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Abstract The notion of bipolar-valued fuzzy set is used to treat the filter
and deductive system in Sheffer stroke Hilbert algebras. The concepts of bipolar-
valued fuzzy filter and bipolar-valued fuzzy deductive system are introduced and
related properties are investigated. Conditions under which the bipolar-valued
fuzzy set can be a bipolar-valued fuzzy filter are explored. Characterizations
of the bipolar-valued fuzzy filter are examined. A bipolar-valued fuzzy filter is
built using a filter. To consider the nomality of bipolar-valued fuzzy filter, the
notion of normal bipolar-valued fuzzy filter is introduced and related properties
are investigated. The method of normalizing the bipolar-valued fuzzy filter is
addressed, and we will see what the normal bipolar-valued fuzzy filter looks like.

Keywords: Sheffer stroke Hilbert algebra, filter, (bipolar-valued fuzzy) deductive
system, (normal) bipolar-valued fuzzy filter.

2020 Mathematics Subject Classification. 03B05, 03G25, 06F35, 08A72.

1

192

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Hee Sik Kim et al 192-210



1 Introduction

The shaper stroke, denoted by the symbol ”|”, is a logical operation for two
inputs that produces false results only when both inputs are true, as shown in
Table 1.

Table 1: The truth table for the Sheffer stroke “|”

P Q P |Q
F F T
F T T
T F T
T T F

The Sheffer stroke has been applied to several algebraic structures, for ex-
ample, Boolean algebra, MV-algebra, BL-algebra, BCK-algebra, and ortho-
lattices, etc., and it is also being dealt with in the fuzzy environment (see
[3, 5, 7, 11, 12, 13, 14, 15]). In 2021, Oner et al. [12] applied the Sheffer
stroke to Hilbert algebras. They introduced Sheffer stroke Hilbert algebra and
investigated several properties. In [11], Oner et al. introduced the notion of de-
ductive system and filter of Sheffer stroke Hilbert algebras, and dealt with their
fuzzification. The bipolar-valued fuzzy set, which is introduced by Lee [9, 10]
is a type of fuzzy set where the degree of membership to a set is represented
by a value that can take on both positive and negative values, as opposed to
traditional fuzzy sets where the degree of membership is represented by a value
between 0 and 1. The value 0 in the bipolar-valued fuzzy set represents a lack
of information about membership or a neutral position. Also, the negative val-
ues represent the degree of non-membership, while the positive values represent
the degree of membership to the set. The bipolar-valued fuzzy set is useful for
methods such as modeling complex and uncertain situations beyond traditional
fuzzy sets. Therefore, the bipolar-valued fuzzy set has been applied in various
fields, such as pattern recognition, decision making, and control systems etc.
The bipolar-valued fuzzy set has also been widely applied in algebraic struc-
tures (see [1, 2, 4, 6, 8])

In this paper, we introduce the notion of the bipolar-valued fuzzy deductive
system and the bipolar-valued fuzzy filter in Sheffer stroke Hilbert algebras,
and investigate several properties. We first show that the bipolar-valued fuzzy
deductive system and the bipolar-valued fuzzy filter are equivalent each other.
We explore the conditions under which a bipolar-valued fuzzy set can be a
bipolar-valued fuzzy filter. We establish characterization of the bipolar-valued
fuzzy filter. Using the filter of Sheffer stroke Hilbert algebra, we make a bipolar-
valued fuzzy filter. We discuss the nomality of bipolar-valued fuzzy filter, and
we deal with how to normalize the bipolar-valued fuzzy filter. We look into
what the normal bipolar-valued fuzzy filter looks like.
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2 Preliminaries

Definition 2.1 ([16]). Let A := (A, |) be a groupoid. Then the operation “|”
is said to be Sheffer stroke or Sheffer operation if it satisfies:

(s1) (∀a, b ∈ A) (a|b = b|a),

(s2) (∀a, b ∈ A) ((a|a)|(a|b) = a),

(s3) (∀a, b, c ∈ A) (a|((b|c)|(b|c)) = ((a|b)|(a|b))|c),

(s4) (∀a, b, c ∈ A) ((a|((a|a)|(b|b)))|(a|((a|a)|(b|b))) = a).

Definition 2.2 ([12]). A Sheffer stroke Hilbert algebra is a groupoid L := (L, |)
with a Sheffer stroke “|” that satisfies:

(sH1) (a|((A)|(A)))|(((B)|((C)|(C)))|((B)|((C)|(C)))) = a|(a|a),
where A := b|(c|c), B := a|(b|b) and C := a|(c|c),

(sH2) a|(b|b) = b|(a|a) = a|(a|a) ⇒ a = b

for all a, b, c ∈ L.

Let L := (L, |) be a Sheffer stroke Hilbert algebra. Then the order relation
“ ≤L ” on L is defined as follows:

(∀a, b ∈ L)(a ≤L b ⇔ a|(b|b) = 1). (2.1)

We observe that the relation “ ≤L ” is a partial order in a Sheffer stroke
Hilbert algebra L := (L, |) (see [12]).

