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Abstract

In this paper, we introduce a general composite iterative algorithm for finding a common element of the
set of solutions of variational inequality problem for a hemicontinuous monotone mapping and the set of
fixed points of a hemicontinuous pseudocontractive mapping in a Hilbert space. Under suitable control
conditions, we establish strong convergence of the sequence generated by the proposed iterative algorithm
to a common element of two sets, which is the unique solution of a certain variational inequality related
to a boundedly Lipschitzian and strongly monotone mapping. As a consequence, we obtain the unique
minimum-norm common point of two sets.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥.
Let C be a nonempty closed convex subset of H and S : C → C be self-mapping
on C. We denote by Fix(S) the set of fixed points of S.

Let A be a nonlinear mapping of C into H. The variational inequality problem
(shortly, VIP) is to find a u ∈ C such that

⟨v − u,Au⟩ ≥ 0, ∀v ∈ C. (1.1)

We denote the set of solutions of the VIP (1.1) by V I(C,A). The variational
inequality problem has been extensively studied in the literature; see [4,14,15,24]
and the references therein.
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A fixed point problem (shortly, FPP) is to find a fixed point z of a nonlinear
mapping T : C → C with property:

z ∈ C, Tz = z. (1.2)

Fixed point theory is one of the most powerful and important tools of modern
mathematics and may be considered a core subject of nonlinear analysis.

The class of pseudocontractive mappings is one of the most important classes of
mappings among nonlinear mappings. We recall that a mapping T : C → H is
said to be pseudocontractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

and T is said to be k-strictly pseudocontractive ([3]) if there exists a constant
k ∈ [0, 1)such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

where I is the identity mapping. Note that the class of k-strictly pseudocontrac-
tive mappings includes the class of nonexpansive mappings as a subclass. That
is, T is nonexpansive (i.e., ∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C) if and only if T is
0-strictly pseudocontractive. Clearly, the class of pseudocontractive mappings in-
cludes the class of strictly pseudocontractive mappings as a subclass, and the class
of k-strictly pseudocontractive mappings falls into the one between the class of
nonexpansive mappings and the class of pseudocontractive mappings. Moreover,
this inclusion is strict due to Example 5.7.1 and Example 5.7.2 in [1].

Recently, in order to study the VIP (1.1) coupled with the FPP (1.2), many au-
thors have introduced some iterative algorithms for finding a common element of
the set of the solutions of the VIP (1.1) for an inverse-strongly monotone map-
ping A and the set of fixed points of a nonexpansive mapping T ; see [6,8,9,12,19]
and the references therein. Also, some iterative algorithms for finding a common
element of the set of the solutions of the VIP (1.1) for a continuous monotone
mapping A more general than an inverse-strongly monotone mapping and the set
of fixed points of a continuous pseudocontractive mapping T more general than a
nonexpansive mapping were considered by many authors: see [20,22,26] and the
references therein.

In 2001, Yamada [24] introduced the hybrid steepest descent method for the
nonexpansive mapping to solve a variational inequality related to a Lipschitzian
and strongly monotone mapping. Since then, in 2009, He and Xu [11] invented
a hybrid iterative algorithm for the nonexpansive mapping to obtain the unique
solution to the VIP (1.1) related to a boundedly Lipschitzian and strongly mono-
tone mapping. As the result, He and Xu [11] were able to relax the global Lips-
chitz condition on the mapping to the weaker bounded Lipschitz condition, and
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improved the Yamada’s result [24]. In 2010, He and Liang [10] considered the
hybrid steepest descent algorithm for the strict pseudocontractive mapping more
general than the nonexpansive mapping to solve a variational inequality related
to a boundedly Lipschitzian and strongly monotone mapping, and extended the
corresponding results in He and Xu [11].

On the other hand, by using ideas of Yamada [24], Tien [21] and Ceng et al. [5]
provided general iterative algorithms for finding a fixed point of the nonexpansive
mapping, which solves a certain variational inequality related to a Lipschitzian
and strongly monotone mapping. Jung [13] gave a general iterative algorithm for
finding a fixed point of the k-strictly pseudocontractive mapping.

In this paper, inspired and motivated by the above mentioned results, we in-
troduce a general composite iterative algorithm for finding a common point of
the set of solutions of the VIP (1.1) for a hemicontinuous monotone mapping
A and the set of fixed points of a hemicontinuous pseudocontractive mapping
T . We establish strong convergence of the sequence generated by the proposed
iterative algorithm to a common point of the above two sets, which solves a
certain variational inequality related to a boundedly Lipschitzian and strongly
monotone mapping. As a direct consequence, we find the unique solution of the
minimum-norm problem: find x∗ ∈ Fix(T ) ∩ V I(C,A) such that

∥x∗∥ = min{∥x∥ : x ∈ Fix(T ) ∩ V I(C,A)}.

Our results extend and unify the corresponding results of Ceng et al. [5], Chen et
al. [6], Iiduka and Takahashi [8], Jung [12], Su et al. [16], Tian [21], Wangkeeree
and Nammanee [22], Zegeye [25], Zegeye and Shahzad [26], and some recent results
in the literature.

2. Preliminaries and Lemmas

LetH be a real Hilbert space, and let C be a nonempty closed convex subset ofH.
We denote by S(x : R) the closed ball with center x ∈ H and radius R > 0. We
write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x
implies that {xn} converges strongly to x.

For every point x ∈ H, there exists a unique nearest point in C, denoted by
PC(x), such that

∥x− PC(x)∥ ≤ ∥x− y∥, ∀y ∈ C.

PC is called the metric projection of H onto C. PC(x) is characterized by the
property:

u = PC(x) ⇐⇒ ⟨x− u, u− y⟩ ≥ 0, ∀x ∈ H, y ∈ C. (2.1)

We recall that a mapping A of H into H is called
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(i) monotone if ⟨x− y, Ax− Ay⟩ ≥ 0, ∀x, y ∈ H;
(ii) α-inverse-strongly monotone ([9,14]) if there exists a positive real number α

such that

⟨x− y,Ax− Ay⟩ ≥ α∥Ax− Ay∥2, ∀x, y ∈ H;

(iii) strongly monotone if there exists a positive real number η such that

⟨x− y, Ax− Ay⟩ ≥ η∥x− y∥2, ∀x, y ∈ H;

(iv) Lipschitzian continuous if there exists L > 0 such that

∥Ax− Ay∥ ≤ L∥x− y∥, ∀x, y ∈ H;

(v) hemicontinuous ([1,17]) if, for all x, y ∈ H, the mapping g : [0, 1] → H
defined by g(t) = A(tx+(1−t)y) is continuous, whereH has a weak topology;

(vi) boundedly Lipschitzian on C, if for each nonempty bounded subset S on C,
there exists a positive constant kS > 0 depending only on the set S such
that ∥Ax− Ay∥ ≤ kS∥x− y∥, ∀x, y ∈ S.

