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Abstract The purpose of this paper is to study by applying the makgeolli
structure to commutative ideal in BCK-algebras. The notion of commutative
makgeolli ideal is introduced, and their properties are investigated. The rela-
tionship between makgeolli ideal and commutative makgeolli ideal is discussed.
Example to show that a makgeolli ideal may not be a commutative makgeolli
ideal is provided, and then the conditions under which a makgeolli ideal can
be a commutative makgeolli ideal are explored. A new commutative makgeolli
ideal is established using the given commutative makgeolli ideal, and character-
izations of a commutative makgeolli ideal are displayed. Finally, the extension
property for a commutative makgeolli ideal is established.
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1 Introduction

Many of the problems that need to be solved in the real world often include
inherently inaccurate, uncertain, and ambiguous elements. The fuzzy set by
Zadeh [26, 27, 28] is useful tool as a means of effectively controlling uncer-
tainty, which is an attribute of information. Uncertainty is limited in handling
using traditional mathematical tools, but can be handled using a wide range
of theories such as probability theory, (intuitionistic) fuzzy set theory, theory
of interval mathematics, vague set theory, rough set theory, and soft set the-
ory etc. Molodtsov [21] introduced the concept of a soft set as a new tool
for dealing with uncertainties beyond the difficulties that plagued general the-
oretical approaches, and he suggested several directions for the application of
the soft set. Globally, interest in soft set theory and its application has been
growing rapidly in recent years. Following this trend, research in the field of
algebraic structure is also showing the use of soft sets. For example, groups,
rings, fields and modules etc. (see [1, 3, 4, 5, 12]), and BCK/BCl-algebras etc.
(see [9, 10, 11, 13, 14, 15, 16, 17, 22, 24]). In 2019, Ahn et al. [2] introduced the
notion of makgeolli structures as a hybrid structure based on fuzzy set and soft
set theory, and applied it to BCK/BCl-algebras. Kologani et al. [18] applied the
makgeolli structure to hoops, and Song et al. [25] studied positive implicative
makgeolli ideals of BCK-algebras.

In this paper, we apply the makgeolli structure to the commutative ideal of
BCK-algebras. We introduce the notion of commutative makgeolli ideal, and
investigate their properties. We discuss the relationship between makgeolli ideal
and commutative makgeolli ideal. We provide example to show that any mak-
geolli ideal may not be a commutative makgeolli ideal, and then we explore the
conditions under which makgeolli ideal can be commutative makgeolli ideal. We
make a new commutative makgeolli ideal using the given commutative makge-
olli ideal. We explore the characterization of commutative makgeolli ideal and
establish the extension property for commutative makgeolli ideal.

2 Preliminaries

2.1 Preliminaries on BCK-algebras

BCI/BCK-algebra is an important type of logical algebra introduced by K. Iséki
(see [7] and [8]), and it has been extensively investigated by several researchers.

See the books [6, 20] for further information regarding BCI-algebras and BCK-
algebras. In this section, we recall the definitions and basic results required in
this paper.

Let L be a set with a special element “0” and a binary operation “x”. If it
satisfies the following conditions:
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(I1) (Va,b,c € L) (((axb)* (axc))* (cxb)=0),
(12) (Va,b€ L) ((ax(axb))*b=0),
(I3) (Vae L) (a*xa=0),
(I4) (Va,be L) (axb=0,bxa=0 = a=b),
(K) (Vae L) (0xa=0),

then it is called a BCK-algebra, and it is denoted by (L, *,0).
The order relation “ <” in a BCK-algebra (L, %, 0) is defined as follows:

(Va,b € L)(a<b & axb=0). (2.1)
Every BCK/BCl-algebra (L, %,0) satisfies the following conditions (see [19,
D:
(Vae L)(ax0=a), (2.2)
(Va,b,ce L)(a<b = axc<bxc,cxb<cxa), .
(Va,b,c € L) ((axb)xc= (ax*xc)*b). (2.4)

