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ABSTRACT
Varieties of solution patterns to not uniform fifth degree polynomial equation having five variables given
by 6(x* +y*) =13(z° — w?)p® are presented in this paper
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Launch

The subject of polynomial equations offers a plenty of motivating problems. Particularly uniform or non
uniform fifth degree equations with multiple variables have aroused the interest of numerous
mathematicians for a long time [1-3]. In particular, [4-6] refers to integer solutions for fifth degree
equation having three variables and [7-14] refers to fifth degree degree equation having five variables.
The above problems motivated us to obtain choices of integer solutions to the non uniform fifth degree

equation having five variables presented by 6(X° +y*) =13(z* —w?)p°.

Technical procedure
Non-homogeneous fifth degree Diophantine equation with five variables for solving is

60 +y°) =13(2* —w*)p’ (1)
The procedure to obtain varies patterns of solution for (1) through different ways is presented as follows:
Way 1
In (1) choosing
X=U+Vv,y=u-v,z=3u+lLw=3u+1 (2)
gives
u’+3v? =13p°
Take
2 2
p=a“+3b (4)
wherea # b
Take

13= (L +i243)1-i2v3) (5)

Utilize (4) and (5) in (3)and applying the resolving activity, we have
) 3
U+iv3v= (1+ i2\/§) (a+|\/§b)

After specific algebraic computations and clarification, we obtain

u=a®-9ab’ +18b*> -18a°b
v=2(a®—9ab®) + (-3b* + 3a°b)

This replacement of u and v in (2), the solutions of equation (1) are as follows

(3)
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x = 3a® +15b* — 27ab® —15a°b
y=-a +21b%+9ab? —21a’b
z=3(a® —9ab* +18b° —18a°b) +1
w=3(a’® —9ab’ +18b* —18a°b) -1
along with (4)

Way 2

Take

5 5+ i3\/§L(5— i313)

Utilize (4) and (6) in (3) and applying the resolving activity, we have

u+iv3v= (5+ '23‘@} (a+i\/§b)3

After specific algebraic computations and clarification, we obtain

u= %(Sa?’ — 45ab® — 27a%b + 27b%)

(6)

V= %(3513 — 27ab* +15a°b —15b°)

Writing a by 2A & b by 2B, we have

u=4(5A° — 45AB* — 27A°B + 27B%)

v=4(3A° - 27AB’ +15A’B - 15B°)

This replacement of u and v in (2), the solutions of equation (1) are as follows
x = 32A° — 288AB* — 48A°B + 48B°

y= 8A33 ~72AB* —-168A°B +168B°

z=3(20A° —180AB’* —108A’B +108B°) +1

w=3(20A° —180AB? —108A°B +108B°) -1

P = 4(A” +3B%)

Way 3
Rewrite (3) as

u?+3v? =13p°*1
Take

(1+i\/§}1—i\/§)

(7)

1= (8)

Utilize (4),(6) and (8) in (7) and applying the resolving activity, we have

U3V =@+ izﬁ)[“;ﬁj (a+ivab)’

After specific algebraic computations and clarification, we obtain

u= % (-5a° + 45ab* — 27a°b + 27b%)

V= %(3a3 — 27ab® —15a°b +15b%)
Writting a by 2A and b by 2B, we have
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u=4(-5A°% + 45AB? — 27A%B + 27B%)

v=4(3A° - 27AB’ —15A°B +15B°)

This replacement of u and v in (2), the solutions of equation (1) are as follows
x =-8A°% + 72AB’ —168A’°B +168B°

y= —32A33 +288AB* — 48A%B + 48B°

z=3(-20A° +180AB* —108A°B +108B%) +1

w =3(—20A° +180AB* —108A°B +108B°) -1

P = 4(A? + 3B?)

Way 4
Take

(3p2 —q%+iV3 2qu3p2 —q%+iV3 2pq)
(3[32 " qz )2 (9)
Utilize (4), (5) and (9) in (7) and applying the resolving activity, we have

u+iv3v=(1+ i2J§)[?"O2 ~0°+i432p J (a+iv/3b)’

1=

3p” +q°
Consider
(a+iv/3b)" - £ (a, b) + iv3g(a, b)
f(a,b)=a’®—9ab’
g(a,b) = (3a%b — 3b°)

Therefore

u+iv3v=(1+ i2\/§)(3p2 ~9’ +iV32pq J(f(a, b) +i3g(a, b))

3p? +q°
3 1 {{(3|o2 —q°)[f(a,b) —6g(a.b)] - 6pa[g(a, b) + 2f (a, b) }
U+iV3V=rog—T|
+i,/3{(3p? - g*)[2f (a,b) + g(a, b)] + 2pq[f (a, b) — 6g(a, b)]}