We note that (i) if A is a monotone mapping, then T = I−A is a pseudocontrac-
tive mapping, and (ii) the class of the Lipschitzian mappings is a proper subclass
of the class of the boundedly Lipschitzian mappings. It is easy to see that if
T : C → H is continuous on C, then T is hemicontinuous on C and bounded on
any line segment of C, but the converse is not true (see Example 1.10.14 in [1]).

The following lemmas can be easily proven, and therefore, we omit the proofs
(see [10,24]).

Lemma 2.1. Let H be a real Hilbert space. Let V : H → H be an l-Lipschitzian
mapping with constant l ≥ 0, and let F : H → H be a boundedly Lipschitzian
and η-strongly monotone mapping with constant η > 0. Take x0 ∈ H arbitrarily
and set Ĉ = S(x0, R) for some R > 0. Denote by κ̂ the Lipschitz constant of F
on Ĉ. Then for 0 ≤ γl < µη,

⟨(µF − γV )x− (µF − γV )y, x− y⟩ ≥ (µη − γl)∥x− y∥2, ∀x, y ∈ Ĉ.

That is, µF − γV is strongly monotone on Ĉ with constant µη − γl.

Lemma 2.2. Let H be a real Hilbert space H. Let F : H → H be a boundedly
Lipschitzian and η-strongly monotone mapping with constant η > 0. Take x0 ∈ H
arbitrarily and set Ĉ = S(x0, R) for some R > 0. Denote by κ̂ the Lipschitz
constant of F on Ĉ Let 0 < µ < 2η

κ̂2 and 0 < t < ρ ≤ 1. Then G := ρI − tµF

restricted to Ĉ is a contractive mapping with constant ρ − tτ , where τ = 1 −√
1− µ(2η − µκ̂2).
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By a similar arguments in [2], we obtain the following lemma for the hemicontin-
uous monotone mapping, which extends Lemma 2.3 of Zegeye [25].

Lemma 2.3. Let C be a closed convex subset of a real Hilbert space H. Let
A : C → H be a hemicontinuous monotone mapping. Suppose that for each
x, y ∈ C, there exists τxy > 0 such that A(tx + (1 − t)y) < τxy for all t ∈ [0, 1];
that is, A is bounded on any line segment on C. Then, for r > 0 and x ∈ H,
there exists z ∈ C such that

⟨y − z, Az⟩+ 1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

Proof. Since A : C → H is a hemicontinuous mapping, for x, y ∈ C, the mapping
g : [0, 1] → H defined by g(t) = A(tx + (1 − t)y) is continuous, where H has a
weak topology, and so A is bounded on any line segment on C. Thus, by taking
f(z, y) = ⟨y − z, A(z)⟩ as a bifunction f : C × C → R in [2], the result follows
from a similar argument in [2].

Moreover, by a similar argument in [7,18] together with Lemma 2.3, we have the
following lemma, which improves Lemma 2.4 of Zegeye [25].

Lemma 2.4. Let C be a closed convex subset of a real Hilbert space H. Let
A : C → H be a hemicontinuous monotone mapping. Suppose that for each
x, y ∈ C, there exists τxy > 0 such that A(tx + (1 − t)y) < τxy for all t ∈ [0, 1];
that is, A is bounded on any line segment on C. For λ > 0 and x ∈ H, define
Aλ : H → C by

Aλx =

{
z ∈ C : ⟨y − z, Az⟩+ 1

λ
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Aλ is single-valued;
(ii) Aλ is firmly nonexpansive, that is,

∥Aλx− Aλy∥2 ≤ ⟨x− y, Aλx− Aλy⟩, ∀x, y ∈ H;

(iii) Fix(Aλ) = V I(C,A);
(iv) V I(C,A) is a closed convex subset of C

Proof. Let f(z, y) = ⟨y − z, Az⟩ as a bifunction f : C × C → R in [7]. Then the
result follows from similar arguments in [2] and [7].

Applying Lemma 2.3 and lemma 2.4, we get the following lemmas for the hemi-
continuous pseudocontractive mapping, which generalize Lemma 3.1 and Lemma
3.2 of Zegeye [25], respectively.
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Lemma 2.5. Let C be a closed convex subset of a real Hilbert space H. Let
T : C → H be a hemicontinuous pseudocontractive mapping. Suppose that T
is bounded on any line segment on C. Then, for r > 0 and x ∈ H, there exists
z ∈ C such that

⟨y − z, Tz⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C.

Proof. Let A := I − T , where I is the identity mapping on C. Then, T is a
hemicontinuous pseudocontractive mapping and T is bounded on any line segment
of C, A is clearly hemicontinuous monotone mapping and bounded on any line
segment of C. Thus, by Lemma 2.3, there exists z ∈ C such that ⟨y − z, Az⟩ +
(1/r)⟨y − z, z − x⟩ ≥ 0 for all y ∈ C. But this is equivalent to ⟨y − z, Tz⟩ −
(1/r)⟨y − z, (1 + r)z − x⟩ ≤ 0 for all y ∈ C. Hence the result holds.

Lemma 2.6. Let C be a closed convex subset of a real Hilbert space H. Let
T : C → C be a hemicontinuous pseudocontractive mapping. Suppose that T is
bounded on any line segment on C. For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{
z ∈ C : ⟨y − z, Tz⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, that is,

∥Trx− Try∥2 ≤ ⟨x− y, Trx− Try⟩, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );
(iv) Fix(T ) is a closed convex subset of C

Proof. We note that ⟨y − z, Tz⟩ − (1/r)⟨y − z, (1 + r)z − x⟩ ≤ 0, for all y ∈ C,
is equivalent to ⟨y − z, Az⟩ + (1/r)⟨y − z, z − x⟩ ≥ 0, for all y ∈ C, where
A := I−T is a hemicontinuous monotone mapping and I is the identity mapping
on C. Moreover, as T is a self-mapping, we get that V I(C,A) = Fix(T ). Thus,
by Lemma 2.4, the conclusions of (i)–(iv) hold.

We also need the following lemmas for the proof of our main results.

