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Abstract

In this article we study the behaviors of a piecewise linear map with
initial condition in the second quadrant. There is a unique equilibrium
point and two 4-cycles of the map. We found regions of initial condition
that solutions become equilibrium point or 4-cycles. We divided the sec-
ond quadrant into sub-regions and identify behaviors of solutions in each
sub-region by direct calculations, and formulated inductive statements to
explain the behaviors of the map without using stability theorems.
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1 Introduction
Lozi map (Lozi, 1978) is a well known two dimensional piecewise linear map
which is a simplified version of Hénon map and has a strange attractor. There
are many applications of piecewise linear maps in models such as power elec-
tronic converters and switching circuits (Banerjee & Verghese, 2001; Zhusu
baliyev &Mosekilde, 2003). We know that multistability (Simpson, 2010; Zhusub-
aliyev et al., 2008) can be found in piecewise linear map. Bifurcations sequence
in a family of piecewise linear maps were cosidered in articles (Gardini & Tikjha,
2019; Tikjha & Gardini, 2020) and also a transition between invertibility and
non-invertibility of piecewise linear map were studied in article (Gardini &
Tikjha, 2020). A solution {(xn, yn)}∞n=0 of a map is called eventually peri-
odic with prime period-p (or minimal period-p) if there exists an integer N > 0
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and a smallest positive integer p such that {(xn, yn)}∞n=0 is periodic with period
p; that is,

(xn+p, yn+p) = (xn, yn) for all n ≥ N.

As we all known that piecewise linear function is not differentiable. In the case
of system that can reduce to equation (one-dimensional map), we are unable to
verify stability via stability theorem such as Schwazian derivative (D. Singer,
1978). An open problem about a piecewise linear map was mentioned in (Grove
et al.,2012): {

xn+1 = |xn|+ ayn + b

yn+1 = xn + c|yn|+ d
(1)

with initial condition (x0, y0) ∈ R2. Many papers studied the open problem
for example: Gove et al. (2012) found that every solution is eventually prime
period-3 solutions except for the unique equilibrium solution. In article (Tikjha
et al., 2010; 2015; 2017) and (Tikjha & Lapiere, 2020), they studied some
special cases of system (1), and showed that there are periodic attractors. They
showed that every solution is eventually either periodic attractors or equilibrium
point by using direct calculation and inductive statement. Recently in article
(Aiewcharoen et al. 2021; Laoharenoo et al. 2023), they investigated a family
of systems that contain absolute value similar to (1) and they showed that all
solutions become the equilibrium point. Moreover, they also showed that there
exist a prime period 5 when b ≤ −6. In article (Lapiere & Tikjha, 2021),
they also studied the special case of (1) with a = b = d = −1 and c = 1.
Our goal is to continue investigate the special case of (1) with a = c = −1,
b = −3 and d = 1 which Tikjha and Piasu (Tikjha & Piasu, 2020) reported the
condition of solutions becoming equilibrium point or periodic with prime period
4. They investigated initial point only in region of the first quadrant. We aim to
extend the initial condition in second quadrant and find all possible behaviors of
solutions for this map and then characterize the coexisting attractors between
equilibrium point and periodic with prime period 4 (4-cycle) and their basin of
attractions.

2 Main Results
In this section we will study the following two dimensional map:

xn+1 = |xn| − yn − 3, yn+1 = xn − |yn|+ 1 (2)

with initial condition belonging to second quadrant. This map has the unique
equilibrium point (−1,−1) that can be computed by solving the system:{

x̄ = |x̄| − ȳ − 3

ȳ = x̄− |ȳ|+ 1
.

As in (Tikjha & Piasu, 2020), there are 4-cycles of the system (2) given by P4.1 =
{((−5,−1), (3,−5), (5,−1), (3, 5))} and P4.2 = {((1,−3), (1,−1), (−1, 1), (−3,−1))}.