Every BCI-algebra (L, x,0) satisfies (see [0]):

(Va,b e L) (a*x(ax(axb)) =axb), (2.5)
(Va,b € L) (0% (axb) = (0xa)*(0xb)). (2.6)

A BCK-algebra (L, *,0) is said to be commutative (see [20]) if it satisfies:
(Va,b € L)(ax(axb)=bx(bxa)). (2.7)
A subset R of a BCK/BCl-algebra (L, x,0) is called

e a subalgebra of (L,*,0) (see [6, 20]) if it satisfies:
(Va,b e R)(axb eR), (2.8)
e an ideal of (L,*,0) (see [0, 20]) if it satisfies:
0eR, (2.9)
(Va,be L)(axbeR,bER = acR). (2.10)

A subset R of a BCK-algebra (L, , 0) is called a commutative ideal of (L, x,0)
(see [20]) if it satisfies (2.9) and

(Va,b,c e L)((axb)xceR, c€R = ax(bx(bxa)) e R). (2.11)

Lemma 2.1 ([20]). A nonempty subset R of a BCK-algebra (L, *,0) is a com-
mutative ideal of (L,*,0) if and only if R is an ideal of (L,*,0) that satisfies:

(Ma,beL)(axbeR = ax(bx(bxa)) €R). (2.12)
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2.2 Preliminaries on makgeolli structures

Let L be a universal set and E a set of parameters. We say that the pair (L, E)
is a soft universe.

Definition 2.2 ([2]). Let (L,E) be a soft universe and let R and S be subsets
of E. A makgeolli structure over (L,E) (related to R and S) is a structure of
the form:

Mg s,y = {{(a,b, 2); fr(a), gs(b),£(2)) [ (a,b,2) e R x S x L} (2.13)

where fr := (f,R) and gs := (g, S) are soft sets over L and & is a fuzzy set in
L.

A fuzzy set € in a set L of the form

[ te(0,1] if b=a,
£(b) ’_{ 0 it b a,

is said to be a fuzzy point with support a and value ¢ and is denoted by (a;).
For a fuzzy set £ in a set L, we say that a fuzzy point (a;) is

(i) contained in &, denoted by (a;) € &, (see [23]) if {(a) > ¢
(i) quasi-coincident with &, denoted by (a;) ¢ &, (see [23]) if £(a) +¢ > 1.

For the sake of simplicity, the makgeolli structure in (2.13) will be denoted by
Mz.s,0) = (fr,9s,§). The makgeolli structure Mz =,z := (fr,gr,§) over
(L,E) related to a subset R of E is simply denoted by Mz 1) := (fr,9r,§). If
R =S = E, we use the notation M, g) := (f&, g&, §) as the makgeolli structure
over (L,E).

We say that a soft universe (L,E) is a BCK/BCI-soft universe if L and E

Wy ”

are BCK/BCl-algebras with binary operations “«” and “@”, respectively.

Definition 2.3 ([2]). Let (L,E) be a BCK/BCI-soft universe. A makgeolli
structure My, gy := (fg, gg, &) is called a makgeolli ideal of (L,E) if it satisfies:

Va € E) (f < :
{ Cr Dby 2y, e e @) .
5(a) D fe(a@b) N fz(b)
(Va,b € E) < 5(a) C ge(a @ b) Ugs(b) | (2.15)
((xy)/t) €& (y/r) €€
(Vz,y € L)(Vt,r € (0,1]) < = (z/min{t,r}) € ¢ ) ’

Lemma 2.4 ([2]). Let (L,E) be a BCK/BCI-soft universe. Every makgeolli
ideal M1, gy := (f&, g, &) of (L, E) satisfies the following assertions.