Lemma 2.7. In a real Hilbert space H, there holds the following inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

6
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Lemma 2.8. ([23]) Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + βn + γn, ∀n ≥ 1,

where {λn} and {βn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=1 λn = ∞ or, equivalently,
∏∞

n=1(1− λn) = 0;
(ii) lim supn→∞

βn

λn
≤ 0 or

∑∞
n=1 |βn| < ∞;

(iii) γn ≥ 0 (n ≥ 1),
∑∞

n=1 γn < ∞.

Then limn→∞ sn = 0.

3. Main results

Throughout the rest of this paper, we always assume the following:

• H is a Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥;
• C is a nonempty closed convex subset of H;
• A : C → H is a hemicontinuous monotone mapping with V I(C,A) ̸= ∅ and
is bounded on any line segment of C;

• T : C → C is a hemicontinuous pseudocontractive mapping with Fix(T ) ̸= ∅
and is bounded on any line segment of C;

• Aλn : H → C is a mapping defined by

Aλnx =

{
z ∈ C : ⟨y − z, Az⟩+ 1

λn

⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
,

where {λn} ⊂ (0,∞);
• Trn : H → C is a mapping defined by

Trnx =

{
z ∈ C : ⟨y − z, Tz⟩ − 1

rn
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C

}
,

where {rn} ⊂ (0,∞);
• F : H → H is a boundedly Lipschitzian and η-strongly monotone mapping
with constant η > 0;

• V : H → H is an l-Lipschitzian mapping with constant l > 0;
• Ω := V I(C,A) ∩ Fix(T ) ̸= ∅

By Lemma 2.4 and Lemma 2.6, we note that Aλn and Trn are firmly nonexpansive
and so nonexpansive, and V I(C,A) = Fix(Aλn) and Fix(Trn) = Fix(T ).

Now, we present a new composite iterative algorithm for hemicontinuous mono-
tone mappings and hemicontinuous pseudocontractive mappings and establish
strong convergence of this algorithm.
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Theorem 3.1. Let x0 ∈ Ω be chosen arbitrarily. Set Ĉ = S(x0,
γ∥V x0∥+µ∥Fx0∥

τ−γl
)∩C

and denote by κ̂ the Lipschitz constant of F on Ĉ, where the constants µ, γ and τ

are such that 0 < µ < 2η
κ̂2 , 0 ≤ γl < τ and, τ = 1−

√
1− µ(2η − µκ̂2), respectively.

Let {xn} be a sequence generated byyn = αnγV xn + (I − αnµF )TrnAλnxn,

xn+1 = (1− βn)yn + βnTrnAλnyn, ∀n ≥ 0,
(3.1)

where {αn}, {βn} ⊂ [0, 1) and {λn}, {rn} ⊂ (0,∞). Let {αn}, {βn}, {λn} and
{rn} satisfy the conditions:

(C1) αn → 0 (n → ∞);
(C2)

∑∞
n=0 αn = ∞;

(C3)
∑∞

n=0 |αn+1 − αn| < ∞;
(C4) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1) and

∑∞
n=0 |βn+1 − βn| < ∞;

(C5) lim infn→∞ λn > 0 and
∑∞

n=0 |λn+1 − λn| < ∞;
(C6) lim infn→∞ rn > 0, and

∑∞
n=0 |rn+1 − rn| < ∞.

Then {xn} converges strongly to q ∈ Ω, which is a solution of the following
variational inequality

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ Ω. (3.2)

Proof. Note that from the condition (C1), without loss of generality, we assume
that 2αn(τ −γl) < 1 and αn < 1−βn−αn for n ≥ 1. For K = PΩ, it follows that
K(I + γV − µF ) is a contractive mapping of Ĉ into Ω. In fact, from Lemma 2.2,
we have, for any x, y ∈ Ĉ,

∥K(I + γV − µF )x−(I + γV − µF )y∥
≤ ∥(I + γV − µF )x− (I + γV − µF )y∥
≤ γ∥V x− V y∥+ ∥(I − µF )x− (I − µF )y∥
≤ γl∥x− y∥+ (1− τ)∥x− y∥
= (1− (τ − γl))∥x− y∥.

This is, K(I + γV − µF ) is a contractive mapping with constant (1− (τ − γl)).
Since Ĉ is complete, there exists a unique element q ∈ Ĉ such that q = PΩ(I +
γV − µF )q. Equivalently, by (2.1), q is the unique solution of the variational
inequality:

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ Ω.

In fact, noting that 0 ≤ γl < τ and µη ≥ τ ⇐⇒ κ̂ ≥ η, it follows from Lemma
2.1 that

⟨(µF − γV )x− (µF − γV )y, x− y⟩ ≥ (µη − γl)∥x− y∥2.

8
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That is, µF − γV is strongly monotone on Ĉ for 0 ≤ γl < τ ≤ µη. Hence the
variational inequality (3.2) has only one solution. Below we use q ∈ Ω to denote
the unique solution of the variational inequality (3.2):

From now, put zn = Aλnxn, un = Trnzn, wn = Aλnyn, and vn = Trnwn for every
n ≥ 0.

Now, we divide the proof into several steps.

Step 1. We show that xn ∈ Ĉ for all n ≥ 0 by induction, and hence {xn} is
bounded. It is obvious that x0 ∈ Ĉ. First of all, from Lemma 2.4 (iii) and Lemma
2.6 (iii), we observe that V I(C,A) = Fix(Aλn) and Fix(T ) = Fix(Trn). Then, it
follows that

∥zn − x0∥ = ∥Aλnxn − x0∥ ≤ ∥xn − x0∥,
and

∥wn − x0∥ = ∥Aλnyn − x0∥ ≤ ∥yn − x0∥.
Now, suppose that we have proved xn ∈ Ĉ, that is,

∥xn − x0∥ ≤ γ∥V x0∥+ µ∥Fx0∥
τ − γl

.

Using lemma 2.2, Lemma 2.4 (ii), and Lemma 2.6 (ii), we derive that

∥yn − x0∥ = ∥αn(γV xn − µFx0) + (I − αnµF )TrnAλnxn − (I − αnµF )x0∥
≤ ∥(I − αnµF )Trnzn − (I − αnµF )x0∥+ ∥αn(γV xn − µFx0)∥
≤ (1− ταn)∥zn − x0∥+ αnγ∥V xn − V x0∥+ αn∥γV x0 − µFx0∥
≤ (1− ταn)∥xn − x0∥+ αnγl∥xn − x0∥+ αn∥γV x0 − µFx0∥

≤ (1− (τ − γl)αn)∥xn − x0∥+ (τ − γl)αn
γ∥V x0∥+ µ∥Fx0∥

τ − γl

≤ γ∥V x0∥+ µ∥Fx0∥
τ − γl

.