2
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The 4-cycles are found by numerical calculation. It is easy to verify that P4.1

and P4.2 are 4-cycles. Let (x0, y0) be in the second quadrant of xy plane,
Q2 := {(x, y) ∈ R2|x < 0 and y > 0}. We have the first iteration as the
following: {

x1 = |x0| − y0 − 3 = −x0 − y0 − 3

y1 = x0 − |y0|+ 1 = x0 − y0 + 1
(3)

Before we calculate the next iteration, we have to know the sign (negative or
non-negative) of x1 and y1 which are the function of x0 and y0. The sign of x1

will change when initial point (x0, y0) above or below the line f(x) = −x − 3
(resp. g(x) = x + 1 for y1). Now we divide the second quadrant into three
sub-regions as Fig. 1 that we will investigate in the next sub-section.

x

y

g(x) = x+ 1

f(x) = −x− 3

(−1,−1)

Figure 1: The second quadrant is separated into three sub-regions by the lines
f(x) and g(x). The red point is the equilibrium point of system (2).

2.1 Stable equilibrium point
In this section we will investigate rightmost region of second quadrant that is
when initial condition belonging to the green region as Fig.2 From (3), we have{

x2 = 2y0 − 1

y2 = −2x0 − 3 < 0.
(4)

Firstly, we will investigate when x2 ≥ 0 that is initial condition 1
2 ≤ y0 ≤ 1

as in Fig.3. So the next iteration can be written in the form:{
x3 = 2x0 + 2y0 − 1

y3 = −2x0 + 2y0 − 3 < 0.
(5)

3
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x

y

g(x) = x+ 1

Figure 2: The region of initial points such that x1 is negative and y1 is positive.

x

y

g(x) = x+ 1

h(x) = 1
2

Figure 3: The region of initial points such that x2 is non-negative.

Again we separate region in Fig.3 into two parts above and below a line i(x) =
−x + 1

2 as in Fig.4. For an initial condition above the line i(x) = −x + 1
2 , the

forth iteration is in the form:{
x4 = 4x0 − 1 < 0

y4 = 4y0 − 3.
(6)

If initial conditions are in green region in Fig.4 with above line i(x) and y0 ∈[
1
2 ,

3
4

]
, we have y4 ≤ 0. By direct calculations we have:{

x5 = −4x0 − 4y0 + 1 < 0
y5 = 4x0 + 4y0 − 3 < 0

, and
{

x6 = −1
y6 = −1

. The solution of this region is
eventually equilibrium point within sixth iteration. For initial conditions are in
green region in Fig. 4 with above line i(x) and y0 ∈

(
3
4 , 1
]
, we have the following

closed form of solution:
{

x5 = −4x0 − 4y0 + 1 < 0
y5 = 4x0 − 4y0 + 3 < 0

, and so

{
x6 = 8y0 − 7
y6 = −8y0 + 5 < 0

. (7)

Note that the closed form of the sixth iteration with this region is independent
from x0. It is easy to verify that when y0 ∈

(
3
4 ,

7
8

]
, x6 ≤ 0 and so x7 = y7 = −1.

4
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x

y

g(x) = x+ 1

h(x) = 1
2

i(x) = −x+ 1
2

Figure 4: The third iteration of (5) x3 change sign when initial point (x0, y0)
crosses the line i(x).

This means that the solution of this region is also eventually equilibrium point
within seventh iteration. The remain region is when y0 ∈

(
7
8 , 1
]

which we
have x6 > 0. The following inductive statement will be used to prove that
every solution is eventually equilibrium point for this remain region. Let an =
22n+1−1
22n+1 , bn = 22n+2−1

22n+2 , δn = 22n+2 − 1 and P (n) be the following statement :
“y0 ∈ (an, 1] , then{

x4n+3 = 22n+2y0 − δn
y4n+3 = −1

.

