
Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 5, 2024 
     VOL. 33, NO. 2, 20 

                                                                                 99                                                             Ghada A. Ahmed et al 99-106 

A Novel Fractional Model for Advancing Urban Flood 
Prediction 

 

Ghada A. Ahmed1 
 

1Department of Mathematics, Faculty of science, Al-Baha University, Alaqiq 65799, Saudi Arabia 
Email: gahmed@bu.edu.sa 

 

         Received: 16.04.2024             Revised : 18.05.2024                       Accepted: 24.05.2024 

 
 
ABSTRACT 
Urban flooding is a growing threat to cities, livelihoods, and ecosystems. The non-linear dynamics of flood 
waves, characterized by memory effects and interactions over large-scale regions, are often beyond the 
reach of conventional equation-based flood models. Modern advancements in the field of fractional 
calculus of fera solution to these issues. The Tanganna derivatives are integrated in a flood model for an 
extended assessment of historical data and spatial heterogeneity in floods in this paper we using the 
Fractional Spectral Method (FSM), This method helps to correctly solve the differential equations with 
complex boundary conditions, and thus, this method makes a quick hand about converting them into an 
easier form of algebraic equation. Boundary conditions are represented using Robin and Neumann types, 
with the initial condition given by a hyper bolictangent distribution. This is confirmed through numerical 
simulations [6, 38, 39]. 
 
Keywords: flood dynamics, Fractional Spectral Method, Predictor-corrector scheme, Water height 
Distribution, Water height at, Sensitivity analysis. 
 
1. INTRODUCTION 
Models of dynamics of flooding in various metropolitan environments assume uniform flow and 
consistency, which can result in mistakes when estimating the levels and extents of floods. New modeling 
methods propose fractional calculus as a solid basis for simulating processes featuring memory. The 
benefit of this component is especially useful in flood modeling situations, aspas trainfall events are an 
important factor that affects the current state of floods due to moisture contained .This capacity of the 
application to capture detailed and extreme time-dependent diffusion behavior resulted in a very proper 
representation for derivatives use into flood modeling, nowadays. For example, it cannot explain the fast 
movements of flood waters because they require a diffusion equation to solve. The fractional diffusion 
equation is very well in describing these dynamics, which makes it useful for forecasting. Therefore, the 
objective of this research is to apply Tanganna fractional derivatives in a two-flood model for urban flood 
prediction, which improves accuracy as compared with existing models. Assumptions of the model 
include: uniform, steady flow; a homogeneous flood plain (wet-flooding boundaries); and satisfied laws of 
water equation requirements. We pass from the partial differential equation (PDE) to a system of 
equations by using Fractional Spectral Method (FSM). For realistic flood dynamics simulations, these 
equations are numerically solved. A distribution that captures the statistical detail of how dry transitions 
to wet and thereby providing a realistic way of objectively simulating when flooding starts defines the 
initial state — realistic as possible. It is implemented the mathematical boundary conditions based on 
Robin and Neumann condition to accurately represent model-floodplain boundaries ( walls, levees or 
open boundaries ).This because even if it is not you can apply this to overall as its work efficiently and 
accurate in handling situations. It uses base functions to divide the space and makes it easier by 
converting this problem in a set of equations. If so, we bifurcate the time-related part in a different way to 
retain stability and precision within an answer. To improve the accuracy of results, we use a predictor-
corrector scheme that presents fractional derivatives with high fidelity by combining implicit methods 
[30, 36] 
 
2. Mathematical Preliminaries 
We give the background material required for our study in the following section. 
 
Definition 2.1. The Tanganna fractional derivative of order 𝜂defined as [21] 
form is defined as  
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The kernel function 𝐾(𝑡, 𝜏) can be can be customized for uses offering a flexible approach, than 
standard fractional derivatives. A distinguishing feature of Tanganna derivatives is their capacity to 
represent systems with memory spans and spatial relationships based on the selection of the kernel 
function𝐾(𝑡, 𝜏) . 
 
Definition 2.2. 