This implies yn ∈ Ĉ and

∥xn+1 − x0∥ = ∥(1− βn)(yn − x0) + βn(TrnAλnyn − x0)∥
≤ ∥(1− βn)∥yn − x0∥+ βn∥Trnwn − x0∥
≤ (1− βn)∥yn − x0∥+ βn∥wn − x0∥
≤ (1− βn)∥yn − x0∥+ βn∥yn − x0∥
= ∥yn − p∥

≤ γ∥V x0∥+ µ∥Fx0∥
τ − γl

.

It prove that xn+1 ∈ Ĉ. Therefore, xn ∈ Ĉ for all n ≥ 0. Thus, {xn} is bounded.

9
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It is not difficult to verify that that the sequences {yn}, {zn}, {wn}, {V xn},
{Fxn}, {Fyn}, {Fun}, are bounded. Moreover, since ∥un − x0∥ = ∥Trnzn − x0∥
≤ ∥xn − x0∥ and ∥vn − x0∥ = ∥Trnwn − x0∥ ≤ ∥yn − x0∥, {un} and {vn} are also
bounded. And, by the condition (C1), we have

∥yn − un∥ = ∥yn − Trnzn∥
= αn∥γV xn − µFTrnzn∥
≤ αn(γ∥V xn∥+ µ∥Fun∥) → 0 (as n → ∞).

(3.3)

Step 2. We show that limn→∞ ∥xn+1 − xn∥ = 0 and limn→∞ ∥yn+1 − yn∥ = 0.
Indeed, since zn = Aλnxn and zn−1 = Aλn−1xn−1, we have

⟨y − zn, Azn⟩+
1

λn

⟨y − zn, zn − xn⟩ ≥ 0, ∀y ∈ C, (3.4)

and

⟨y − zn−1, Azn−1⟩+
1

λn−1

⟨y − zn−1, zn−1 − xn−1⟩ ≥ 0, ∀y ∈ C, (3.5)

Putting y := zn−1 in (3.4) and y := zn in (3.5), we get

⟨zn−1 − zn, Azn⟩+
1

λn

⟨zn−1 − zn, zn − xn⟩ ≥ 0, (3.6)

and

⟨zn − zn−1, Azn−1⟩+
1

λn−1

⟨zn − zn−1, zn−1 − xn−1⟩ ≥ 0. (3.7)

Adding (3.6) and (3.7), we obtain

⟨zn − zn−1, Azn−1 − Azn⟩+
⟨
zn − zn−1,

zn−1 − xn−1

λn−1

− zn − xn

λn

⟩
≥ 0,

which implies

−⟨zn − zn−1, Azn − Azn−1⟩+
⟨
zn − zn−1,

zn−1 − xn−1

λn−1

− zn − xn

λn

⟩
≥ 0. (3.8)

Since A is monotone, from (3.8) we get⟨
zn − zn−1,

zn−1 − xn−1

λn−1

− zn − xn

λn

⟩
≥ 0,

and hence ⟨
zn − zn−1, zn−1 − zn + zn − xn−1 −

λn−1

λn

(zn − xn)

⟩
≥ 0.

10
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Without loss of generality, let us assume that there exists a real number λ such
that λn > λ > 0 for all n ≥ 0. Then we have

∥zn − zn−1∥2 ≤
⟨
zn − zn−1, xn − xn−1 +

(
1− λn−1

λn

)
(zn − xn)

⟩

≤ ∥zn − zn−1∥
{
∥xn − xn−1∥+

∣∣∣∣∣1− λn−1

λn

∣∣∣∣∣∥zn − xn∥
}
,

(3.9)

and hence from (3.9) we obtain

∥zn − zn−1∥ ≤ ∥xn − xn−1∥+
1

λn

|λn − λn−1|∥zn − xn∥

≤ ∥xn − xn−1∥+
1

λ
|λn − λn−1|L1,

(3.10)

where L1 = sup{∥zn − xn∥ : n ≥ 0} < ∞. Using the same method, we also get

∥wn − wn−1∥ ≤ ∥yn − yn−1∥+
1

λ
|λn − λn−1|L2, (3.11)

where L2 = sup{∥wn − yn∥ : n ≥ 0} < ∞.

Moreover, since un−1 = Trn−1zn−1 and un = Trnzn, we have

⟨y− un−1, Tun−1⟩−
1

rn−1

⟨y− un−1, (1+ rn−1)un−1 − zn−1⟩ ≤ 0, ∀y ∈ C, (3.12)

and

⟨y − un, Tun⟩ −
1

rn
⟨y − un, (1 + rn)un − zn⟩ ≤ 0, ∀y ∈ C, (3.13)

Putting y := un in (3.12) and y := un−1 in (3.13), we get

⟨un − un−1, Tun−1⟩ −
1

rn−1

⟨un − un−1, (1 + rn−1)un−1 − zn−1⟩ ≤ 0, (3.14)

and

⟨un−1 − un, Tun⟩ −
1

rn
⟨un−1 − un, (1 + rn)un − zn⟩ ≤ 0. (3.15)

Adding (3.14) and (3.15), we obtain

⟨un − un−1, Tun−1 − Tun⟩

−
⟨
un − un−1,

(1 + rn−1)un−1 − zn−1

rn−1

− (1 + rn)un − zn
rn

⟩
≤ 0,

which implies that

⟨un − un−1, (un − Tun)−(un−1 − Tun−1)⟩

−
⟨
un − un−1,

un−1 − zn−1

rn−1

− un − zn
rn

⟩
≤ 0.

11

146

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Jong Soo Jung 136-157



Now, since T is pseudocontractive, we obtain⟨
un − un−1,

un−1 − zn−1

rn−1

− un − zn
rn

⟩
≥ 0,

and hence

⟨un − un−1, un−1 − un + un − zn−1 −
rn−1

rn
(un − zn)⟩ ≥ 0.

Also, we can assume that rn > r > 0 for all n and for some r > 0. Thus, using
the method in (3.9) and (3.10), we deduce

∥un − un−1∥ ≤ ∥zn − zn−1∥+
1

r
|rn − rn−1|L3, (3.17)

where L3 = sup{∥un − zn∥ : n ≥ 0}. Also, using the same method, we have

∥vn − vn−1∥ ≤ ∥wn − wn−1∥+
1

r
|rn − rn−1|L4, (3.18)

where L4 = sup{∥vn − wn∥ : n ≥ 0}.