Proposition 2.3 ([12]). Every Sheffer stroke Hilbert algebra L := (L, |) satis-
fies:

(∀a ∈ L)(a|(a|a) = 1), (2.2)

(∀a ∈ L)(a|(1|1) = 1), (2.3)

(∀a ∈ L)(1|(a|a) = a), (2.4)

(∀a, b ∈ L)(a ≤L b|(a|a)), (2.5)

(∀a, b ∈ L)((a|(b|b))|(b|b) = (b|(a|a))|(a|a)), (2.6)

(∀a, b ∈ L) (((a|(b|b))|(b|b))|(b|b) = a|(b|b)) , (2.7)

(∀a, b, c ∈ L) (a|((b|(c|c))|(b|(c|c))) = b|((a|(c|c))|(a|(c|c)))) , (2.8)

Definition 2.4 ([11]). Let (L, |) be a Sheffer stroke Hilbert algebra. A subset
F of L is called

• a deductive system of (L, |) if it satisfies:

1 ∈ F, (2.9)

(∀a, b ∈ L)(a ∈ F, a|(b|b) ∈ F ⇒ b ∈ F ), (2.10)
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• a filter of (L, |) if it satisfies (2.9) and

(∀a, b ∈ L)(b ∈ F ⇒ a|(b|b) ∈ F ), (2.11)

(∀a, b, c ∈ L)(b, c ∈ F ⇒ (a|(b|c))|(b|c) ∈ F ). (2.12)

Definition 2.5 ([11]). Let (L, |) be a Sheffer stroke Hilbert algebra. A fuzzy
set f in L is called a fuzzy filter of (L, |) if it satisfies:

(∀a ∈ L)(f(1) ≥ f(a)), (2.13)

(∀a, b ∈ L)(f(a|(b|b)) ≥ f(b)), (2.14)

(∀a, b, c ∈ L)(f((a|(b|c))|(b|c)) ≥ min{f(b), f(c)}). (2.15)

Denote by FS(L) the collection of all fuzzy sets in L. Define a relation “ ⊆ ”
on FS(L) by

(∀f, g ∈ FS(L))(f ⊆ g ⇔ (∀a ∈ L)(f(a) ≤ g(a))).

Consider two maps f− and f+ on L (; a universe of discourse) as follows:

f− : L→ [−1, 0] and f+ : L→ [0, 1],

respectively. A structure

f := {(a; f−(a), f+(a)) | a ∈ L}

is called a bipolar-valued fuzzy set on L (see [9]), and is will be denoted by simply
f := (L; f−, f+).

For a BVF-set f := (L; f−, f+) in L and (s, t) ∈ [−1, 0]× [0, 1], we define

L(f−; s) := {a ∈ L | f−(a) ≤ s},

U(f+; t) := {a ∈ L | f+(a) ≥ t}

which are called the negative s-cut and the positive t-cut of f := (L; f−, f+),
respectively.

3 Bipolar-valued fuzzy deductive systems and
filters

In what follows, let L := (L, |) denote the Sheffer stroke Hilbert algebra unless
otherwise specified.

Definition 3.1. A bipolar-valued fuzzy set f := (L; f−, f+) in L is called

• a bipolar-valued fuzzy deductive system of L := (L, |) if it satisfies:

(∀x ∈ L)(f−(1) ≤ f−(x), f+(1) ≥ f+(x)), (3.1)

(∀x, y ∈ L)

(
f−(y) ≤ max{f−(x), f−(x|(y|y))}
f+(y) ≥ min{f+(x), f+(x|(y|y))}

)
. (3.2)
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• a bipolar-valued fuzzy filter of L := (L, |) if it satisfies (3.1) and

(∀x, y ∈ L)(f−(x|(y|y)) ≤ f−(y), f+(x|(y|y)) ≥ f+(y)), (3.3)

(∀x, y, z ∈ L)

(
f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)}
f+((x|(y|z))|(y|z)) ≥ min{f+(y), f+(z)}

)
. (3.4)

Example 3.2. Consider a set L = {0, 1, 2, 3, 4, 5, 6, 7}. The Hasse diagram and
the Sheffer stroke “|” on L are given by Figure 1 and Table 2, respectively.

Figure 1: Hasse Diagram
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Table 2: Cayley table for the Sheffer stroke “|”

| 0 2 3 4 5 6 7 1
0 1 1 1 1 1 1 1 1
2 1 7 1 1 7 7 1 7
3 1 1 6 1 6 1 6 6
4 1 1 1 5 1 5 5 5
5 1 7 6 1 4 7 6 4
6 1 7 1 5 7 3 5 3
7 1 1 6 5 6 5 2 2
1 1 7 6 5 4 3 2 0

Then L := (L, |) is a Sheffer stroke Hilbert algebra (see [12]). Let f := (L; f−,
f+) and g := (L; g−, g+) be BVF-sets in L given by Table 3.
It is routine to verify that f := (L; f−, f+) is a bipolar-valued fuzzy deductive
system of L := (L, |), and g := (L; g−, g+) is a bipolar-valued fuzzy filter of
L := (L, |).

Theorem 3.3. Given a bipolar-valued fuzzy set f := (L; f−, f+) in L, the
following are equivalent to each other.

(i) f := (L; f−, f+) is a bipolar-valued fuzzy deductive system of L := (L, |).

5
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Table 3: Tabular representation of f and g

L f−(x) f+(x) g−(x) g+(x)
0 −0.42 0.49 −0.48 0.33
2 −0.56 0.68 −0.62 0.33
3 −0.42 0.49 −0.48 0.46
4 −0.42 0.49 −0.48 0.33
5 −0.64 0.79 −0.75 0.46
6 −0.56 0.68 −0.62 0.33
7 −0.42 0.49 −0.48 0.61
1 −0.72 0.83 −0.79 0.67

(ii) f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |).

