) 

and 

                                                            ( )  (  )  ∫  ̂( )  ̂( )̅̅ ̅̅ ̅̅     

                                                                      (  )  ∫       ( ) ̂( )  ̂( )̅̅ ̅̅ ̅̅     

                                                                      (  )  ∫       ( )| ̂( )|    

                                                                      [‖ ‖ 
   ]

 
 

              ‖ ‖ 
    ‖ ‖ 

   
 

Which means that   is isometry from   
    

 to  (  
   )

 
. 

The second part of the proof is that if    ́ 
  then     

                                 

such that  

| ( )|    ‖ ‖ 
    

. 

So we will assume that   ́ 
  , then     

   
 and we want to prove that  

| ( )|    ‖ ‖ 
    

. 

We have that  

|  ( )|  |〈   〉|   ‖ ‖ 
   ‖ ‖ 

       ‖ ‖ 
    

 

This implies 

| ( )|    ‖ ‖ 
    

. 
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Conversely, let    ́ 
  and | ( )|    ‖ ‖ 

    
 , we want to prove that     

   
. Where 

             
   the map    ( ̅) can be extended uniquely to an element of a conjugate 

linear functional on   
    

, with a bounded norm. So                  
   

in sense that 

  ( )   〈〈   〉〉    ( ̅)  〈   〉 . So                
   

  which complete the proof.  

 

4. Reproducing kernel Hilbert space    

Let   be a continuous double completely monotone function on   , set   ( )     (     ) for 

all          . Define:  

(   )( )    ∫  ( )  ( )  

  

                                             (   ) 

and  

〈          〉  
  ∫ ∫  (     ) ( ) ( )    

    

                  (   ) 

for all        . Then           forms a pre-Hilbert space    with inner-product 

〈      〉  
 

 

Lemma 4.1. A function       is in    if and only if   ̂     ( ) and  

‖   ‖  

    ∫| ̂( )|    ( )                                                           

  

(   ) 

where   is the tempered measure. 

Proof. The first statement is obvious from the previous definitions in section 4., so we will prove 

(   ) . Where we have that   is a continuous double completely monotone function, so we can 

use Bernstein’s theorem  

 ( )  ∫     

  

  ( ) 

So we have that, with      (Schwartz space on   ) 

∫  ( )

  

 ( )    ∫ ∫     

  

 ( )

  

  ( )    

                                                                      ∫ ∫     
   ( )  

    ( ) 

                                                                      ∫  ̂( )
    ( ) 
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And so we can conclude that  

‖   ‖  

  ∫ ∫  (   )

  

 ( ) ( )̅̅ ̅̅ ̅̅ ̅

  

       

                                                                    ∫| ̂( )|
 
  ( )

  

 

 

Theorem 4.2. Let      , and        and set     ∑      
         ; as a tempered 

completely monotone distribution, and let   
be the generalized RKHS of Schwartz. Then  

a function   on   is in    
if and only if it has a convolution factorization  

          

where   is a measurable function such that  ̂( )  exists for all      , and  ̂( ),       belongs 

to   ( ) and  

 

‖ ‖  

  ∑| ̂( )|
 

   

                                           (   ) 

Proof. We have that    ( )  ∑      
   ,      as a tempered completely monotone 

distributions , we will prove that  

‖    ‖  

  ∑| ̂( )|
 

   

 

Where     (the Schwartz space on   ) ,  ̂ is the standard Fourier transform , from (   ), 

(    )( )  ∫  ( )  (   )

  

   

                                                                     ∫  ( ) ∑     (   )
        

                                                                     ∑ ∫  ( )    (   )
        

                                                                     ∑ ∫  ( )
      

            

    ∑ ∫

  

 ( )     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

   

         

Hence 

(    )( )  ∑  ̂( )̅̅ ̅̅ ̅̅
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And so, 

‖    ‖  

  〈           〉   
 

                                                      ∫ ∫   (   )

  

 ( ) ( )̅̅ ̅̅ ̅̅ ̅

  

       

                                                                        ∫ ∫ ∑     (   )
      ( ) ( )̅̅ ̅̅ ̅̅ ̅

         

Using Fubini’s theorem:  

∑ ∫ ∫     (   )

  

 ( ) ( )̅̅ ̅̅ ̅̅ ̅

  

      

   

 ∑ [ ∫       ( )

  

    ∫      ( )̅̅ ̅̅ ̅̅ ̅

  

   ]

   

 

                                                                           ∑ [∫       ( )
      ∫       ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

     ]    

                                                                           ∑  ̂( )    ̂( )̅̅ ̅̅ ̅̅  

                                                                           ∑ | ̂( )|
 

    

So, 

‖    ‖  

  ∑| ̂( )|
 

   

 

 

 

 

5. Concluding Remarks 

In this work, we introduced and gave the main properties of the class of double monotone 

functions defined on  ( ). Moreover, the main properties of the class of weak monotone 

functions defined on  ( ) are given.Finally, a novel method for creating spaces of generalized 

functions are given. Tempered distributions refer to the set of all continuous linear functional on 

 ( ), and it is represented by the symbol  ́( ). suppose    ́( ) and      
  . The weak 

derivative     , often known as the derivative of the sense of distributions, is obtained by  

(    )( )    (  )   (   ) 

for   ( ). This corresponds to     * +     *    +. Noting thatdistributions are always 

weakly derivative. If assume that       . So,     (           )      . Let    be denote the 

product   
         

       
  represents a set of n-tuples.(           )where each    is an integer that 

is not negative , | |    ∑   
 
   and   denote the partial differential operator 

 | |

   
         

   .The 
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particular case, which follows the space of rapidly decreasing function on    is denoted as 

 ( )    (  ) (also known as the Schwartz space), and its dual space of a  tempered 

distribution on    is denoted as  ́( )   ́(  ). 
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