Where,

(3p® +0°)
Replacing a by (3p>+0°)A, b by (3p>+0°) B and equating coefficients of corresponding terms, we
have

u=(3p*+9*)*{(3p* —q°)[f (a,b) — 69(a.b)] - 6palg(a, b) + 2f (a, b) }
v=(3p* +0a°)*{(3p* —9*)[2f (a, b) + g(a.b) + 2paff (a, b) - 6g(a, b) }

This replacement of u and v in (2), the solutions of equation (1) are as follows

x = (3p” +9%)*{(3p" - q°)[3f (a, b) - 5g(a.b)] - 10paf (a, b) —18pqg(a, b) }
y=(3p* +0°)*{(3p* —q*) [ (a,b) - 79(a.b)] - 14paf (a, b) - 6g(a, b)}
z=3{(3p* +9°)*{(3p" - q°)[f(a,b) - 6g(a.b)] - 6palg(a, b) + 2f (a,b) } +1
w =3{(3p” +q°)*{(3p* —q*)[f (a,b) - 6g(a.b)] - 6palg(a, b) + 2f (a,b) } -1
p=(3p°+0°)°(A® +3B%)

Way 5

Taking

v=2p (10)
in (3),it reduces to

u?=p°@13p-12) (11)
Take
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a’=13p-12
Po=La, =1

Whose smallest positive integer solutions are
Let the second solution of (12) be
o, =h—a,,p, =h+p,
Subsituting (13) in (12)& on simplifying, we get
h=2a,+13
From (13),itis seen that
o, =0, +13,p, =p, + 20, +13
Repeating the above process,the solution of (12) in general be
P, =P, +2Naty,+13n% =1+2n +13n°
o, =0, +13n=1+13n
In view of (10) and (11),one obtains
vn:2@+2n+1&¥)
U, =p,at, =(1+2n +13n?)1+13n)
Using (15) in (2), we have
X, =(1+2n+13n%)(3+13n)

y,=(@+2n+13n?)(-1+13n)
z, =3(+2n+13n%)(1+13n) +1
w, =3(1+2n+13n%)(1+13n) -1

Thus (1) is satisfied by (16) and (17)

Way 6

Taking

v =2kp

in (3),it reduces to

u® =p*(13p—-12k?)
Take
a’ =13p—12k*

Whose smallest positive integer solutions are Po = kz,(xo =k
Let the second solution of (19) be

o, =h—a,,p; =h+p,

Subsituting (20) in (19) & on simplifying, we get

h=2a,+13

From (19),it is seen that

o, =0, +13,p, =p, + 20, +13

Repeating the above process,the general solution to (19) is given by
P, =P, +2no,+13n° =k + 2nk +13n?

o, =a,+13n=k +13n

In view of (17) and (18),one obtains

v, = 2k (k? +2nk +13n?)
unzggm:&2+2nk+1&ﬁXk+1&ﬂ

Using (22) in (2), we have

463

VOL. 33,NO. 5, 2024

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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X =(k*+2nk +13n?)(3k +13n)
y. = (K® +2nk +13n%)(—k +13n)
z,=3(k*+2nk +13n?)(k +13n) +1
w, =3(k*+2nk +13n%)(k +13n) -1

Thus (1) is satisfied by (23) and (21).
Way 7
Taking
v=3p
in (3),it reduces to

u® =p*(13p-27)

Take the second solution of (26),

a’=13p-27
Whose smallest positive integer solutions are Po = 4 Qo = 5
Let

o, =h -0, p, =h+p,
Substituting (27) in (26) & on simplification, we get
h=2a,+13
From (27),it is seen that
o, =0, +13,p, =p, + 20, +13
Repeating the above process, the general solution to (26) is given by
P, =P, +2n0,+13n*=4+10n +13n?
o, =0, +13n=5+13n
In view of (24) and (25),one obtains
v, =3(4+10n+13n?)
U, =p,a, =(4+10n+13n?)(5+13n)
Using (29) in (2), we have
X, =(4+10n+13n°)(8 +13n)

y, = (4+10n+13n?)(2+13n)
z, =3(4+10n+13n%)(5+13n) +1
w, =3(4+10n +13n?)(5+13n) -1

Thus (1) is satisfied by (30) and (28).

Inference
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(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

Many choices of solution patterns to not uniform fifth degree polynomial equation having five variables

given by 6(x®+y®)=13(z* —w?)p® are presented in this paper One may search for integer

solutions to other forms of quintic Diophantine equations with three or more variables
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