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy deductive system
of L := (L, |) and let x, y, z ∈ L. Note that y|((x|(y|y))|(x|(y|y))) = 1 by (2.1)
and (2.5). The use of (3.1) and (3.2) leads to

f−(x|(y|y)) ≤ max{f−(y), f−(y|((x|(y|y))|(x|(y|y))))}
= max{f−(y), f−(1)} = f−(y)

(3.5)

and

f+(x|(y|y)) ≥ min{f+(y), f+(y|((x|(y|y))|(x|(y|y))))}
= min{f+(y), f+(1)} = f+(y).

(3.6)

Note that

y|(((y|z)|z)|((y|z)|z))
(s2)
= y|(((y|z)|((z|z)|(z|z)))|((y|z)|((z|z)|(z|z))))

(2.8)
= (y|z)|((y|((z|z)|(z|z)))|(y|((z|z)|(z|z))))

(s2)
= (y|z)|((y|z)|(y|z))

(2.2)
= 1.

It follows from (3.1) and (3.2) that

f−((y|z)|z) ≤ max{f−(y), f−(y|(((y|z)|z)|((y|z)|z)))}
= max{f−(y), f−(1)} = f−(y)

(3.7)

and

f+((y|z)|z) ≥ min{f+(y), f+(y|(((y|z)|z)|((y|z)|z)))}
= min{f+(y), f+(1)} = f+(y).

(3.8)
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Since z|(((y|z)|(y|z))|((y|z)|(y|z)))
(s2)
= z|(y|z)

(s1)
= (y|z)|z, we obtain

g−((y|z)|(y|z)) ≤ max{g−(z), g−(z|(((y|z)|(y|z))|((y|z)|(y|z))))}
= max{g−(z), g−((y|z)|z)}
≤ max{g−(z), g−(y)}

(3.9)

and

f+((y|z)|(y|z)) ≥ min{f+(z), f+(z|(((y|z)|(y|z))|((y|z)|(y|z))))}
= min{f+(z), f+((y|z)|z)}
≥ min{f+(z), f+(y)}.

(3.10)

Hence

f−((x|(y|z))|(y|z))

(s2)
= f−((x|(((y|z)|(y|z))|((y|z)|(y|z))))|(((y|z)|(y|z))|((y|z)|(y|z))))

(3.5)

≤ f−((y|z)|(y|z))

(3.9)

≤ max{f−(z), f−(y)}

and

f+((x|(y|z))|(y|z))

(s2)
= f+((x|(((y|z)|(y|z))|((y|z)|(y|z))))|(((y|z)|(y|z))|((y|z)|(y|z))))

(3.6)

≥ f+((y|z)|(y|z))

(3.10)

≥ min{f+(z), f+(y)}.

Therefore f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |).
Conversely, assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of

L := (L, |) and let x, y, z ∈ L. If we replace y, z, and x with x, x|(y|y), and y,
respectively, in (3.4), then

f−(y) = f−(((x|x)|(1|1))|(y|y))

= f−(((x|x)|((y|(y|y))|(y|(y|y))))|(y|y))

= f−(((((x|x)|y)|((x|x)|y))|(y|y))|(y|y))

= f−((y|((x|x)|y))|((x|x)|y))

= f−(((((x|x)|y)|y)|y)|(((x|x)|y)|y))

= f−((y|(x|(x|(y|y))))|(x|(x|(y|y))))

≤ max{f−(x), f−(x|(y|y))}
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and

f+(y) = f−(((x|x)|(1|1))|(y|y))

= f+(((x|x)|((y|(y|y))|(y|(y|y))))|(y|y))

= f+(((((x|x)|y)|((x|x)|y))|(y|y))|(y|y))

= f+((y|((x|x)|y))|((x|x)|y))

= f+(((((x|x)|y)|y)|y)|(((x|x)|y)|y))

= f+((y|(x|(x|(y|y))))|(x|(x|(y|y))))

≥ min{f+(x), f+(x|(y|y))}

by (s1), (s2), (s3), (2.2), (2.3), (2.4) (2.6) and (2.7). Consequently, f := (L; f−,
f+) is a bipolar-valued fuzzy deductive system of L := (L, |).

By Theorem 3.3, it can be seen that all the results for the bipolar-valued
fuzzy filter covered below can be handled in the same way using the bipolar-
valued fuzzy deductive system.

Proposition 3.4. Every bipolar-valued fuzzy filter f := (L; f−, f+) of L :=
(L, |) satisfies:

(∀x, y ∈ L)

(
f−((x|(y|y))|(y|y)) ≤ f−(x)

f+((x|(y|y))|(y|y)) ≥ f+(x)}

)
. (3.11)

(∀x, y ∈ L)

(
x ≤L y ⇒

{
f−(x) ≥ f−(y)
f+(x) ≤ f+(y)

)
. (3.12)

Proof. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L := (L, |). Then

f−((x|(y|y))|(y|y)) = f−((y|(x|x))|(x|x)) ≤ max{f−(x), f−(x)} = f−(x),

f+((x|(y|y))|(y|y)) = f+((y|(x|x))|(x|x)) ≥ min{f+(x), f+(x)} = f+(x)

for all x, y ∈ L by (2.6) and (3.4). Therefore, (3.11) is valid. Let x, y ∈ L be
such that x ≤L y. Then x|(y|y) = 1, and so

f−(y) = f−(1|(y|y)) = f−((x|(y|y))|(y|y)) ≤ f−(x)

and
f+(y) = f+(1|(y|y)) = f+((x|(y|y))|(y|y)) ≥ f+(x)

by (2.4) and (3.11).