Now, simple calculations show that

yn − yn−1 = αnγV xn + (I − αnµF )TrnAλnxn − αn−1γV xn−1

− (I − αn−1µF )Trn−1Aλn−1xn−1

= αnγV xn + (I − αnµF )Trnzn − αn−1γV xn−1

− (I − αn−1µF )Trn−1zn−1

= (αn − αn−1)(γV xn−1 − µFun−1) + αnγ(V xn − V xn−1)

+ (I − αnµF )un − (I − αnµF )un−1.

By (3.17) and Lemma 2.2, we obtain

∥yn − yn−1∥ ≤ |αn − αn−1|(γ∥V xn−1∥+ µ∥Fun−1∥)
+ αnγl∥xn − xn−1∥+ (1− ταn)∥un − un−1∥

≤ |αn − αn−1|(γ∥V xn−1∥+ µ∥Fun−1∥) + αnγl∥xn − xn−1∥

+ (1− ταn)∥zn − zn−1∥+
1

r
|rn − rn−1|L3.

(3.19)

Also, observe that

xn+1 − xn = (1− βn)(yn − yn−1) + (βn − βn−1)(Trn−1wn−1 − yn−1)

+ βn(Trnwn − Trn−1wn−1)

= (1− βn)(yn − yn−1) + (βn − βn−1)(vrn−1 − yn−1)

+ βn(vn − vn−1).

(3.20)

12
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By (3.10), (3.11), (3.18), (3.19), and (3.20), we have

∥xn+1 − xn∥
≤ (1− βn)∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+ βn∥vn − vn−1∥
≤ (1− βn)∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+ βn∥wn − wn−1∥+
1

r
|rn − rn−1|L4

≤ (1− βn)∥yn − yn−1∥+ βn∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|L2 +

1

r
|rn − rn−1|L4

= ∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|L2 +

1

r
|rn − rn−1|L4

≤ γlαn∥xn − xn−1|+ (1− ταn)∥zn − zn−1∥
+ |αn − αn−1|(γ∥xn−1∥+ µ∥Fun−1∥) + |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|L2 +

1

r
|rn − rn−1|(L3 + L4)

≤ (1− (τ − γl)αn)∥xn − xn−1∥+ |αn − αn−1|(γ∥V xn−1∥+ µ∥Fun−1∥)
+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|(L1 + L2) +

1

r
|rn − rn−1|(L3 + L4)

≤ (1− (τ − γl)αn)∥xn − xn−1∥+M1|αn − αn−1|+M2|βn − βn−1|
+M3|λn − λn−1|+M4|rn − rn−1|,

(3.21)

where M1 = sup{γ∥V xn∥ + µ∥Fun∥ : n ≥ 0}, M2 = sup{∥vn∥ + ∥yn∥ : n ≥ 0},
M3 = 1

λ
(L1 + L2) and M4 = 1

r
(L3 + L4). From the conditions (C1) – (C6), it is

easy to see that

lim
n→∞

(τ − γl)αn = 0,
∞∑
n=1

(τ − γl)αn = ∞,

and

∞∑
n=2

(M1|αn − αn−1|+M2|βn − βn−1|+M3|λn − λn−1|+M4|rn − rn−1|) < ∞.

Applying Lemma 2.8 to (3.21), we obtain

lim
n→∞

∥xn+1 − xn∥ = 0.

Moreover, by (3.10) and (3.19), we also have

lim
n→∞

∥zn+1 − zn∥ = 0 and lim
n→∞

∥yn+1 − yn∥ = 0.

13
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Step 3. We show that limn→∞ ∥xn− yn∥ = 0 and limn→∞ ∥xn−un∥ = 0. Indeed,

∥xn+1 − yn∥ = βn∥vn − yn∥
≤ βn(∥vn − un∥+ ∥un − yn∥)
≤ a(∥wn − zn∥+ ∥un − yn∥)
≤ a(∥yn − xn∥+ ∥un − yn∥)
≤ a(∥yn − xn+1∥+ ∥xn+1 − xn∥+ ∥un − yn∥)

which implies that

∥xn+1 − yn∥ ≤ a

1− a
(∥xn+1 − xn∥+ ∥un − yn∥).

Obviously, by (3.3) and Step 2, we have ∥xn+1−yn∥ → 0 as n → ∞. This implies
that that

∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥ → 0 as n → ∞. (3.22)

By (3.2) and (3.22), we also have

∥xn − un∥ ≤ ∥xn − yn∥+ ∥yn − un∥ → 0 as n → ∞.

Step 4. We show that limn→∞ ∥xn − zn∥ = 0 and limn→∞ ∥yn − zn∥ = 0. To this
end, let p ∈ Ω. Since Fix(T ) = Fix(Trn) by Lemma 2.6 (iii), from Lemma 2.2,
we have

∥yn − p∥2

= ∥αn(γV xn − µFp) + (I − αnµF )TrnAλnxn − (I − αnµF )p∥2

≤ (αn∥γV xn − µFp∥+ ∥(I − αnµF )Trnzn − (I − αnµF )Trnp∥)2

≤ αn∥γV xn − µFp∥2 + (1− ταn)∥zn − p∥2

+ 2αn(1− ταn)∥γV xn − µFp∥∥zn − p∥.

(3.23)

Moreover, since V I(C,A) = Fix(Aλn) by Lemma 2.4 (iii), from Lemma 2.4 (ii),
we obtain

∥zn − p∥2 = ∥Aλnxn − p∥2

≤ ⟨Aλnxn − Aλnp, xn − p⟩2

= ⟨zn − p, xn − p⟩

=
1

2
(∥zn − p∥2 + ∥xn − p∥2 − ∥xn − zn∥2),

and hence

∥zn − p∥2 ≤ ∥xn − p∥2 − ∥xn − zn∥2. (3.24)
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Therefore, from (3.23) and (3.24), we deduce

∥yn − p∥2 ≤ αn∥γV xn − µFp∥2 + (1− ταn)(∥xn − p∥2 − ∥xn − zn∥2)
+ 2αn(1− ταn)∥γV xn − µFp∥∥zn − p∥,

and hence

(1− ταn)∥xn − zn∥2

≤αn∥γV xn − µFp∥2 + (∥xn − p∥+ ∥yn − p∥)(∥xn − p∥ − ∥yn − p∥)
+ 2αn∥γV xn − µFp∥∥zn − p∥

≤ αn∥γV xn − µFp∥2 + (∥xn − p∥+ ∥yn − p∥)∥xn − yn∥
+ 2αn∥γV xn − µFp∥∥zn − p∥.