The Tanganna fractional integral of a function ℎ(𝑡 )of order  𝜂 defined by [21] 
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3. Model Formulation 
Tanganna’s fractional derivatives are advantageous for flood modeling because they can capture both 
local and non local interactions well. The ability to adapt is essential for accurately depicting the changing 
patterns of flood waves at various spatial scales, as they are influenced by past events and interactions. 
Including Tanganna derivatives in our flood model aims to achieve a comprehensive and accurate 
representation of flood dynamics. Consequently, this can improve our capacity to accurately forecast and 
efficiently control floods. In developing our flood model in two dimensions, we base our analysis on the 
following assumptions; The flow remains constant and consistent, unaffected, by factors like wind or 
additional water inputs beyond the flooding. The floodplain exhibits uniformity in both topography and 
soil properties. The water movement adheres to the principles outlined in water equations relevant for 
surface runoff in urban settings. 
We derive the two-dimensional fractional diffusion equation for flood simulation using Tanganna 
fractional derivatives. The following represents the governing equation for the water depth ℎ(𝑥, 𝑦, 𝑡): 
𝜕ℎ

𝜕𝑡
= 𝐷𝑥

𝜂 𝜕2

𝜕𝑥2 + 𝐷𝑦
𝜂 𝜕2

𝜕𝑦2    (3) 

where the Tanganna fractional derivatives in the x and y directions are, respectively, 𝐷𝑥
𝜂

and  𝐷𝑦
𝜂

 [35]. 

Initial and Boundary Conditions 
For initial conditions, a hyper bolictangent distribution, which mimics a realistic change from dry to 
flooded states, describes the initial condition of the flood model: 

ℎ 𝑥, 𝑦, 0 = ℎ0 tanh(
𝑥−𝑥0

𝐿
) tanh(

𝑦−𝑦0

𝐿
)         (4) 

The variables  ℎ0 represent the initial water height , 𝑥0 , 𝑦0are the center coordinates of the flood source, 
and 𝐿 determines the steepness of the transition[15]. 
For boundary conditions, we utilize a combination of Neumann and Robin(mixed)boundary condition to 
represent practical physical interactions at the floodplain boundaries. 
RobinBoundaryCondition: 

𝑎ℎ + 𝑏
𝜕ℎ

𝜕𝑛
= 𝑔 𝑥, 𝑦, 𝑡   𝑜𝑛 Г1          (5) 

Where 𝑎 and 𝑏 are coefficients and  
𝜕ℎ

𝜕𝑛
  is the normal derivatives  and 

𝑔(𝑥, 𝑦, 𝑡)isaprescribedfunctionontheboundary Г1  
 
Neumann Boundary Condition 
𝜕ℎ

𝜕𝑛
= 0       on Г2                     (6) 

suggesting that there is no flux across Г1[34]. 
These criteria guarantee that the model can effectively replicate how flood waves interact with different 
types of boundaries, like walls, levees, and open boundaries. 
 
4.  Numerical Scheme : Fractional Spectral Method(FSM) 
To solve the diffusion problem, one uses the Fractional Spectral Method (FSM). By using the orthogonality 
of basis functions, the Fractional Spectral Method (FSM) transforms fractional partial differential 
equations into a system of equations. This approach is well-known for its accuracy and efficiency when 
solving complex boundary condition issues.[7]. 
In two dimensions, we can express the diffusion equation as follows: 
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𝜕𝜂 ℎ

𝜕𝑡𝜂
= 𝐷  

𝜕2ℎ

𝜕𝑥2 +   
𝜕2ℎ

𝜕𝑦2                  (7)      

whereℎ(𝑥, 𝑦, 𝑡) is the water height, 𝐷is the diffusion coefficient and η is the fractional order. The initial 
phase of solving this equation with the (FSM) method involves dividing down the time and space domains 
into segments. To discretize the domain, we use a method that approximates the solution using a series of 
functions. To ensure stability and accuracy in the solution, a finite difference scheme is applied  to the 
time domain [10,25] . 
 
Spatial Domain Discretization 
With the spectral method, orthogonal basis functions 𝜙𝑖(𝑥)and𝜙𝑗 (𝑦) are used to discretize the spatial 

domainas 

ℎ 𝑥, 𝑦, 𝑡 ≈   𝐻𝑖𝑗  𝑡 

𝑁𝑦

𝑗=0

𝑁𝑥

𝑖=0

𝜙𝑖 𝑥 𝜙𝑗  𝑦            (8) 

where 𝑁𝑥  and𝑁𝑦   are stand for respectively, the number of basis functions in the  𝑥 and 𝑦 directions [33]. 