We consider a bipolar-valued fuzzy set f := (L; f−, f+) in L satisfying the
condition (3.12) and question whether it becomes a bipolar-valued fuzzy filter.
But the example below shows that the answer to that is negative.

8
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Figure 2: Hasse Diagram
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Table 4: Cayley table for the Sheffer stroke “|”

| 1 2 3 0
1 0 3 2 1
2 3 3 1 1
3 2 1 2 1
0 1 1 1 1

Table 5: Tabular representation of f := (L; f−, f+)

L f−(x) f+(x)
0 −0.12 0.09
2 −0.37 0.16
3 −0.54 0.28
1 −0.81 0.62

Example 3.5. Consider a set L = {0, 1, 2, 3}. The Hasse diagram and the
Sheffer stroke “|” on L are given by Figure 2 and Table 4, respectively.
Then L := (L, |) is a Sheffer stroke Hilbert algebra (see [12]). Let f := (L; f−,
f+) be a BVF-set in L given by Table 5.
Then f := (L; f−, f+) satisfies the condition (3.12). But it is not a bipolar-
valued fuzzy filter of L := (L, |) since

f−((0|(3|2))|(3|2)) = f−(0) = −0.12 � −0.37 = max{f−(3), f−(2)}

and/or f+((0|(3|2))|(3|2)) = f+(0) = 0.09 � 0.16 = min{f+(3), f+(2)}.

We explore the conditions under which a bipolar-valued fuzzy set can be a
bipolar-valued fuzzy filter.

Theorem 3.6. A bipolar-valued fuzzy set f := (L; f−, f+) in L is a bipolar-
valued fuzzy filter of L := (L, |) if and only if it satisfies the condition (3.12)
and

(∀x, y ∈ L)

(
f−((x|y)|(x|y)) ≤ max{f−(x), f−(y)}
f+((x|y)|(x|y)) ≥ min{f+(x), f+(y)}

)
. (3.13)

9
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Proof. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L := (L, |). Then
the condition (3.12) is valid by Proposition 3.4. Using (s1), (s2), (2.3), (2.4) and
(3.4), we have f−((x|y)|(x|y)) = f−(((1|1)|(x|y))|(x|y)) ≤ max{f−(x), f−(y)}
and f+((x|y)|(x|y)) = f+(((1|1)|(x|y))|(x|y)) ≥ min{f+(x), f+(y)} for all x, y ∈
L.

Conversely, assume that f := (L; f−, f+) satisfies (3.12) and (3.13). Since
x ≤L 1 and y ≤L x|(y|y) for all x, y ∈ L, we have f−(1) ≤ f−(x), f+(1) ≥
f+(x), f−(x|(y|y)) ≤ f−(y), and f+(x|(y|y)) ≥ f+(y) by (3.12). Using (2.5),
(s2), (3.12) and (3.13), we have

f−((x|(y|z))|(y|z)) ≤ f−((y|z)|(y|z)) ≤ max{f−(y), f−(z)}

and f+((x|(y|z))|(y|z)) ≥ f+((y|z)|(y|z)) ≥ min{f+(y), f+(z)} for all x, y ∈ L.
Therefore f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |).

Theorem 3.7. A bipolar-valued fuzzy set f := (L; f−, f+) in L is a bipolar-
valued fuzzy filter of L := (L, |) if and only if its negative s-cut and positive t-cut
are filters of L := (L, |) whenever they are nonempty for all (s, t) ∈ [−1, 0]×[0, 1].

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |)
and L(f−; s) 6= ∅ 6= U(f+; t) for all (s, t) ∈ [−1, 0] × [0, 1]. It is clear that 1 ∈
L(f−; s)∩U(f+; t). Let y, b ∈ L be such that (y, b) ∈ L(f−; s)×U(f+; t). Then
f−(y) ≤ s and f+(b) ≥ t. It follows from (3.3) that f−(x|(y|y)) ≤ f−(y) ≤
s and f+(a|(b|b)) ≥ f+(b) ≥ t for all x, a ∈ L. Hence (x|(y|y), a|(b|b)) ∈
L(f−; s)× U(f+; t). Let y, b, z, c ∈ L be such that (y, b) ∈ L(f−; s)× U(f+; t)
and (z, c) ∈ L(f−; s) × U(f+; t). Then f−(y) ≤ s, f−(z) ≤ s, f+(b) ≥ t, and
f+(c) ≥ t. Using (3.4), we get f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)} ≤ s
and f+((a|(b|c))|(b|c)) ≥ min{f+(b), f+(c)} ≥ t, and so

((x|(y|z))|(y|z), (a|(b|c))|(b|c)) ∈ L(f−; s)× U(f+; t).