(Va,beE(a<b :>{ & 2;1;; )

(Ve,yel)(x <y = £(x) = 5

(i)
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<Va,b,ceJE>( aob<c ;‘{ Eii;"ié 38
(=

(Ve,y,ze L) (xxy <z = &= )zmln{f( ), &

fe(c)
gr(c)
-

Let (L, E) be a BCK/BClI-soft universe. Given a makgeolli structure My, g) :=
(fr, gr, &) over (L,E), consider the following sets:

fe(B;a) :={acE| fe(a) 2 a},
g9u(E;0) == {b € E | g(b) € 6},
§(Lit) :={z € L|&(z) >t}

where o and § are subsets of L and ¢ € [0, 1].

(i)

Lemma 2.5 ([2]). A makgeolli structure M1, gy := (f&, g, §) over a BCK/BCI-
soft universe (L,E) is a makgeolli ideal of (L,E) if and only if the nonempty
sets fe(E; ) and gr(E; ) are ideals of (E,,0), and the nonempty set £(L;t)
is an ideal of (L,*,0) for all subsets a and § of L and t € [0,1].

3 Commutative makgeolli ideals

In what follows, let (Y, E) be a BCK-soft universe unless otherwise specified.

Definition 3.1. A makgeolli structure My gy := (fg, gg, §) is called a commu-
tative makgeolli ideal of (Y,E) if it satisfies (2.14) and

B fe(@o@o(@or)) 2 f((Zoy)oz)N fu(2)
( "ZEE><gw@(y@(y@ﬁc)))ggE«mz))@z)umé))’ .
((mxy)xz2)/t) €& (2/r) €€
(Vx,y,z € Y)(Vt,r € (0 1])( S ((z% (g (y *2))) /min{t, r}) € € ) (3.2)

Example 3.2. Consider a BCK-soft universe (Y,E) where Y := {0,1,2,3,4}

Wy

and E := {0, 1,2, 3} have binary operations “x” and “@”, respectively, given by
Table 1.

Wy ”

Table 1: Cayley tables for the binary operations “«” and “@”

1

* [0 2 3 4

|0 1 2 3
0{0 0 0 0 O

0|0 0 0 O
111 0 0 1 1

111 0 1 1
212 1 0 2 2

212 2 0 2
313 3 3 0 3 303 3 3 0
414 4 4 4 0
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Let My gy := (fE, gr, §) be a makgeolli structure over (Y, E) defined as follows:

Y if x =0,

) {3,4} if v=1,
B E=PY), z— {1.3,4) ifr—2
{1,2,3,4} if z =3,

{4} if z=0,
. {0,1,4} ifz=1,
ge:E—=PY), z— (1,4} ifr—2
{0,1,3,4} if 2 =3,
and
0.79 if y=0,
0.62 if y=1,
E:Y = [0,1], y— < 062 if y=2,
045 if y=3,
0.67 if y=4.

It is routine to verify that My g) := (fg, gE, ) is a commutative makgeolli ideal
of (Y,E).

We discuss the relationship between the commutative makgeolli ideal and
the makgeolli ideal.

Theorem 3.3. Every commutative makgeolli ideal is a makgeolli ideal.

Proof. Let My := (fg, g&, §) be a commutative makgeolli ideal of (Y,E). If
we put g =0 =y in (3.1) and (3.2) and use (K) and (2.2), then we get (2.15).
Hence My := (f&, &, §) is a makgeolli ideal of (Y,E). O

The following example informs the existence of the makgeolli ideal, not the
commutative makgeolli ideal.

Example 3.4. Consider a BCK-soft universe (Y, E) in which Y = {0, 1,2, 3,4} =

Wy ”

E with binary operations “x” and “©”, respectively, given by Table 2.