If y0 ∈ (an, bn] then x4n+3 ≤ 0 and so{
x4n+4 = −22n+2y0 + δn − 2 < 0
y4n+4 = 22n+2y0 − δn ≤ 0

,

{
x4n+5 = −1
y4n+5 = −1

.

If y0 ∈ (bn, 1] then x4n+3 > 0 and so{
x4n+4 = 22n+2y0 − δn − 2 < 0
y4n+4 = 22n+2y0 − δn > 0

,

{
x4n+5 = −22n+3y0 + 2δn − 1 < 0
y4n+5 = −1

,{
x4n+6 = 22n+3y0 − 2δn − 1
y4n+6 = −22n+3y0 + 2δn − 1 < 0

.

If y0 ∈ (bn, an+1] then x4n+6 ≤ 0, and so{
x4n+7 = −1
y4n+7 = −1

.

If y0 ∈ (an+1, 1] then x4n+6 > 0. ”
We shall show that P (1) is true. For y0 ∈ (a1, 1] =

(
7
8 , 1
]

and δ1 = 15,
we have x6 = 8y0 − 7 > 0, y6 = −8y0 + 5 < 0 and so{

x4(1)+3 = x7 = 16y0 − 15 = 22(1)+2y0 − δ1
y4(1)+3 = y7 = −1

.

If y0 ∈ (a1, b1] = ( 78 ,
15
16 ] then x7 ≤ 0 and so{

x4(1)+4 = x8 = −16y0 + 13 = −22(1)+2y0 + δ1 − 2 < 0
y4(1)+4 = y8 = 16y0 − 15 = 22(1)+2y0 − δ1 ≤ 0

,{
x4(1)+5 = x9 = −1
y4(1)+5 = y9 = −1

.

If y0 ∈ (b1, 1] =
(
15
16 , 1

]
then x7 > 0 and so

5
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{
x4(1)+4 = x8 = 16y0 − 17 = 22(1)+2y0 − δ1 − 2 < 0
y4(1)+4 = y8 = 16y0 − 15 = 22(1)+2y0 − δ1 > 0

,{
x4(1)+5 = x9 = −32y0 + 29 = −22(1)+3y0 + 2δ1 − 1 < 0
y4(1)+5 = y9 = −1

,{
x4(1)+6 = x10 = 32y0 − 31 = 22(1)+3y0 − 2δ1 − 1
y4(1)+6 = y10 = −32y0 + 29 = −22(1)+3y0 + 2δ1 − 1 < 0

.

If y0 ∈ (b1, a2] = ( 1516 ,
31
32 ] then x10 ≤ 0 and so{

x4(1)+7 = x11 = −1
y4(1)+7 = y11 = −1

.

If y0 ∈ (a2, 1] = ( 3132 , 1] then x4(1)+6 = x10 = 32y0 − 31 > 0. Therefore P (1) is
true. It means that for this region and initial condition y ∈

(
7
8 ,

31
32

]
, the solution

is eventually equilibrium point (−1,−1). Next Suppose P (k) is true. We shall
show that P (k + 1) is true. For y0 ∈ (ak+1, 1] =

(
22k+3−1
22k+3 , 1

]
, then{

x4k+6 = 22k+3y0 − 2δk − 1 > 0
y4k+6 = −22k+3y0 + 2δk − 1 < 0

. Then{
x4(k+1)+3 = 22(k+1)+2y0 − (22(k+1)+2 − 1) = 22(k+1)+2y0 − δk+1

y4(k+1)+3 = −1
.

If y0 ∈ (ak+1, bk+1] = ( 2
2k+3−1
22k+3 , 22k+4−1

22k+4 ] then x4k+7 = x4(k+1)+3 ≤ 0 (by substi-
tuting boundary of y0) and so{

x4(k+1)+4 = −22(k+1)+2y0 + δk+1 − 2 < 0
y4(k+1)+4 = 22(k+1)+2y0 − δk+1 ≤ 0

,{
x4(k+1)+5 = −1
y4(k+1)+5 = −1

.