Since αn → 0 by condition (C1) and ∥xn−yn∥ → 0 by (3.22), we get ∥xn−zn∥ →
0. Also, from (3.22), it follows that

∥yn − zn∥ ≤ ∥yn − xn∥+ ∥xn − zn∥ → 0 (n → ∞). (3.25)

Step 5. We show that limn→∞ ∥un − zn∥ = ∥Trnzn − zn∥ = 0. Indeed, from (3.3)
and (3.25), we get

∥un − zn∥ = ∥Trnzn − zn∥ ≤ ∥un − yn∥+ ∥yn − zn∥ → 0 as n → ∞.

Step 6. We show that

lim sup
n→∞

⟨(γV − µF ))q, yn − q⟩ ≤ 0,

where q is the unique solution of the variational inequality (3.2). First of all, from
(3.3) and Step 4, without of loss generality, we may assume that un, zn in Ĉ for
all n ≥ 0.

First we prove that

lim sup
n→∞

⟨(γV − µF )q, un − q⟩ ≤ 0.

To show this inequality, we choose a subsequence {uni
} of {un}

lim sup
n→∞

⟨(γV − µF )q, un − q⟩ = lim
i→∞

⟨(γV − µF )q, uni
− q⟩.

Since {uni
} is bounded, we can choose a subsequence {unij

} of {uni
} and z ∈ H

such that unij
⇀ z. Without loss of generality, we may assume that uni

⇀ z. Since

Ĉ is closed and convex, it is weakly closed and hence z ∈ Ĉ. Since un − zn → 0
as n → ∞ by Step 5, we have zni

⇀ z.
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Now, we show that z ∈ Ω. First we prove that z ∈ Fix(T ). In fact, from definition
zni

, we have

⟨y − uni
, Tuni

⟩ − 1

rni

⟨y − uni
, (1 + rni

)uni
− zni

⟩ ≤ 0, ∀y ∈ C. (3.26)

Put zt = tv + (1 − t)z for all t ∈ (0, 1] and v ∈ C. Then zt ∈ C and from (3.26)
and pseudocontractivity of T , it follows that

⟨uni
− zt, T zt⟩ ≥ ⟨uni

− zt, T zt⟩+ ⟨zt − uni
, Tuni

⟩

− 1

rni

⟨zt − uni
, (1 + rni

)uni
− zni

⟩

= − ⟨zt − uni
, T zt − Tuni

⟩ − 1

rni

⟨zt − uni
, uni

− zni
⟩

− ⟨zt − uni
, uni

⟩

≥ − ∥zt − uni
∥2 − 1

rni

⟨zt − uni
, uni

− zni
⟩

− ⟨zt − uni
, uni

⟩

= − ⟨zt − uni
, zt⟩ − ⟨zt − uni

,
uni

− zni

rni

⟩.

(3.27)

Since un − zn → 0 as n → ∞ by Step 5 and lim infn→∞ rn > 0 by condition (C6),
we have

uni−zni

rni
→ 0 as i → ∞. Therefore, as i → ∞ in (3.27), it follows that

⟨z − zt, T zt⟩ ≥ ⟨z − zt, zt⟩,

and hence

−⟨v − z, Tzt⟩ ≥ −⟨v − z, zt⟩, ∀v ∈ C.

Letting t → 0 and using the fact that T is hemicontinuous, we have

−⟨v − z, Tz⟩ ≥ −⟨v − z, z⟩, ∀v ∈ C.

Now, let v = Tz. Then we obtain that z = Tz and so z ∈ Fix(T ).

Next, let us show that z ∈ V I(C,A). From the definition of zn, we get that

⟨y − zni
, Azni

⟩+ ⟨y − zni
,
zni

− xni

λni

⟩ ≥ 0, ∀y ∈ C. (3.28)

Set vt = tv + (1 − t)z for all t ∈ (0, 1] and v ∈ C. Then, it follows that vt ∈ C.
From (3.28), we have

⟨vt − zni
, Avt⟩ ≥ ⟨vt − zni

, Avt⟩ − ⟨vt − zni
, Azni

⟩ − ⟨vt − zni
,
zni

− xni

λni

⟩

= ⟨vt − zni
, Avt − Azni

⟩ − ⟨vt − zni
,
zni

− xni

λni

⟩.
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From the fact that ∥zn − xn∥ → 0 in Step 4 and lim infn→∞ λn > 0 by condition
(C5), it follows that

zni−xni

λni
→ 0 as i → ∞.. Since A is monotone, we also have

⟨vt − zni
, Avt − Azni

⟩ ≥ 0. Thus, it follows that

0 ≤ lim
i→∞

⟨vt − zni
, Avt⟩ = ⟨vt − z, Avt⟩,

and hence

⟨v − z, Avt⟩ ≥ 0, ∀v ∈ C.

It t → 0, the hemicontinuity A yields that

⟨v − z, Az⟩ ≥ 0, ∀v ∈ C.

This implies that z ∈ V I(C,A). Therefore, z ∈ Ω.

Now, since q is the unique solution of the variational inequality (3.2), from Step
5, we obtain

lim sup
n→∞

⟨(γV − µF )q, un − q⟩

= lim
i→∞

⟨(γV − µF )q, uni
− zni

⟩+ lim
i→∞

⟨(γV − µF )q, zni
− q⟩

≤ lim
i→∞

∥(γV − µF )q∥∥uni
− zni

∥+ lim
i→∞

⟨(γV − µF )q, zni
− q⟩

= ⟨(γV − µF )q, z − q⟩ ≤ 0.

(3.29)

By (3.3) and (3.29) , we conclude that

lim sup
n→∞

⟨(γV − µF )q, yn − q⟩

≤ lim sup
n→∞

⟨(γV − µF )q, yn − un⟩+ lim sup
n→∞

⟨(γV − µF )q, un − q⟩

≤ lim sup
n→∞

∥(γV − µF )q∥∥yn − un∥+ lim sup
n→∞

⟨(γV − µF )q, un − q⟩ ≤ 0.