 
Time Domain Discretization 
The concept of difference allows us to partition time into discrete intervals approximation of ℎ(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) 

at the grid coordinates (𝑥𝑖 , 𝑦𝑗 ) and time  𝑡𝑛   In  order to accurately discretize the time derivative, we 

employ forward difference techniques such as: 
𝜕ℎ

𝜕𝑡
≈

ℎ𝑖𝑗
𝑛−1−ℎ𝑖𝑗

𝑛

∆𝑡
   (9) 

where ∆𝑡 represents the time step. When you use spectral spatial discretization and finite difference time 
discretization together, the numerical solution is stable and correct. This means that fractional partial 
differential equations can be solved with it [10, 18]. 
 
Predictor-Corrector Scheme  
In order to improve the precision and consistency of the solution, we utilize a method known as a 
predictor-corrector strategy. This technique entails making a prediction of the solution at a given time 
using a method and subsequently refining it using an implicit method. By blending these methodologies, 
we guarantee that the fractional derivatives are depicted with accuracy in the solution, resulting in 
dependable flood forecasts. 

The estimated outcome at the midway point in time is ℎ𝑖𝑗
𝑛+

1

2 , while the corrected result at the time 

interval is ℎ𝑖𝑗
𝑛+1. To compute the forecasting phase, we apply Eulers method: 

ℎ𝑖𝑗
𝑛+

1

2 = ℎ𝑖𝑗
𝑛 + ∆𝑡(

𝜕ℎ

𝜕𝑡
)𝑖𝑗

𝑛
    (10) 

For the corrector step, we use an implicit backward Euler method, to correct the solution at the next time 
step  𝑛 + 1 

ℎ𝑖𝑗
𝑛+

1

2 = ℎ𝑖𝑗
𝑛 + ∆𝑡(

𝜕ℎ

𝜕𝑡
)𝑖𝑗

𝑛+
1

2
     (11) 

The predictor-corrector system improves the accuracy of numerical solutions by incorporating both 
explicit and implicit steps. This results in more accurate forecasts of flood dynamics. In order to increase 
the precision and stability of numerical simulations, the predictor-corrector system is essential. 
Especially when dealing with fractional partial differential equation problems 
These approaches yield a collection of equations for the coefficients 𝐻𝑖𝑗 (𝑡).let ℎ𝑛 𝑖𝑗  be the water height at 

time 𝑡𝑛  and grid point (𝑥𝑖 , 𝑦𝑗 ),and let 𝐻𝑛
𝑖𝑗  denote the appropriate coefficient for this specific coordinate 

and temporal interval. The initial  phase of predication: 

ℎ𝑖𝑗
𝑛+1 = ℎ𝑖𝑗

𝑛 + ∆𝑡  𝐷  
𝜕2ℎ

𝜕𝑥2 +  
𝜕2ℎ
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𝑖𝑗
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1

2

 (11) 

Guides to  the equation: 

𝐻𝑖𝑗
𝑛+1 = 𝐻𝑖𝑗

𝑛 + ∆𝑡(𝐷  𝐾𝑥
2𝐻𝑖𝑗

𝑛+
1

2 + 𝐾𝑦
2𝐻𝑖𝑗

𝑛+
1

2 )            (12)   

where the wave numbers in the  𝑥 and 𝑦 directions are denoted, respectively, by 𝑘𝑥  and 𝑘𝑦 . This system is 

a way to estimate the diffusion equation numerically by employing the predictor-corrector method [9]. 
 
5.Numerical simulation 
water height at 
The phrase ”water height at” refers to the water level at certain points in the region at particular times 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 5, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 102                                                           Ghada A. Ahmed et al 99-106 

during the simulation. This usually entails tracking the temporal progression of the flood by monitoring 
the changes in water levels at various periods in time (such as grid points). 
It provides insight into the flow of flood waters, their effects on different regions, and how they recede 
throughout the course of the simulation. 
 

 
Figure 1. water height 

 
 

                                      (a)                                                                                                        (b) 
Figure 2. water height 

 
Flood Water Height Distribution 
Distribution of flood water levels refers to how the water levels are arranged or laid out across the area at 
a specific moment in time. Rather than focusing on specific areas, it provides an overview of how flood 
waters disperse throughout the entire region at a given time. This distribution makes flood characteristics 
easier to visualize by highlighting the extent of the flooding and identifying specific zones. Although both 
ideas entail determining the water level during a flooding event, the latter offers a comprehensive picture 
of the water level throughout the entire domain at a given time, while the former concentrates on 
individual places or locations at different times. Their complementary perspectives on the dynamics and 
effects of flooding—the former providing temporal insights, the later providing spatial insights—allow 
them to better comprehend each other. 
 