Table 2: Cayley tables for the binary operations “«” and “@”

*0 1 2 3 4 |0 1 2 3 4
0j0 0 0 0 O 00 0 0 0 O
111 0 1 0 O 111 0 1 0 O
212 2 0 0 0 212 2 0 2 0
313 3 3 0 0 313 1 3 0 1
414 4 4 3 0 414 4 4 4 0
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Let My := (f&, g&, ) be a makgeolli structure on (Y,E) defined as follows:

Y if =0,
(1,2,4)  ifr=1,
fE:E=PY), z—< {0,1,3,4} if z =2,

1,4} if =3,
{0,2} if x =4,
4 if =0,
(0,2,4}y  ifzr=1,
g :E—=PY), z— ¢ {1,4} it =2,

{0,2,4}  if z =3,
{0,1,2,4} if z =4,

and
0.73 if y =0,
0.63 if y=1,
€Y 5 [0,1], y—<{ 054 if y=2,
0.42 if y =3,
042 if y=4.

It is routine to verify that My gy := (f, gg, §) is a makgeolli ideal of (V,E).
But it is not a commutative makgeolli ideal of (Y, E) since

2040 (402)) = fe(2) ={0,1,3,4} 2 {1,2,4} = fe((204) @ 1) N fe(1)
and/or {((2%3)%0)/0.71) € ¢ and (0/0.65) € &, but
((2% (3% (3%2)))/min{0.71,0.65} = (2/0.65) €.

We explore the conditions for the makgeolli ideal to be the commutative
makgeolli ideal.

Theorem 3.5. In a commutative BCK-algebra, every makgeolli ideal is a com-
mutative makgeolli ideal.

Proof. Let (Y,E) be a BCK-soft universe in which (Y,*,0) and (E,®,0) are
commutative BCK-algebras, and let M(y gy := (f, gr, §) be a makgeolli ideal
of (Y,E). Using (I1), (I3), (2.1), (2.4) and the commutativity of Y and E, we

have
(Vz,9,2 € E)((z0 (o (y0)) o (Zoy) 0z) < 2),
(Vo,y,z € E)((z* (y*x (y*x))) * (zxy) * 2) < 2).
It follows from Lemma 2.4(ii) that
fe(@o (o (o)) 2 fel(zoy) @2)N ful?),
gE(Z O (Yo (o)) Ca((@oy) oz)uUg(),
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and

§lax (y+ (y +x))) = min{€((x * y) * 2),£(2)}- (3.3)

Let z,y,2z € Y and ¢,r € (0,1] be such that (((z *y) *2)/t) € £ and (z/7) € &.
Then ((z xy) *z) >t and £(z) > r, and so

(2 (y+ (y* x))) > min{E((z +y) * 2),£(2)} > min{t, r}

by (3.3). Hence ((x* (y * (y * )))/min{t,7}) € {. Therefore My ) := (f&, gk,

§) is a commutative makgeolli ideal of (Y, E). O

Corollary 3.6. If a BCK-soft universe (Y,E) satisfies any one of the following

conditions:
(vi,geE)(zo(@oy) <yo (o), (3.4)
(Vo,y €Y) (zx (zxy) <y*(yxx)), '
(VEjCE)(E<g = 2=§0(50%), 55)
Ve,yeY)(z<y = z=yx(y*xx)), ’
(Vi,g,2€B)(# <2 209<20% = #<79), (3.6)
(Ve,y,ze€Y)(x <z zxy<zsxzx = z<y), '

then every makgeolli ideal is a commutative makgeolli ideal.

Proof. Straightforward. O

Theorem 3.7. Let (Y, E) be a BCK-soft universe in which (Y, x,0) and (E, @,0)
are lower semilattices with respect to the order relation “<”. Then every mak-
geolli ideal is a commutative makgeolli ideal.