Step 7. We show that limn→∞ ∥xn − q∥ = 0, where q is the unique solution of
the variational inequality (3.2). Indeed, from (3.1), Lemma 2.2, and lemma 2.7,
we derive

∥xn+1 − q∥2 ≤ ∥yn − q∥2

= ∥αn(γV xn − µFq) + (I − αnµF )TrnAλnxn − (I − αnµF )q∥2

≤ ∥(I − αnµF )Trnzn − (I − αnµF )q∥2 + 2αn⟨γV xn − µFq, yn − q⟩
≤ (1− ταn)

2∥zn − q∥2 + 2αnγ⟨V xn − V q, yn − q⟩
+ 2αn⟨γV q − µFq, yn − q⟩)

≤ (1− ταn)
2∥xn − q∥2 + 2αnγl∥xn − q∥∥yn − q∥

+ 2αn⟨(γV − µF )q, yn − q⟩
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≤ (1− ταn)
2∥xn − q∥2 + 2αnγl∥xn − q∥(∥yn − xn∥+ ∥xn − q∥)

+ 2αn⟨(γV − µF )q, yn − q⟩
= (1− 2(τ − γl)αn)∥xn − q∥2

+ α2
nτ

2∥xn − q∥2 + 2αnγl∥xn − q∥∥yn − xn∥
+ 2αn⟨(γV − µF )q, yn − q⟩,

that is,

∥xn+1 − q∥2 ≤ (1− 2(τ − γl)αn)∥xn − q∥2 + α2
nτ

2M2
5 + 2αnγl∥yn − xn∥M5

+ 2αn⟨(γV − µF )q, yn − q⟩
= (1− αn)∥xn − q∥2 + βn,

where M5 = sup{∥xn − q∥ : n ≥ 1}, αn = 2(τ − γl)αn and

βn = αn[αnτ
2M2

5 + 2γl∥yn − xn∥M5 + 2⟨(γV − F )q, yn − q⟩].

From the conditions (C1) and (C2), ∥yn − xn∥ → 0 in Step 3, and Step 6, it

is easily seen that αn → 0,
∑∞

n=1 αn = ∞, and lim supn→∞
βn

αn
≤ 0. Hence, by

Lemma 2.8, we conclude xn → q as n → ∞. This completes the proof. �

By taking F ≡ I, V ≡ 0, µ = 1, τ = 1, and l = 0 in Theorem 3.1, we obtain the
following result.

Corollary 3.1. Let H, C, A, T , Trn and Aλn be as in Theorem 3.1. Let x0 ∈
Ω := Fix(T ) ∩ V I(C,A) be chosen arbitrarily and let Ĉ = S(x0, ∥x0∥) ∩ C. Let
{xn} be a sequence generated byyn = (1− αn)TrnAλnxn,

xn+1 = (1− βn)yn + βnTrnAλnyn, ∀n ≥ 0,
(3.30)

where {αn}, {βn} ⊂ [0, 1) and {λn}, {rn} ⊂ (0,∞). Let {αn}, {βn}, {λn} and
{rn} satisfy the conditions (C1) – (C6) in Theorem 3.1. Then {xn} converges
strongly to a point q ∈ Ω, which solves the following minimum-norm problem:
find x∗ ∈ Ω such that

∥x∗∥ = min
x∈Ω

∥x∥. (3.31)

Proof. Take F ≡ I, V ≡ 0, µ = 1, τ = 1, and l = 0 in Theorem 3.1. Then the
variational inequality (3.2) is reduced to the inequality

⟨q, q − p⟩ ≤ 0, ∀p ∈ Ω.

This obviously implies that

∥q∥2 ≤ ⟨q, p⟩ ≤ ∥q∥∥p∥, ∀p ∈ Ω.
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It turns out that ∥q∥ ≤ ∥p∥ for all p ∈ Ω. Therefore q is the minimum-norm point
of Ω. �

Taking βn = 0 for n ≥ 0 in Theorem 3.1 and Corollary 3.1, respectively, we derive
the following results.

Corollary 3.2. Let H, C, Ĉ, A, T , Trn, Aλn, F , V , γ, τ , κ̂, η, l and µ be as in
Theorem 3.1. Let {xn} be a sequence generated by x0 ∈ Ω and

xn+1 = αnγV xn + (I − αnµF )TrnAλnxn, ∀n ≥ 0,

where {αn} ⊂ [0, 1) and {λn}, {rn} ⊂ (0,∞). Let {αn}, {λn} and {rn} satisfy the
conditions (C1), (C2), (C3), (C5) and (C6) in Theorem 3.1. Then {xn} converges
strongly to q ∈ Ω, which is the unique solution of the variational inequality (3.2).

Corollary 3.3. Let H, C, A, T , Trn and Aλn be as in Theorem 3.1. Let x0 ∈ Ω be
chosen arbitrarily and let Ĉ = S(x0, ∥x0∥)∩C. Let {xn} be a sequence generated
by

xn+1 = (1− αn)TrnArnxn, ∀n ≥ 0,

where {αn} is a sequence in [0, 1). Let {αn} and {λn}, {rn} ⊂ (0,∞) satisfy the
conditions (C1), (C2), (C3), (C5) and C6) in Theorem 3.1. Then {xn} converges
strongly to a point q ∈ Ω, which solves the following minimum-norm problem
(3.31).

As direct consequences of Theorem 3.1 along with βn = 0 for n ≥ 0, we also have
the following results. First, if, in Theorem 3.1, we take that A ≡ I, the identity
mapping on C, then we obtain the following corollary.

Corollary 3.4. Let H, C, Ĉ, A, T , Trn, F , V , γ, τ , κ̂, η, l and µ be as in
Theorem 3.1. Let x0 ∈ Fix(T ) be chosen arbitrarily. Let {xn} be a sequence
generated by

xn+1 = αnγV xn + (I − αnµF )Trnxn, ∀n ≥ 0,

where {αn} ⊂ [0, 1) and {rn} ⊂ (0,∞). Let {αn} and {rn} satisfy the conditions
(C1), (C2), (C3) and (C6) in Theorem 3.1. Then {xn} converges strongly to
q ∈ Fix(T ), which is the unique solution of the variational inequality

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ Fix(T ).

Next, if, in Theorem 3.1, T ≡ I is the identity mapping on C along with βn = 0
for n ≥ 0, then we have the following corollary.

Corollary 3.5. Let H, C, Ĉ, A, Aλn, F , V , γ, τ , κ̂, η, l and µ be as in Theorem
3.1. Let x0 ∈ V I(C,A) be chosen arbitrarily, and let Ĉ = S(x0,

γ∥V x0∥+µ∥Fx0∥
τ−γl

)∩C.
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Let {xn} be a sequence generated by

xn+1 = αnγV xn + (I − αnµF )Aλnxn, ∀n ≥ 0,

where {αn} ⊂ [0, 1) and {λn} ⊂ (0,∞). Let {αn} and {λn} satisfy the conditions
(C1), (C2), (C3) and (C5) in Theorem 3.1. Then {xn} converges strongly to
q ∈ V I(C,A), which is the unique solution of the variational inequality

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ V I(C,A).