 
                                                   (a)                                                                     (b) 

Figure 3. Flood Water Height 
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                                                (a)                                                                      (b) 
Figure 4. Flood Water Height Distribution 

 
6. Sensitivity Analysis 
We performed a sensitivity analysis to see how the fractional flood model responds to changes in 
significant elements in order to assess the model’s robustness and dependability. This investigation 
closely examines the effects of changing factors, such as the diffusion coefficient and order on the models’ 
predictions of flood behavior. 
 
Fractional Order Sensitivity 
Examining orders allows us to investigate the ways in which different degrees of fractional differentiation 
affect the memory effects and spatial differences that the model represents. Understanding how the 
model responds to changes in the diffusion coefficient variable helps us understand flood wave 
propagation. The outcomes suggest that higher fractional values lead to enhanced memory effects and 
spatial variation in flood behavior. However, elevated values may result in instability or computational 
challenges. Choosing the appropriate value is crucial in order to achieve a balance between the 
complexity of the model, the feasibility of computation, and the level of accuracy. 
 

 
                                              (a)                                                                                       (b) 
 

Figure 5. Fractional Order Sensitivity. 
 
Diffusion Coefficient Sensitivity 
Understanding how the model responds to changes in the diffusion coefficient variable helps us 
understand flood wave propagation. A change in the diffusion coefficient can affect the way flood waters 
flow, including the are a flooded and the speed at which they spread. The variation in the diffusion 
coefficient demonstrates the model’s response to changes in flood water spreading and dispersal. Higher 
diffusion coefficients cause flood waves to move faster. Disperse extensively. Understanding the 
relationship between the diffusion coefficient and flood dynamics can improve the accuracy of parameter 
estimates. Enhance the predictive capabilities of the models. 
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                                                            (a)                                                                            (b) 

Figure 6. Diffusion Coefficient Sensitivity. 
 
Other Sensitivity Analysis 
Further sensitivity analyses can be performed to observe the model’s response to initial conditions, 
boundary conditions, and numerical parameters like grid size and time intervals. By identifying the 
variables that influence the model’s predictions, these tests are helpful in fine-tuning the model’s 
parameters. 
The simulation’s findings provide insight into the behavior of the fractional flood model in various 
situations. We can observe how different elements affect flooding patterns in different locations by 
tracking changes in height across time and space. 
 

 
                                                          (a)                                                                            (b)              
 

Figure 7. Boundary conditions Sensitivity. 
 

Model Robustness and Reliability 
The sensitivity analysis generally demonstrates how effectively the fractional flood model can manage 
flood conditions and adjust to parameter changes. The model’s adaptability to various environments and 
urban landscapes demonstrates its value in anticipating urban floods and evaluating hazards. 
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CONCLUSION 
The fractional flood model has many advantages compared with conventional integer-order models. One, 
it yields better predictions regarding the propagation and attenuation of flood waves by correctly 
representing memory effects as well as non-local interactions inherent in flood dynamics [37].Moreover, 
the model can be adapted to temporal- specific flood characteristics by changing its fractional order and 
therefore widen its usage in different environmental conditions[8].Also, with the predictor-corrector 
approach, numerical simulation stability and reliability are improved, so that even in complex situations, 
consistent results can be produced[22].Enhanced flood forecasting and modeling skills enable emergency 
response planning and preventative flood management [23].The developed model provides decision-
makers with critical tools for reducing the economic and environmental consequences of urban floods. 
This can be done by informing the design of resilient infrastructure and effective mitigation strategies. 
Furthermore, the ability to model different flood scenarios aids in the evaluation of various flood 
management measures, allowing for evidence-based decision-making and resource distribution[30] .In 
conclusion, the simulation findings show that the fractional flood model is good at describing detailed 
flood dynamics and has the potential to impact resilient urban planning and flood management strategies. 
The model’s strengths include its ability to account for memory effects, adjust fractional ordering to meet 
different scenarios, and generate reliable forecasts using the predictor-corrector method. Future research 
should focus on improving the fractional flood model by incorporating additional variables such as 
infrastructure resilience, topographical features, and rainfall unpredictability. 
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