Proof. Assume that (Y,%,0) and (E,@,0) are lower semilattices with respect
to the order relation “<” in the BCK-soft universe (Y,E). Let &,y € E and
xz,y €Y. Then £ ® (Z @ g) is a common lower bound of # and y; and z * (x * y)
is a common lower bound of z and y. Also, § © (§ @ &) is the greatest lower
bound of & and §; and y * (y * x) is the greatest lower bound of 2 and y. Hence
T2 (209 <go (o) and z* (z+y) < yx*(y*z). Therefore every makgeolli
ideal is a commutative makgeolli ideal by Corollary 3.6. O

Theorem 3.8. If a makgeolli ideal My ) := (fr, &, §) of (Y,E) satisfies:

L { f@Eono@ogen) 2 k(@on o)
<vx’y’ZEE)<g<< 050 o (z?@@))CgE(((f@y)@é))’ (37
(Fa,5,2 € ¥) (€@ 5 2) * (g (g ) 2 E(((59) * 2)), (33)
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Proof. Let My ) := (fg, gr, §) be a makgeolli ideal of (Y,E) that satisfies the
conditions (3.7) and (3.8). Using (2.4), (2.15) and (3.7), we have

and

Let z,y,z € Y and t,r € (0,1] be such that (((z *y) *x2)/t) € £ and (z/r) € &.
Then

E((wx (yx (yxa)))x2) = E((xx2) x (y* (yx2))) > E(((xxy) x2) >t

by (2.4) and (3.8), that is, (((z % (y x (y x x))) * 2)/t) € £&. It follows from (2.15)

that ((x * (y * (y * ¥)))/min{t,r}) € & Therefore My g) := (fg, gg, &) is a
commutative makgeolli ideal of (Y, E). O

Theorem 3.9. A makgeolli structure My gy = (fg, gr, &) over (Y,E) is a
commutative makgeolli ideal of (Y,E) if and only if it is a makgeolli ideal of
(Y,E) that satisfies:

L fe@o@o(@or)) 2 frlzoy)
(V2.5 € E) ( ge(# 0 (§ 2 (§ 0 7)) C el @ P) ) ’ (39)
(Vo,y €Y) (§(z* (yx (y*x))) > E(r*y)). (3.10)

Proof. Assume that M(yg) := (fg, gr, §) is a commutative makgeolli ideal of
(Y,E). Then it is a makgeolli ideal of (Y,E) (see Theorem 3.3). If we put 2 =0
in (3.1) and use (2.2) and (2.14), then

fe(@o (o (o)) 2 fel(@
ge(E 2 (G (g0 1)) C ge((®

Let t := &(x*y) for all z,y € Y. Then ¢ := ((xxy) *0), i.e., (((xxy)=*0)/t) € £.
Since (0/t) € £ by (2.14), it follows from (3.2) that ((x * (y * (y * x)))/t) € &.
Hence &(x + (y * (y x 2))) > t = £(x x y). Therefore (3.9) and (3.10) are valid.

Conversely, let My gy := (fg, g, §) be a makgeolli ideal of (Y,E) that
satisfies (3.9) and (3.10). For every &,y,2 € E, we have

Ne
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by (3.9) and (2.15). Let x,y,z € Y and ¢, € (0,1] be such that (z/r) € € and
(((xxy) x2)/t) € & Then {(z x y)/min{¢,r}) € £ by (2.15). It follows from
(3.10) that

§((wx (yx (yxx))) = &(w +y) = minft, 7},

ie., (((z* (y*(y*x)))/min{t,r}) € £ Consequently, M(yg) := (f&, g&, &) is a
commutative makgeolli ideal of (Y, E). O

Theorem 3.10. A makgeolli structure My gy == (fg, gg, §) over (Y,E) is a
commutative makgeolli ideal of (Y, E) if and only if the nonempty sets fr(E; )
and gr(E;0) are commutative ideals of (E,@,0) for all subsets o and § of Y,
and the nonempty set £(Y';t) is a commutative ideal of (Y, *,0) for all t € [0, 1].