If y0 ∈ (bk+1, 1] =
(

22k+4−1
22k+4 , 1

]
then x4k+7 = x4(k+1)+3 > 0 and so{

x4(k+1)+4 = 22(k+1)+2y0 − δk+1 − 2 < 0
y4(k+1)+4 = 22(k+1)+2y0 − δk+1 > 0

,{
x4(k+1)+5 = −22(k+1)+3y0 + 2δk+1 − 1 < 0
y4(k+1)+5 = −1

,{
x4(k+1)+6 = 22(k+1)+3y0 − 2δk+1 − 1
y4(k+1)+6 = −22(k+1)+3y0 + 2δk+1 − 1 < 0

.

If y0 ∈ (bk+1, ak+2] = ( 2
2k+4−1
22k+4 , 22k+5−1

22k+5 ] then x4(k+1)+6 ≤ 0 and so x4(k+1)+7 =
−1 and y4(k+1)+7 = −1.
If y0 ∈ (ak+2, 1] =

(
22k+5−1
22k+5 , 1

]
then x4(k+1)+6 = x4k+10 = 22(k+1)+3y0−2δk+1−

1 > 0. Hence P (k + 1) is also true. By mathematical induction P (n) is true
for any positive integer n. From the inductive statement we have that every
solution with initial condition y0 between an and bn is eventually equilibrium
point. It is easy to see that the limits of sequences an and bn are equal to 1.
Therefore we can confirm that with initial condition, the green region in Fig. 4
with above line i(x), the solution is eventually equilibrium point.

For an initial condition below or in the line i(x) = −x + 1
2 , the initial

condition satisfy x0 ≤ −y0 +
1
2 then x3 = 2x0 + 2y0 − 1 ≤ 0. We have the forth

iteration as x4 = −4x0 + 1 < 0 and y4 = 4y0 − 3. In this green region below

6
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i(x) of Fig. 4, y0 is at most 3
4 . Then y4 = 4y0 − 3 < 0 and so x5 = y5 = −1. So

we proved the following lemma.

Proposition 2.1. Let {(xn, yn)}∞n=0 be a solution of the map (2) and initial
condition (x0, y0) ∈ {(x, y) ∈ Q2|y ≤ x + 1 and 1

2 ≤ y ≤ 1} . Then every
solution is eventually equilibrium point.

Now we consider the below part of the Fig. 3, which (x0, y0) satisfies the
following conditions: x1 = −x0 − y0 − 3 < 0, y1 = x0 − y0 + 1 ≥ 0 and x0 <
0, y0 > 0. We have x2 = 2y0 − 1 and y2 = −2x0 − 3. In this case we consider
when 0 < y0 < 1

2 . So x2 < 0 and (x0, y0) belong to green portion of Fig. 5. The

x

y

g(x) = x+ 1

h(x) = 1
2

Figure 5: The green region of initial points such that x2 is negative.

next iteration can be written in the form:{
x3 = 2x0 − 2y0 + 1

y3 = −2x0 + 2y0 − 3 < 0.
(8)

We separate x3 into two cases, above and below line k(x) = x+ 1
2 as in Fig. 6,

when (x0, y0) is above k(x) then x3 < 0 while it is positive when (x0, y0) below
k(x).

x

y

g(x) = x+ 1

h(x) = 1
2

k(x) = x+ 1
2

Figure 6: The x3 of (8) change sign when initial point (x0, y0) crosses the line
k(x).

7
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In the case of x3 ≤ 0 (above k(x)), we immediately have x4 = y4 = −1. For
the case of x3 > 0, we have{

x4 = 4x0 − 4y0 + 1
y4 = −1

.