Therefore L(f−; s) and U(f+; t) are filters of L := (L, |).
Conversely, let f := (L; f−, f+) be a bipolar-valued fuzzy set in L for which

its negative s-cut and positive t-cut are filters of L := (L, |) whenever they are
nonempty for all (s, t) ∈ [−1, 0] × [0, 1]. If f−(1) > f−(a) or f+(1) < f+(x)
for some x, a ∈ L, then a ∈ L(f−; f−(a)) and x ∈ U(f+; f+(x)), but 1 /∈
L(f−; f−(a)) ∩ U(f+; f+(x)). This is a contradiction, and thus f−(1) ≤ f−(x)
and f+(1) ≥ f+(x) for all x ∈ L. If f−(a|(b|b)) > f−(b) for some a, b ∈ L,
then b ∈ L(f−; f−(b)) but a|(b|b) /∈ L(f−; f−(b)) which is a contradiction.
Hence f−(x|(y|y)) ≤ f−(y) for all x, y ∈ L. If f+(x|(y|y)) < f+(y) for some
x, y ∈ L, then y ∈ U(f+; f+(y)) but x|(y|y) /∈ U(f+; f+(y)), a contadiction.
Thus f+(x|(y|y)) ≥ f+(y) for all x, y ∈ L. Suppose that

f−((a|(b|c))(b|c)) > max{f−(b), f−(c)}

or f+((x|(y|z))(y|z)) < min{f+(y), f+(z)} for some a, b, c, x, y, z ∈ L. Then
b, c ∈ L(f−; s) or y, z ∈ U(f+; t) where s := max{f−(b), f−(c)} and t :=
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min{f+(y), f+(z)}. But (a|(b|c))(b|c) /∈ L(f−; s) or (x|(y|z))(y|z) /∈ U(f+; t), a
contradiction. Therefore f−((x|(y|z))(y|z)) ≤ max{f−(y), f−(z)} and

f+((x|(y|z))(y|z)) ≥ min{f+(y), f+(z)}

for all x, y, z ∈ L. Consequently, f := (L; f−, f+) is a bipolar-valued fuzzy
filter of L := (L, |).

Theorem 3.8. A bipolar-valued fuzzy set f := (L; f−, f+) in L is a bipolar-
valued fuzzy filter of L := (L, |) if and only if the fuzzy sets f−

c and f+ are fuzzy
filters of L := (L, |), where f−

c : L→ [0, 1], x 7→ 1− f−(x).

Proof. Assume that f := (L; f−, f+) is is a bipolar-valued fuzzy filter of L :=
(L, |). It is clear that f+ is a fuzzy filter of L := (L, |). For every x, y, z ∈ L, we
have f−

c (1) = 1− f−(1) ≥ 1− f−(x) = f−
c (x),

f−
c (x|(y|y)) = 1− f−(x|(y|y)) ≥ 1− f−(y) = f−

c (y),

and

f−
c ((x|(y|z))|(y|z)) = 1− f−((x|(y|z))|(y|z))

≥ 1−max{f−(y), f−(z)}
= min{1− f−(y), 1− f−(z)}
= min{f−

c (y), f−
( z)}.

Hence f−
c is a fuzzy filter of L := (L, |).

Conversely, let f := (L; f−, f+) be a bipolar-valued fuzzy set in L for which
f−
c and f+ are fuzzy filters of L := (L, |). Then 1− f−(1) = f−

c (1) ≥ f−
c (x) =

1− f−(x),

1− f−(x|(y|y)) = f−
c (x|(y|y)) ≥ f−

c (y) = 1− f−(y)

and

1− f−((x|(y|z))|(y|z)) = f−
c ((x|(y|z))|(y|z))

≥ min{f−
c (y), f−

c (z)}
= min{1− f−(y), 1− f−(z)}
= 1−max{f−(y), f−(z)}

for all x, y, z ∈ L. Hence f−(1) ≤ f−(x), f−(x|(y|y)) ≤ f−(y) and

f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)}

for all x, y, z ∈ L. Therefore, f := (L; f−, f+) is a bipolar-valued fuzzy filter of
L := (L, |).

11
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Theorem 3.9. Given a nonempty subset F of L, let fF := (L; f−
F , f+

F ) be a
bipolar-valued fuzzy set in L defined as follows:

f−
F : L→ [−1, 0], a 7→

{
s− if a ∈ F,
t− otherwise,

and

f+
F : L→ [0, 1], x 7→

{
s+ if x ∈ F,
t+ otherwise,

where s− < t− in [−1, 0] and s+ > t+ in [0, 1]. Then fF := (L; f−
F , f+

F ) is a
bipolar-valued fuzzy filter of L := (L, |) if and only if F is a filter of L := (L, |).
Moreover, we have F = LfF := {x ∈ L | f−

F (x) = f−
F (1), f+

F (x) = f+
F (1)}.

Proof. Assume that fF := (L; f−
F , f+

F ) is a bipolar-valued fuzzy filter of L :=
(L, |). Then f−

F (1) = s− and f+
F (1) = s+, and so 1 ∈ F . Let x, y ∈ L be such

that y ∈ F . Then f−
F (y) = s− and f+

F (y) = s+. It follows from (3.3) that s− =
f−
F (y) ≥ f−

F (x|(y|y)) and s+ = f+
F (y) ≤ f+

F (x|(y|y)). Hence f−
F (x|(y|y)) = s−

and f+
F (x|(y|y)) = s+, from which x|(y|y) ∈ F is derived. Let x, y, z ∈ L be

such that y, z ∈ F . Using (3.4), we have:

f−
F ((x|(y|z))|(y|z)) ≤ max{f−

F (y), f−
F (z)} = s−,

f+
F ((x|(y|z))|(y|z)) ≥ min{f+

F (y), f+
F (z)} = s+,

and so f−
F ((x|(y|z))|(y|z)) = s− and f+

F ((x|(y|z))|(y|z)) = s+. This shows that
(x|(y|z))|(y|z) ∈ F . Therefore F is a filter of L := (L, |).