Proof. Let My ) := (fg, &, {) be a commutative makgeolli ideal of (Y,E).
Then it is a makgeolli ideal of (Y, E) (see Theorem 3.3). Hence the nonempty
sets fr(E;a) and gg(E;d) are ideals of (E,®,0), and the nonempty set £(Y;¢)
is an ideal of (Y, %,0) for all subsets & and § of Y and ¢ € [0, 1] by Lemma 2.5.
Let 2@y € fe(E;a) Ngr(E;d) for all #,7 € E and subsets o and § of Y. Then
fe(2©y) 2 aand ge(z@g) Cd. It follows from (3.9) that

fe(zo (o (o)) 2 felt0y) 2

and gr(20 (10 (1)) Cge(¥@y) Cd. Hence i @ (0 (0 &)) € fr(E;a)N
gr(E; 0), and therefore fr(E; ) and gg(E; ) are commutative ideals of (E, @, 0)
by Lemma 2.1. Let 2,y € Y and ¢ € [0, 1] be such that z xy € £(Y;t). Then
Ewsy) > t, and 50 E(v x (y+ (y +2)) = &z *y) > ¢ by (3.10), that i,
x#* (y* (y*xx)) € (Y;t). Thus £(Y;t) is a commutative iddeal of (Y, x,0) by
Lemma 2.1.

Conversely, suppose that the nonempty sets fg(E; ) and gg(E;J) are com-
mutative ideals of (E,®,0) for all subsets o and ¢ of Y, and the nonempty
set £(Y;t) is a commutative ideal of (Y,*,0) for all ¢ € [0,1]. Then fg(E;«)
and gg(E;¢) are ideals of (E,®,0), and £(Y;t) is an ideal of (Y] %,0). Thus
My gy == (fE, 9E, &) is a makgeolli ideal of (Y, E) by Lemma 2.5. Let &, € E be
such that fr(2@9) = o and gg(Z@7) = d. Then 2@y € fr(E; o)Ngr(E; ), and so
to(yo(yoi)) € fe(E;a)Ngr(E;d) by Lemma 2.1. Hence fr(20 (32 (30%))) 2
a=fglz0y)and gr(Z @ (@ (@ &))) Cd = fe(r@y). Let x,y € Y be such
that &(x xy) = t. Then z xy) € £(Y;t), which implies from Lemma 2.1 that
2 (y* (y* ) € E(V3t). Thus €(z 5 (y * (y <)) > ¢ = £(z *y). Therefore
Mgy = (fg, g&, §) is a commutative makgeolli ideal of (Y,[E) by Theorem
3.9. O

Corollary 3.11. If M(yg) := (fg, gr, &) is a commutative makgeolli ideal of
(Y,E), then fu(E;a) N gr(E;0) and £(Y;t) are commutative ideals of (E,@,0)
and (Y, *,0), respectively, for all subsets a and 6 of Y and t € [0,1].

Proof. Straightforward. O

The converse of Corollary 3.11 is not true in general as seen in the following
example.

10
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Example 3.12. Consider a BCK-soft universe (Y, E) where Y = E := {0, 1, 2, 3,4}

has binary operation “x(= @)” given by Table 3.

Table 3: Cayley tables for the binary operations “x(= ©)”

H=0)

AW R oo
B W o o~
NI = i =
B O N~ Olw

=W N = O

O OO OO

Let My gy := (fE, g8, ) be a makgeolli structure over (Y, E) defined as follows:

Y

{3,4}
fEE=PY), z—< {1,3,4}

{4}

{3}
{0,3}
ge :E—=PY), z—<¢ {0,2,3}

and

0.82
0.54
€Y =01, y—{ 075
0.65
0.42

{1,2,3,4} if z =3,

if =0,
if =1,
if x =2,
if x =4,
if x=0,
if =1,
if ©=2,

{0,2,3,4} if z =3,
Y

if x =4,

if y=0,
if y=1,
if y=2,
if y=3,
if y=4.

It is routine to verify that My ) := (fg, g, §) is a makgeolli ideal of (Y,E)
and the nonempty sets fr(E; ) N gr(E;d) and £(Y;t) are commutative ideals
of (E,,0) and (Y, ,0), respectively, for all subsets @ and d of Y and ¢ € [0, 1].
We have fr(20(40(402))) = fe(2) ={1,3,4} 2Y = fe(0) = fe(204) and/or
E(1x (4% (4% 1)) = (1) = 0.54 # 0.82 = £(0) = £(1 % 4). Hence Myy.g) = (fs,
gE, &) 1s not a commutative makgeolli ideal of (Y, E) by Theorem 3.9.