For x4 = 4x0 − 4y0 + 1 ≤ 0, we have{
x5 = −4x0 + 4y0 − 3 < 0
y5 = 4x0 − 4y0 + 1 ≤ 0

and so x6 = y6 = −1. In the case of x4 = 4x0 − 4y0 + 1 > 0, that is in remain
region of initial condition in ∆ = {(x0, y0) ∈ Q2|4x0 − 4y0 + 1 > 0} as Fig.7.
We will use an inductive statement to verify that the remain solution is even-

x

y

l(x) = x+ 1
4

1
4

Figure 7: The green region is the initial points belonging to ∆.

tually equilibrium point. Let ∆n = {(x, y) ∈ Q2 | 22nx − 22ny + 1 > 0}, Dn =
{(x, y) ∈ Q2 | 22n+1x − 22n+1y + 1 > 0} and Q(n) be the following statement:
“(x0, y0) ∈ ∆n then{

x4n+1 = 22nx0 − 22ny0 − 1 < 0
y4n+1 = 22nx0 − 22ny0 + 1 > 0

,

{
x4n+2 = −22n+1x0 + 22n+1y0 − 3 < 0
y4n+2 = −1

,{
x4n+3 = 22n+1x0 − 22n+1y0 + 1
y4n+3 = −22n+1x0 + 22n+1y0 − 3 < 0

.

If (x0, y0) ∈ ∆n −Dn then x4n+3 ≤ 0 and so x4n+4 = y4n+4 = −1.
If (x0, y0) ∈ Dn then x4n+3 > 0 and so{

x4n+4 = 22n+2x0 − 22n+2y0 + 1
y4n+4 = −1

.

If (x0, y0) ∈ Dn −∆n+1 then x4n+4 ≤ 0{
x4n+5 = −22n+2x0 + 22n+2y0 − 3 < 0
y4n+5 = 22n+2x0 − 22n+2y0 + 1 ≤ 0

, and so x4n+6 = y4n+6 = −1.

If (x0, y0) ∈ ∆n+1 then x4n+4 > 0.” We shall show that Q(1) is true. For
(x0, y0) ∈ ∆1 = {(x, y) ∈ Q2 | 4x− 4y + 1 > 0}. We have{

x4(1)+1 = 4x0 − 4y0 − 1 = 22(1)x0 − 22(1)y0 − 1 < 0
y4(1)+1 = 4x0 − 4y0 + 1 = 22(1)x0 − 22(1)y0 + 1 > 0

,{
x4(1)+2 = −8x0 + 8y0 − 3 = −22(1)+1x0 + 22(1)+1y0 − 3 < 0
y4(1)+2 = −1

,{
x4(1)+3 = 8x0 − 8y0 + 1 = 22(1)+1x0 − 22(1)+1y0 + 1
y4(1)+3 = −8x0 + 8y0 − 3 = −22(1)+1x0 + 22(1)+1y0 − 3 < 0

.

8
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If (x0, y0) ∈ ∆1 − D1 = {(x, y) ∈ Q2 | 0 < 4x − 4y + 1 and 8x − 8y + 1 ≤ 0}
then x7 ≤ 0 and so x4(1)+4 = y4(1)+4 = −1.
If (x0, y0) ∈ D1 = {(x, y) ∈ Q2 | 8x− 8y + 1 > 0} then x7 > 0 ans so{

x4(1)+4 = 16x0 − 16y0 + 1 = 22(1)+2x0 − 22(1)+2y0 + 1
y4(1)+4 = −1

.