Conversely, let F be a filter of L := (L, |). Since 1 ∈ F , we get f−
F (1) = s− ≤

f−
F (a) and f+

F (1) = s+ ≥ f+
F (x) for all (a, x) ∈ L × L. Let x, y ∈ L. If y ∈ F ,

then x|(y|y) ∈ F , and thus f−
F (x|(y|y)) = s− = f−

F (y) and f+
F (x|(y|y)) = s+ =

f+
F (y). If y /∈ F , then f−

F (y) = t− > f−
F (x|(y|y)) and f+

F (y) = t+ < f+
F (x|(y|y)).

For every x, y, z ∈ L, if y, z ∈ F then (x|(y|z))|(y|z) ∈ F which implies that
f−
F ((x|(y|z))|(y|z)) = s− = max{f−

F (y), f−
F (z)} and f+

F ((x|(y|z))|(y|z)) = s+ =
min{f+

F (y), f+
F (z)}. If y /∈ F or z /∈ F , then

f−
F ((x|(y|z))|(y|z)) ≤ t− = max{f−

F (y), f−
F (z)},

f+
F ((x|(y|z))|(y|z)) ≥ t+ = min{f+

F (y), f+
F (z)}.

Therefore, fF := (L; f−
F , f+

F ) is a bipolar-valued fuzzy filter of L := (L, |). Since
F is a filter of L := (L, |), we get

LfF = {x ∈ L | f−
F (x) = f−

F (1), f+
F (x) = f+

F (1)}
= {x ∈ L | f−

F (x) = s−, f+
F (x) = s+}

= {x ∈ L | x ∈ F} = F.

This completes the proof.

12

203

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Hee Sik Kim et al 192-210



4 Normality of bipolar-valued fuzzy filters

Definition 4.1. A bipolar-valued fuzzy filter f := (L; f−, f+) of L := (L, |)
is said to be normal if there exists (a, x) ∈ L × L such that f−(a) = −1 and
f+(x) = 1.

Example 4.2. Consider the Sheffer stroke Hilbert algebra L := (L, |) in Ex-
ample 3.2. Let f := (L; f−, f+) be a BVF-set in L given by Table 6.

Table 6: Tabular representation of f := (L; f−, f+)

L f−(x) f+(x)
0 −0.42 0.36
2 −0.42 0.36
3 −0.42 0.76
4 −0.57 0.36
5 −0.42 1.00
6 −1.00 0.36
7 −0.57 0.76
1 −1.00 1.00

Then f := (L; f−, f+) is a normal bipolar-valued fuzzy filter of L := (L, |).

Theorem 4.3. A bipolar-valued fuzzy filter f := (L; f−, f+) of L := (L, |) is
normal if and only if f−(1) = −1 and f+(1) = 1.

Proof. Suppose that f := (L; f−, f+) is a normal bipolar-valued fuzzy filter
of L := (L, |). Then f−(a) = −1 and f+(x) = 1 for some (a, x) ∈ L × L. It
follows from (3.1) that f−(1) ≤ f−(a) = −1 and f+(1) ≥ f+(x) = 1. Hence
f−(1) = −1 and f+(1) = 1. The sufficiency is clear.

Given two bipolar-valued fuzzy sets f := (L; f−, f+) and g := (L; g−, g+)
in L, the inclusion “ b” between them is defined as follows:

f b g ⇔ (∀x ∈ L)(f−(x) ≥ g−(x), f+(x) ≤ g+(x)).

In this case we say that g := (L; g−, g+) is larger than f := (L; f−, f+).

Theorem 4.4. Given a bipolar-valued fuzzy set f := (L; f−, f+) in L, let
f∗ := (L; f−

∗ , f+
∗ ) be a bipolar-valued fuzzy set in L defined by f−

∗ (a) = f−(a)−
1− f−(1) and f+

∗ (x) = f+(x) + 1− f+(1) for all (a, x) ∈ L×L. Then f := (L;
f−, f+) is a bipolar-valued fuzzy filter of L := (L, |) if and only if f∗ := (L; f−

∗ ,
f+
∗ ) is a bipolar-valued fuzzy filter of L := (L, |). Moreover, f∗ := (L; f−

∗ , f+
∗ )

is normal which is larger than f := (L; f−, f+).

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |)
and let x, y ∈ L be such that x ≤L y. Then

f−
∗ (x) = f−(x)− 1− f−(1) ≥ f−(y)− 1− f−(1) = f−

∗ (y)
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and
f+
∗ (x) = f+(x) + 1− f+(1) ≤ f+(y) + 1− f+(1) = f+

∗ (y).

For every x, y ∈ L, we have:

f−
∗ ((x|y)|(x|y)) = f−((x|y)|(x|y))− 1− f−(1)

≤ max{f−(x), f−(y)} − 1− f−(1)

= max{f−(x)− 1− f−(1), f−(y)− 1− f−(1)}
= max{f−

∗ (x), f−
∗ (y)}

and

f+
∗ ((x|y)|(x|y)) = f+((x|y)|(x|y)) + 1− f+(1)

≥ min{f+(x), f+(y)}+ 1− f+(1)

= min{f+(x) + 1− f+(1), f+(y) + 1− f+(1)}
= min{f+

∗ (x), f+
∗ (y)}.