We make a new commutative makgeolli ideal using the given commutative

makgeolli ideal.

Theorem 3.13. Given a makgeolli structure My gy := (fg, gg, §) over (Y,E),
let M?YJE) = (f§, g5, &) be a new makgeolli structure over (Y,E) which is
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defined by
if # € fu(E; fe(w)),

otherwise,

fi i PY), @ { @

E— PY), @ ge(%) if 7 € gr(E; gr(w)),
¥ otherwise,

- {(z) if w € {(V;€(u)),
&Y =01, o { k otherwise,

where w €E, u €Y, k€ [0,1] and B,y € P(Y) with 5 C fu(Z), v 2 ge(Z) and
&(x) > k. If Mg = (f, g8, &) is a commutative makgeolli ideal of (Y,E),
then M?YJE) = (fg, g5, €) is a commutative makgeolli ideal of (Y,E).

Proof. Assume that M(yg) := (fg, gg, §) is a commutative makgeolli ideal
of (Y,E). Then the sets fg(E; fe(w)) and gg(E; gg(w)) are commutative ideals
of (E,@,0) for all w € E, and £(Y;&(u)) is a commutative ideal of (Y, x*,0)
for all w € Y. Hence 0 € fr(E; fe(w)) N ge(E; gr(w)) N &(Y;€(u)), and so
f5(0) = fe(0) 2 fe(¥) O f(%) and gg(0) = g(0) € gr(¥) € gg(z) for all
€ E. Also, we get £*(0) = £(0) > &(x) > &*(x), i.e., (0/&*(&)) € &* for all
x €Y. Let 2,9, 2 € E. If (09 @2 € feE; fe(w)) Ngr(E;gr(w)) and z €
Je(E; fe(w)) Nge(E; ge(w)), then 0 (@ (§01)) € fu(E; fe(w)) Ngr(E; ge(w)).

Thus
fe@o@o@@or)) = fel@o@oor))
2 fe((F @)@ 2)N fu(2)
= fk((Fog) o 2)nfz(?)
and
ge(T 0 (§o (y0 1)) =90 (§ (§ 2 T)))
Ce((F0y)02)Uge(2)
= g&((Z29) ©2) U gp(?)
f@Eog) oz¢ fwlfalw )) or z ¢ fe(E; fg(w)), then fp((z 0 g) @ %) = B
or fi(2) = B. Hence fr(z @ (yo (0 1)) 2 f = fe((Z2y) ©2) N fi(z). If
(Fog) oz ¢ ge(E;ge(w)) or z ¢ ge(E;ge(w)), then gp(( @ g) © 2) = 7 or
9&(2) = 7. Hence gg(z @ (§ @ (§ © 7)) € v = gz((£ @ 9) @ 2) U gi(2). Let
z,y,z €Y and t,r € (0,1] be such that (((z*y)*z)/t) € & and (z/r) € £*. If
(zxy)x 2z € £(V;€(u)) and 2z € £(Y;€(u)), then zx (y + (y + x)) € {(Y;(u)) and

thus

> min{{((z *xy) * 2),&(2)}
=min{*((x xy) x 2),£"(2)}

> min{¢, 7},

12

169 Seok-Zun Song et al 158-173



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

that is, ((x * (y * (y xx)))/min{¢,r}) € & If (xxy) 2z & E(V;&(u)) or z ¢
E(Y;€&(u)), then &*((z *y) x 2) = k or £*(2) = k. Thus

(Y * (y*x) 2k =min{¢"((z+y) *2),£"(2)} = minft, 7},

and so (@ * (y * (y * x)))/min{t, r}) € £*. Therefore Mty ) == (fg, g, £) is a
commutative makgeolli ideal of (Y, E). O

Note that a makgeolli ideal might not be a commutative makgeolli ideal (see
Example 3.4). But we can consider the extension property for a commutative
makgeolli ideal.