If (x0, y0) ∈ D1 −∆2 = {(x, y) ∈ Q2 | 0 < 8x− 8y + 1 and 16x− 16y + 1 ≤ 0}
then x8 = 16x0 − 16y0 + 1 ≤ 0. Then{

x4(1)+5 = −16x0 + 16y0 − 3 = −22(1)+2x0 + 22(1)+2y0 − 3 < 0
y4(1)+5 = 16x0 − 16y0 + 1 = 22(1)+2x0 − 22(1)+2y0 + 1 ≤ 0

, and so x4(1)+6 =

y4(1)+6 = −1.
If (x0, y0) ∈ ∆2 = {(x0, y0) ∈ Q2 | 16x− 16y + 1 > 0} then x4(1)+4 > 0. Hence
Q(1) is true. Suppose Q(k) is true. Next, we show that Q(k+ 1) is true. Since
Q(k) is true, we have x4k+4 = 22k+2x0 − 22k+2y0 + 1 > 0 , and y4k+4 = −1
when (x0, y0) ∈ ∆k+1 = {(x, y) ∈ Q2 | 22k+2x− 22k+2y + 1 > 0} and so{

x4(k+1)+1 = 22(k+1)x0 − 22(k+1)y0 − 1 < 0
y4(k+1)+1 = 22k+1x0 − 22k+1y0 + 1 > 0

,{
x4(k+1)+2 = −22k+1+1x0 + 22k+1+1y0 − 3 < 0
x4(k+1)+2 = −1

,{
x4(k+1)+3 = 22(k+1)+1x0 − 22(k+1)+1y0 + 1
y4(k+1)+3 = −22(k+1)+1x0 + 22(k+1)+1y0 − 3 < 0

.

If (x0, y0) ∈ ∆k+1−Dk+1 = {(x, y) ∈ Q2 | 0 < −22k+2x+22k+2y+1 and 22(k+1)+1x−
22(k+1)+1y + 1 ≤ 0} then x4(k+1)+3 ≤ 0 and so{

x4(k+1)+4 = −1
y4(k+1)+4 = −1

.

If (x0, y0) ∈ Dk+1 = {(x, y) ∈ Q2 | 22(k+1)+1x − 22(k+1)+1y + 1 > 0} then
x4(k+1)+3 > 0 and so{

x4(k+1)+4 = 22(k+1)+2x0 − 22(k+1)+2y0 + 1
y4(k+1)+4 = −1

.

If (x0, y0) ∈ Dk+1 − ∆k+2 = {(x, y) ∈ Q2 | 0 < 22(k+1)+1x − 22(k+1)+1y +
1 and 22(k+1)+2x0 − 22(k+1)+2y0 + 1 ≤ 0} then x4(k+1)+4 ≤ 0 and so{

x4(k+1)+5 = −22(k+1)+2x0 + 22(k+1)+2y0 − 3 < 0
y4(k+1)+5 = 22(k+1)+2x0 − 22(k+1)+2y0 + 1 ≤ 0

.{
x4(k+1)+6 = −1
y4(k+1)+6 = −1

.

If (x0, y0) ∈ ∆k+2 = {(x, y) ∈ Q2 | 22(k+1)+2x − 22(k+1)+2y + 1 > 0} then
x4(k+1)+4 > 0. Hence Q(k+1) is also true. By mathematical induction Q(n) is
true for any positive integer n ≥ 1. So we proved the following lemma.

Proposition 2.2. Let {(xn, yn)}∞n=0 be a solution of the map (2) and initial
condition (x0, y0) ∈ {(x, y) ∈ Q2|y ≤ x + 1 and 0 < y < 1

2} . Then every
solution is eventually equilibrium point.

Now we complete the proof that every solution is eventually equilibrium
point with initial point in the green region of Fig.2.

9
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2.2 Coexisting attractors
This section we will consider the case that x1 = −x0 − y0 − 3 < 0 and
y1 = x0 − y0 + 1 < 0 which means that initial point belong to cyan region
of Fig.8. Then we have the next iteration in the form

x

y

g(x) = x+ 1

f(x) = −x− 3

Figure 8: The region that x1 and y1 are negative, that (x0, y0) is in cyan.

{
x2 = 2y0 − 1
y2 = −2y0 − 1 < 0

.