Hence f∗ := (L; f−
∗ , f+

∗ ) is a bipolar-valued fuzzy filter of L := (L, |) by Theorem
3.6. Suppose that f∗ := (L; f−

∗ , f+
∗ ) is a bipolar-valued fuzzy filter of L :=

(L, |). Since f−(1) − 1 − f−(1) = f−
∗ (1) ≤ f−

∗ (a) = f−(a) − 1 − f−(1) and
f+(1) + 1− f+(1) = f+

∗ (1) ≥ f+
∗ (x) = f+(x) + 1− f+(1) for all (a, x) ∈ L×L,

we have f−(1) ≤ f−(x) and f+(1) ≥ f+(x) for all x ∈ L. Since

f−(b)− 1− f−(1) = f−
∗ (b) ≥ f−

∗ (a|(b|b)) = f−(a|(b|b))− 1− f−(1)

and f+(y) + 1 − f+(1) = f+
∗ (y) ≤ f+

∗ (x|(y|y)) = f+(x|(y|y)) + 1 − f+(1) for
all (a, x), (b, y) ∈ L × L, it follows that f−(y) ≥ f−(x|(y|y)) and f+(y) ≤
f+(x|(y|y)) for all x, y ∈ L. Since

f−((a|(b|c))|(b|c))− 1− f−(1) = f−
∗ ((a|(b|c))|(b|c))

≤ max{f−
∗ (b), f−

∗ (c)}
= max{f−(b)− 1− f−(1), f−(c)− 1− f−(1)}
= max{f−(b), f−(c)} − 1− f−(1)

and

f+((x|(y|z))|(y|z)) + 1− f+(1) = f+
∗ ((x|(y|z))|(y|z))

≥ min{f+
∗ (y), f+

∗ (z)}
= min{f+(y) + 1− f+(1), f+(z) + 1− f+(1)}
= min{f+(y), f+(z)}+ 1− f+(1)

for all (a, x), (b, y), (c, z) ∈ L× L, we have

f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)}
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and f+((x|(y|z))|(y|z)) ≥ min{f+(y), f+(z)} for all x, y, z ∈ L. Therefore,
f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |). Since f−

∗ (1) =
f−(1) − 1 − f−(1) = −1 and f+

∗ (1) = f+(1) + 1 − f+(1) = 1, we know that
f∗ := (L; f−

∗ , f+
∗ ) is normal. Also, we have f−

∗ (x) = f−(x)−1− f−(1) ≤ f−(x)
and f+

∗ (x) = f+(x)+1−f+(1) ≥ f+(x) for all x ∈ L. This shows that f∗ := (L;
f−
∗ , f+

∗ ) is larger than f := (L; f−, f+).

Theorem 4.5. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L :=
(L, |). Then it is normal if and only if f∗ = f, that is, f−(x) = f−

∗ (x) and
f+(x) = f+

∗ (x) for all x ∈ L.

Proof. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L := (L, |).
Then f∗ := (L; f−

∗ , f+
∗ ) is a normal bipolar-valued fuzzy filter of L := (L, |) by

Theorem 4.4. Hence it is clear that if f∗ = f, then f := (L; f−, f+) is normal.
Conversely, if f := (L; f−, f+) is normal, then f−

∗ (x) = f−(x)−1−f−(1) =
f−(x) and f+

∗ (x) = f+(x) + 1− f+(1) = f+(x) for all x ∈ L. Hence f∗ = f.

Proposition 4.6. Let f := (L; f−, f+) and g := (L; g−, g+) be bipolar-valued
fuzzy filters of L := (L, |) with f b g. If f−(1) = g−(1) and f+(1) = g+(1),
then LfF ⊆ LgF

.

Proof. Straightforward.

The example below shows that there are bipolar-valued fuzzy filters f := (L;
f−, f+) and g := (L; g−, g+) of L := (L, |) that satisfy LfF ⊆ LgF

and f 6b g.

Example 4.7. Consider the Sheffer stroke Hilbert algebra L := (L, |) in Ex-
ample 3.5. Let f := (L; f−, f+) and g := (L; g−, g+) be bipolar-valued fuzzy
sets in L defined by the Table 7.

Table 7: Tabular representation of f and g

L f−(x) f+(x) g−(x) g+(x)
0 −0.42 0.43 −0.36 0.33
2 −1.00 1.00 −1.00 1.00
3 −0.42 0.43 −0.36 0.33
1 −1.00 1.00 −1.00 1.00

Then LfF = {1, 2} = LgF
but f 6b g since f−(3) = −0.42 < −0.36 = g−(3)

and/or f+(0) = 0.43 > 0.33 = g+(0).

Theorem 4.8. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L :=
(L, |). Then it is normal if and only if there is a bipolar-valued fuzzy filter
g := (L; g−, g+) of L := (L, |) such that g∗ b f.

Proof. The necessity is straightforward because if f := (L; f−, f+) is normal,
then f∗ = f.
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Conversely, assume that there is a bipolar-valued fuzzy filter g := (L; g−,
g+) of L := (L, |) such that g∗ b f. Then −1 = g−∗ (1) ≥ f−(1) and 1 = g+∗ (1) ≤
f+(1). Thus f−(1) = −1 and f+(1) = 1, and so f := (L; f−, f+) is normal.

Theorem 4.9. Given a bipolar-valued fuzzy set f := (L; f−, f+) in L, consider
an increasing mapping ` := (`−, `+) : [−1, f−(1)]× [0, f+(1)]→ [−1, 0]× [0, 1].
If f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |), then the
bipolar-valued fuzzy set f` := (L; f−

` , f+
` ) in L defined by f−

` (a) = `−(f−(a))
and f+

` (x) = `+(f+(x)) for all (a, x) ∈ L × L is a bipolar-valued fuzzy filter of
L := (L, |). Moreover, if f−

` (1) = −1 and f+
` (1) = 1, then f` := (L; f−

` , f+
` ) is

normal, and

(∀(s, t) ∈ [−1, f−(1)]× [0, f+(1)])(`−(s) ≤ s, `+(t) ≥ t ⇒ f b f`).