Theorem 3.14. Let My ) := (fg, g&, &) and M(Y,E) = (fE, JE, 5) be makgeolli
ideals of (Y,E) such that M(y ) € M(Y,E), that is,

(i) fe(0) = fe(0), gs(0) = g&(0), £(0) = £(0),
(i) (V& € EVz €Y) (fa(d) 2 fe(#), de(@) C gu(@), &(z) = &()).

If My := (fE, 98, &) is a commutative makgeolli ideal of (Y,E), then so is
M(Y,]E) - (fIEa glEa 6)

Proof. Let My gy := (f&, g, §) and M (V) '= (fE, JE, é) be makgeolli ideals of
(Y,E) such that My gy € M(YE) Then fg(E;a) C fe(E; ), ge(E;68) 2 gz (E;d)
and £(Y;t) C £(Y;t) for all subsets a and 6 of Y and ¢ € (0,1]. Assume that
Mgy = (fe, g8, §) is a commutative makgeolli ideal of (Y,[E). Then the
nonempty sets fg(E; ) and gg(E;d) are commutative ideals of (E,@,0) for all
subsets « and § of Y, and the nonempty set £(Y;t) is a commutative ideal
of (Y,%,0) for all ¢ € (0,1] by Theorem 3.10. Since M(Y,E) = (f[g, JE, 5) is
a makgeolli ideal of (Y, ), we know from Lemma 2.5 that the nonempty sets
Je(E; ) and gr(E; ) are ideals of (E,®,0) for all subsets a and ¢ of Y, and
the nonempty set £(Y;¢t) is an ideal of (Y, %,0) for all ¢ € (0,1]. Let z,y € Y
and t € (0,1] be such that z xy € £(Y;t). Using (I3) and (2.4), we have
(x*(r*xy)xy=(zxy)*(v*xy) =0¢€{(Y;t). Since {(Y;¢) is a commutative
ideal of (Y, *,0), using (2.4) and Lemma 2.1 leads to

(x* (y*(y*(z*(xxy))))) * (vxy)
=(@x(xxy))*(y* (yx*(z*(x*y))))
€ L(Y3t) CE(Yst),

and so x % (y* (y* (z* (xxy)))) € £(V;t) bacause £(Y;t) is an ideal of (Y, *,0).
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Note that

(% (y*x(y*x)))* (@ (y*(y*(zx(xxy)))))
e @r @) * (92 2))

(1)

< (yxx)* (yx* (zx(zxy)))

(Igl) (xx(xxy))*z

(2.4)

=" (z*xx)*(x*y) (I9LE) 0eé

e &(Y;t).

Hence z % (y * (y * z)) € £(Y;t), and therefore £(Y;t) is a commutative ideal of
(Y, *,0). Let &, ¢ € E be such that # @ § € fe(E; ) N gg(E;d). Then

(Fo(@oy)og=(@0g)o(@oy)=0c¢c fa(la)nge(E;d)
by (I3) and (2.4), and so

(Fo@o@o(zo(zwy))) o@oy
=(@0(@0y)o @
€ fe(E; o) Ngr(E;d)

~

since fr(E; ) and gg(E; ) are commutative ideals of (E, ®,0). Using (I1), (I3),
(K) and (2.4), we have

Fo@o@or))o@o@o@o (o (®ay))) <0.
Since f(F; a) and gg(E;d) are ideals of (E,®,0), it follows that
0G0 H05) € fa(Ba) N ge(E; ).

Hence fg(E;a) and gg(E;0) are commutative ideals of (E,®,0) by Lemma 2.1.

Consequently, My gy := (fg, gr, §) is a commutative makgeolli ideal of (Y, E).
O
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