That is the second iteration and the remain solutions are independent from x0.
If y0 ≤ 1

2 then x2 ≤ 0 then x3 = y3 = −1. In the case of 1
2 < y0 ≤ 3

4 , we have
x2 > 0 and so{

x3 = 4y0 − 3 ≤ 0
y3 = −1

,

{
x4 = −4y0 + 1 < 0
y4 = 4y0 − 3 ≤ 0

,

{
x5 = −1
y5 = −1

.

If y0 ≥ 5
4 then{

x3 = 4y0 − 3 > 0
y3 = −1

,

{
x4 = 4y0 − 5 ≥ 0
y4 = 4y0 − 3 > 0

,

{
x5 = −5
y5 = −1

.

If 3
4 < y0 ≤ 7

8 then{
x3 = 4y0 − 3 > 0
y3 = −1

,

{
x4 = 4y0 − 5 < 0
y4 = 4y0 − 3 > 0

,

{
x5 = −8y + 5 < 0
y5 = −1

,{
x6 = 8y − 7 < 0
y6 = −8y + 5 < 0

,

{
x7 = −1
y7 = −1

.

Now we can conclude that solutions with initial point in green portion of Fig.
9 become equilibrium point within seventh iteration while solutions with initial
point in red portion of Fig. 9 become 4-cycle within fifth iteration. The remain
region, cyan region of Fig. 9, is 7

8 < y0 < 5
4 which we have third iteration to

fifth iteration are the same as in the case 3
4 < y0 ≤ 7

8 but the sixth iteration is
x6 = 8y0−7 > 0 and y6 = −8y0+5 < 0. The remain iterations can be proved to
become equilibrium point or 4-cycle by using induction. We will use the follow-
ing inductive statement to verify. Let An = 22n+2−1

22n+2 , ln = 22n+1−1
22n+1 , un = 22n+1

22n
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x

y

g(x) = x+ 1

f(x) = −x− 3
5
4

7
8

Figure 9: The red (green) region is initial points of solutions that are eventually
4-cycle P4.1 (equilibrium point) while the remain region is in cyan.

and γn = 22n+2 − 1 and R(n) be the following statement : “for y0 ∈ (ln, un),
then x4n+3 = 22n+2y0 − γn, y4n+3 = −1. If y0 ∈ (ln, An] then x4n+3 ≤ 0 and so{

x4n+4 = −22n+2y0 + γn − 2 < 0
y4n+4 = 22n+2y0 − γn ≤ 0

,

{
x4n+5 = −1
y4n+5 = −1

.

If y0 ∈ (An, un) then x4n+3 > 0 and so{
x4n+4 = 22n+2y0 − γn − 2
y4n+4 = 22n+2y0 − γn > 0

.

If y0 ∈ [un+1, un) then x4n+4 ≥ 0 and so x4n+5 = −5 and y4n+5 = −1.
If y0 ∈ (An, un+1) then x4n+4 < 0 and so{

x4n+5 = −22n+3y0 + 2γn − 1 < 0
y4n+5 = −1

,

{
x4n+6 = 22n+3y0 − 2γn − 1
y4n+6 = −22n+3y0 + 2γn − 1 < 0

If y0 ∈ (An, ln+1] then x4n+6 ≤ 0 and so x4n+7 = y4n+7 = −1
If y0 ∈ (ln+1, un+1) then x4n+6 > 0.”

We shall first show that P (1) is true. For y0 ∈ (l1, u1) = ( 78 ,
5
4 ) and γ1 = 15

we have x6 = 8y0 − 7 > 0, y6 = −8y0 + 5 < 0 and so{
x4(1)+3 = 16y0 − 15 = 22(1)+2y0 − γ1
y4(1)+3 = −1

If y0 ∈ (l1, A1] = ( 78 ,
15
16 ] then x7 ≤ 0 and so{

x4(1)+4 = −16y0 + 13 = −22(1)+2y0 + γ1 − 2 < 0
y4(1)+4 = 16y0 − 15 = 22(1)+2y0 − γ1 ≤ 0

,
{

x4(1)+5 = −1
y4(1)+5 = −1

.