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of L :=
(L, |). Let x, y ∈ L be such that x ≤L y. Then f−

` (x) = `−(f−(x)) ≥
`−(f−(y)) = f−

` (y) and f+
` (x) = `+(f+(x)) ≤ `+(f+(y)) = f+

` (y). For ev-
ery x, y, z ∈ L, we have

f−
` ((x|y)|(x|y)) = `−(f−((x|y)|(x|y)))

≤ `−(max{f−(x), f−(y)})
= max{`−(f−(x)), `−(f−(y))}
= max{f−

` (x), f−
` (y)}

and

f+
` ((x|y)|(x|y)) = `+(f+((x|y)|(x|y)))

≥ `+(min{f+(x), f+(y)})
= min{`+(f+(x)), `+(f+(y))}
= min{f+

` (x), f+
` (y)}.

Therefore, f` := (L; f−
` , f+

` ) is a bipolar-valued fuzzy filter of L := (L, |) by
Theorem 3.6. If f−

` (1) = −1 and f+
` (1) = 1, then f` := (L; f−

` , f+
` ) is normal

by Theorem 4.3. Let (s, t) ∈ [−1, f−(1)]× [0, f+(1)] be such that `−(s) ≤ s and
`+(t) ≥ t. Then f−

` (x) = `−(f−(x)) ≤ f−(x) and f+
` (x) = `+(f+(x)) ≥ f+(x)

for all x ∈ L. Hence f b f`.

Theorem 4.10. Let f := (L; f−, f+) be a normal bipolar-valued fuzzy filter of
L := (L, |) such that f−(a) 6= f−(1) and f+(x) 6= f+(1) for some (a, x) ∈ L×L.
If f := (L; f−, f+) is a maximal element of (NF (L),b), then it is described as
follows:

f− : L→ [−1, 0], a 7→
{
−1 if a = 1,
0 otherwise,

f+ : L→ [0, 1], x 7→
{

1 if x = 1,
0 otherwise,

(4.1)

where NF (L) is the set of all normal bipolar-valued fuzzy filters of L := (L, |).
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Proof. Clearly, (NF (L),b) is a poset. Assume that f := (L; f−, f+) is a
maximal element of (NF (L),b). It is clear that f−(1) = −1 and f+(1) = 1
since f := (L; f−, f+) is normal. Let (a, x) ∈ L×L be such that f−(a) 6= f−(1)
and f+(x) 6= f+(1). If f−(a) 6= 0 and f+(x) 6= 0, then −1 < f−(c) < 0 and
0 < f+(z) < 1 for some (c, z) ∈ L×L. Let g := (L; g−, g+) be a bipolar-valued
fuzzy set in L defined by

g− : L→ [−1, 0], a 7→ 1
2 (f−(a) + f−(c)),

g+ : L→ [0, 1], x 7→ 1
2 (f+(x) + f+(z)).

Let x, y ∈ L be such that x ≤L y. Then

g−(x) = 1
2 (f−(x) + f−(c)) ≥ 1

2 (f−(y) + f−(c)) = g−(y)

and g+(x) = 1
2 (f+(x)+f+(z)) ≤ 1

2 (f+(y)+f+(z)) = g+(y). For every x, y ∈ L,
we have

g−((x|y)|(x|y)) = 1
2 (f−((x|y)|(x|y)) + f−(c))

≤ 1
2 (max{f−(x), f−(y)}+ f−(c))

= 1
2 max{f−(x) + f−(c), f−(y) + f−(c)}

= max{ 12 (f−(x) + f−(c)), 1
2 (f−(y) + f−(c))}

= max{g−(x), g−(y)}

and

g+((x|y)|(x|y)) = 1
2 (f+((x|y)|(x|y)) + f+(z))

≥ 1
2 (min{f+(x), f+(y)}+ f+(z))

= 1
2 min{f+(x) + f+(z), f+(y) + f+(z)}

= min{ 12 (f+(x) + f+(z)), 1
2 (f+(y) + f+(z))}

= min{g+(x), g+(y)}.

Hence g := (L; g−, g+) is a bipolar-valued fuzzy filter of L := (L, |) by Theorem
3.6, and g∗ := (L; g−∗ , g

+
∗ ) is a normal bipolar-valued fuzzy filter of L := (L, |)

by Theorem 4.4. We can observe that

g−∗ (x) = g−(x)− 1− g−(1)

= 1
2 (f−(x) + f−(c))− 1− 1

2 (f−(1) + f−(c))

= 1
2 (f−(x)− 1) ≤ f−(x)

and

g+∗ (x) = g+(x) + 1− g+(1)

= 1
2 (f+(x) + f+(z)) + 1− 1

2 (f+(1) + f+(z))

= 1
2 (f+(x) + 1) ≥ f+(x)
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for all x ∈ L. Hence f b g∗, and so f := (L; f−, f+) is not a maximal element
of (NF (L),b). This is a contradiction, and therefore (f−(a), f+(x)) = (0, 0) for
all (a, x) ∈ L× L with f−(a) 6= −1 and f+(x) 6= 1. Consequently, f := (L; f−,
f+) is described as (4.1).
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