Remark 3.1.

1) Our results extend and unify most of the results that have been established
for these important classes of nonlinear mappings. In particular, Theorem
3.1 and Corollary 3.2 improve Theorem 3.1 of Jung [12] and Theorem 3.1 of
Wangkeeree and Nammanee [22] and Theorem 3.1 of Zegeye and Shahzad
[26], respectively, in the sense that our convergence is for more general classes
of nonlinear mappings such as hemicintinuos monotone mappings, hemicon-
tinuous pseudocontractive mappings, boundedly Lipschitzian and strongly
monotone mappings, and Lipschizian mappings.

2) It is worth pointing out that the variable parameters λn and rn in our it-
erative algorithms are used in comparison with the corresponding iterative
algorithms in [22,25,26].

3) Corollary 3.2 also includes Proposition 3.1 of Chen et al. [6], Theorem 3.1 of
Iiduka and Takahashi [8] and Corollary 3.2 of Su et al. [16] in the convergence
sense for more general classes of nonlinear mappings mentioned in 1).

4) Corollary 3.1 and Corollary 3.3 are new results for finding the minimum-
norm point of Fix(T ) ∩ V I(C,A).

5) Corollary 3.4 and Corollary 3.5 also improve the corresponding results of
Chen et al. [5], Tian [21], Wangkeeree and Nammanee [22] and Zegeye and
Shahzad [26] in the sense that our results are for more general classes of
nonlinear mappings.

6) As in Corollary 3.1, if we take F ≡ I, V ≡ 0, µ = 1, τ = 1, and l = 0 in
Corollary 3.4 and Corollary 3.5, then we can find the minimum-norm point
of Fix(T ) and V I(C,A), respectively.

Acknowledgments

This research was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education
(2021R1I1A3040289).

20

155

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Jong Soo Jung 136-157



References

[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-
type Mappings with Applications, Springer, 2009.

[2] E. Blum and W. Oettli, From optimization and variationl inequalities, Math.
Student 63, 113–146, (1994)

[3] F. E. Browder and W. V. Petryshn, Construction of fixed points of nonlinear
mappings Hilbert space, J. Math. Anal. Appl. 20, 197–228 (1967).

[4] R. E. Bruck, On the weak convergence of an ergodic iteration for the solution of
variational inequalities for monotone operators in Hilbert space, J. Math. Anal.
Appl. 61, 159–164 (1977).

[5] L. C. Ceng, Q. H. Ansari and J. C. Yao, Some iterative methods for finding fixed
points and for solving constrained convex minimization problems, Nonlinear Anal.
74, 5286–5302 (2011).

[6] J. Chen, L. Zhang and T. Fan, Viscosity approximation methods for nonexpansive
mappings and monotone mappings, J. Math. Anal. Appl. 334, 1450–1461 (2007).

[7] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces,
J. Nonlinear Convex Anal. 6, 117–136, (2005).

[8] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive
mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61, 341–350
(2005).

[9] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational
inequalities for monotone mappings, PanAmer. Math. J. 14, 49–61 (2004).

[10] S. He and X. L. Liang, Hybrid steepest-descent methods for solving varia-
tional inequalities governed by boundedly Lipschitzian and strongly monotone
operators, Fixed Point Theory Appl. 2010, Article ID 673932, 16 pages,
doi:10.1155/2010/673932, (2010).

[11] S. He and H. K. Xu, Variational inequalites governed by boundedly Lipschitzian
and strongly monotone operators, Fixed Point Theory, 10, 245–258, (2009).

[12] J. S. Jung, A new iteration method for nonexpansive mappings and monotone
mappings in Hilbert spaces, J. Inequal. Appl. 2010, Article ID 251761, 16 pages,
doi:10.1155/2010/251761,(2010).

[13] J. S. Jung, Strong convergence of iterative methods for k-strictly pseudo-contractive
mappings in Hilbert spaces, Applied Math. Comput. 215, 3746–3753 (2010).

[14] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational
inequalities and convergence rates, Set-Valued Anal. 6, 313–344 (1998).

[15] P. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math.
20, 493–517 (1967).

21

156

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Jong Soo Jung 136-157



[16] Y. Su, M. Shang, and X. Qin, An irerative method of solution for equilibrium and
optimization problems, Nonlinear Anal. 69, 2709–2719 (2008).

[17] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama
(2000).

[18] W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for
equilibrium problems and relatively nonexpansive mappings in Banach spaces,
Nonlinear Anal. 10, 45–57 (2009).

[19] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive
mappings and monotone mappings, J. Optim. Theory Appl. 118, 417–428 (2003).

[20] Y. Tang, Strong convergence of viscosity approximation methods for the fixed point
of pseudo-contractive and monotone mappings, Fixed Point Theory Appl. 2013,
doi:10.1186/1687-1812-2013-273 (2013).

[21] M. Tian, A general iterative method based on the hybrid steepest descent scheme
for nonexpansive mappings in Hilbert spaces, In 2010 International Conefrence on
Computational Intelligence and Soft ware Engineering, CiSE 2010, art. no. 5677064,
(2010).

[22] R. Wangkeeree and K. Nammanee, New iterative methods for a common solution
of fixed points for pseudo-contractive mappings and variational inequalities, Fixed
Point Theory Appl. 2013, doi:10.1186/1687-1812-2013-233, (2013)

[23] H. K. Xu, An iterative algorithm for nonlinear operator, J. London Math. Soc. 66,
240–256 (2002).

[24] I. Yamada, The hybrid steepest descent method for the variational inequality
problem over the intersection of fixed point sets of nonexpansive mappings,
in D. Butnariu, Y. Censor, S. Reich (Eds), Inherently Parallel Algorithm for
Feasibility and Optimization, and Their Applications, Kluwer Academic Publishers,
Dordrecht, Holland, pp. 473–504, (2001).

[25] H. Zegeye, An iterative approximation method for a common fixed point of two
pseudocontractive mappings, Interational Scholarly Reserach Network ISRN Math.
Anal. 2011 Article ID 621901, 14 pages.

[26] H. Zegeye and N. Shahzad, Strong convergence of an iterative method for pseudo-
contrcative and monotone mappings, J. Glob. Optim. 54, 173–184 (2012).

22

157

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Jong Soo Jung 136-157


	BLOCK-1-VOL-32---2024
	Binder-VOL-32-2024
	12-Jong Soo Jung