If y0 ∈ (A1, u1) = ( 1516 ,
5
4 ) then x7 > 0 and so{

x4(1)+4 = 16y0 − 17 = 22(1)+2y0 − γ1 − 2
y4(1)+4 = 16y0 − 15 = 22(1)+2y0 − γ1 > 0

.

If y0 ∈ [u2, u1) = [ 1716 ,
5
4 ) then x8 ≥ 0 and so x4(1)+5 = −5, y4(1)+5 = −1.

If y0 ∈ (A1, u2) = ( 1516 ,
17
16 ) then x8 < 0 and so

11
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{
x4(1)+5 = −32y0 + 29 = −22(1)+3y0 + 2γ1 − 1 < 0
y4(1)+5 = −1

,{
x4(1)+6 = 32y0 − 31 = 22(1)+3y0 − 2γ1 − 1
y4(1)+6 = −32y0 + 29 = −22(1)+3y0 + 2γ1 − 1 < 0

.

If y0 ∈ (A1, l2] = ( 1516 ,
31
32 ] then x10 ≤ 0 and so x4(1)+7 = y4(1)+7 = −1.

If y0 ∈ (l2, u2) = ( 3132 ,
17
18 ) then x4(1)+6 = 32y0 − 31 = 22(1)+3y0 − 2γ1 − 1 > 0.

Thus R(1) is true. So the base case of induction is done. Similar to P (n),
one can prove that step case is also true. By mathematical induction R(n) is
true for any positive integer n ≥ 1. From inductive statement one can infer
that solution will become 4-cycle (P4.1) when y0 ∈ [un+1, un) while solution will
become equilibrium point when y0 ∈ (ln, An] and y0 ∈ (An, ln+1]. One can see
that limit of sequence An, ln, and un are 1. So the cyan region of Fig. 9 will
collapse into a single line L := {(x, 1)|x ∈ [−4, 0]}. For (x0, y0) ∈ L one can
verify that (x2, y2) = (1,−3) ∈ P4.2. It means the solution will become 4-cycle
(P4.2) when y0 ∈ L.

Proposition 2.3. Let {(xn, yn)}∞n=0 be a solution of the map (2) and initial
condition (x0, y0) ∈ {(x, y) ∈ Q2|y > x + 1 and y > −x − 3}. Then every
solution is eventually equilibrium point.

We can conclude that there are three attractors: equilibrium point, P4.1 and
P4.2. The basin of attraction of equilibrium point is green portion of Fig.10
while P4.1 has red portion of Fig. 10 and P4.2 has L being the basin.

x

y

g(x) = x+ 1

f(x) = −x− 3
5
4

7
8

Figure 10: �Basin of attraction of P4.1, P4.2 is in red and cyan respectively, while
the basin of attraction of equilibrium point is in green.
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3 Conclusion and discussion
We investigated the system of piecewise linear map (2) with initial condition in
the second quadrant. By separating the second quadrant into three sub-regions
as in Fig.1, we have the following behaviors of solutions. In the rightmost region
of second quadrant (initial point below the line g(x)), every solution is eventually
equilibrium point. For the middle region of second quadrant (initial point above
the lines f(x) and g(x)), the solution is eventually either equilibrium point or
4-cycle. We proved it by direct calculations and induction. For the last region
of second quadrant (below the line f(x)) x1 is positive and y1 is negative. The
behaviors of solution are more complicated than the other two sub-regions and
interesting to study that we leave for future work. The behaviors of the map (2)
are agree to Tikjha & Piasu (2020) that attractors are only equilibrium point
and 4-cycles. It is possible to have equilibrium point and 4-cycles as attractors.
But we do still not confirm that until knowing behaviors of solutions with initial
condition (x0, y0) completely in R2.
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