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Abstract. For any rational numbers k, l with kl(l− 1) ̸= 0, we prove the gener-
alized Hyers–Ulam stability of the Euler-Lagrange quadratic functional equation

f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)] = l[f(kx+ y) + f(kx− y)]

using both the direct method and fixed point method in fuzzy Banach spaces.

1. Introduction.

Some mathematicians have established fuzzy spaces with fuzzy norms on linear
spaces from various points of view [2, 12, 18, 34]. Xiao and Zhu [34], Cheng and
Mordeson [6], and Bag and Samanta [2, 3] gave the idea of fuzzy norms over linear
spaces in such a manner that the corresponding fuzzy metric may be of Kramosil
and Michalek type [17] and investigated some properties of fuzzy linear operators
on fuzzy normed spaces.

Now, we introduce the definition of fuzzy normed spaces given in [2, 21, 22].

Definition 1.1 [2, 21, 22]. Let X be a real linear space. A function N : X ×R →
[0, 1] is said to be a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,
(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) for c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function on R and limt→∞ N(x, t) = 1;
(N6) for x ̸= 0, N(x, ·) is continuous on R.
The pair (X,N) is called a fuzzy normed (linear) space. The properties of fuzzy

normed linear spaces and examples of fuzzy norms are given in [21, 23].

Definition 1.2 [2, 21, 22]. Let (X,N) be a fuzzy normed linear space. A sequence
{xn} in X is said to be convergent or to converge to x if there exists an x ∈ X such
that limn→∞ N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of the
sequence {xn}, and we denote it by N -limn→∞ xn = x.
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Definition 1.3 [2, 21, 22]. Let (X,N) be a fuzzy normed linear space. A sequence
{xn} in X is called Cauchy if for each ε > 0 and each t > 0, there exists an n0 ∈ N
such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well known that every convergent sequence in a fuzzy normed space is a
Cauchy sequence. If each Cauchy sequence is convergent, then the fuzzy norm is
said to be complete and the fuzzy normed space is called a fuzzy Banach space.
They say that a mapping f : X → Y between fuzzy normed spaces X and Y is
continuous at x0 ∈ X if for each sequence {xn} converging to each x0 ∈ X, the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X,
then f : X → Y is said to be continuous on X (see [3, 21]).

The stability problem of functional equations originated from a question of Ulam
[33] concerning the stability of group homomorphisms. Hyers [14] gave the first
affirmative partial answer to the question of Ulam for additive mappings on Ba-
nach spaces. Hyers’s theorem has been generalized by Aoki [1], Th.M. Rassias [28]
and Gǎvruta [13] by considering an unbounded Cauchy difference. The classical
functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

associated with the parallelogram equality ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 in
inner product spaces, is called a quadratic functional equation, and every solution
of the quadratic functional equation is said to be a quadratic mapping. First of all,
the Hyers-Ulam stability problem for the quadratic functional equation has been
established by Skof [32], Cholewa [7] and Czerwik [9]. In particular, Isac and Th.M
Rassias [15] have provided a new application of fixed point theorems to prove the
stability theory of functional equations. By using fixed point methods, the stability
problems of several functional equations have been extensively investigated by a
number of authors (see [4, 8, 31, 23, 27, 26]).

We recall the fixed point theorem from [19], which is needed in Section 3.

Theorem 1.4 [4, 19]. Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with the Lipschitz constant L < 1.
Then, for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

On the other hand, J.M. Rassias investigated the Hyers–Ulam stability for the
relative Euler–Lagrange functional equation

f(ax+ by) + f(bx− ay) = (a2 + b2)[f(x) + f(y)]
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in [29, 30]. The stability problems of several quadratic functional equations have
been extensively investigated by a number of authors, and there are many interesting
results concerning this problem (see [5, 24, 10, 11]). In the paper [16], the authors
have proved the generalized Hyers–Ulam stability of the Euler–Lagrange quadratic
functional equation

f(kx+ ly) + f(kx− ly)(1.1)

= kl[f(x+ y) + f(x− y)] + 2(k − l)[kf(x)− lf(y)]

in fuzzy Banach spaces, where k, l are nonzero rational numbers with k ̸= l.
Motivated to research stability results of the Euler–Lagrange functional equation,

we investigate the generalized Hyers–Ulam stability of the following modified Euler–
Lagrange functional equation

f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)](1.2)

= l[f(kx+ y) + f(kx− y)]

using both the fixed point method and the direct method in fuzzy Banach spaces in
the paper, where k, l are nonzero rational numbers with kl(l− 1) ̸= 0 . Throughout
the paper, we assume that X is a linear space, (Y,N) is a fuzzy Banach space and
(Z,N ′) is a fuzzy normed space.

2. General solution of (1.2).

The following lemma can be found in the paper [16].

Lemma 2.1. [16] A mapping f : X → Y between linear spaces satisfies the
functional equation

f(rx+ y) + f(rx− y) = r[f(x+ y) + f(x− y)] + 2(r − 1)[rf(x)− f(y)]

for any fixed rational numbers r with r ̸= 0, 1 if and only if f is quadratic.
Now, we present the general solution of the functional equation (1.2).

Theorem 2.2. A mapping f : X → Y between vector spaces satisfies the functional
equation (1.2) if and only if f−f(0) is quadratic, where f(0) = 0 whenever k2 ̸= l+1.

Proof. First of all, replacing (x, y) := (0, 0) in the functional equation (1.2), we
find f(0) = 0 whenever k2 ̸= l + 1. Substituting (x, y) := (x, 0) in (1.2), we get
f(kx) = k2f(x) for all x ∈ X. Putting (x, y) := (0, x) in (1.2), one has

f(lx) + f(−lx) = (2l2 − l)f(x) + lf(−x)(2.1)

for all x ∈ X. Replacing x by −x in (2.1), one gets

f(−lx) + f(lx) = (2l2 − l)f(−x) + lf(x)(2.2)

for all x ∈ X. Subtracting equation (2.1) from (2.2), we find f(−x) = f(x) and so
f(lx) = l2f(x) for all x ∈ X. Thus the equation (1.2) can be rewritten as

f(x+
ly

k
) + f(x− ly

k
) = l[f(x+

y

k
) + f(x− y

k
)]− 2(l − 1)[f(x)− lf(

y

k
)],
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which yields by switching (x, y) with (y, kx)

f(lx+ y) + f(lx− y) = l[f(x+ y) + f(x− y)] + 2(l − 1)[lf(x)− f(y)]

for all x, y ∈ X. Therefore, it follows from Lemma 2.1 that f is quadratic.
Conversely, if a mapping f is quadratic, then it is obvious that f satisfies the

equation (1.2).

3. Stability of equation (1.2) by fixed point method.

For notational convenience, we define the difference operator Dklf : X2 → Y of
the equation (1.2) for a given mapping f : X → Y as

Dklf(x, y) := f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)]

−l[f(kx+ y) + f(kx− y)]

for all x, y ∈ X. Now, we are going to consider a stability problem concerning the
stability of equation (1.2) by using the fixed point theorem for contraction mappings
on generalized complete metric spaces.

Theorem 3.1. Assume that a mapping f : X → Y with f(0) = 0 satisfies the
functional inequality

N(Dklf(x, y), t1 + t2) ≥ min{N ′(φ(x), tq1), N
′(φ(y), tq2)}(3.1)

for all x, y ∈ X and all ti > 0 (i = 1, 2), and for some q > 0, and assume in addition

that there exists a constant s ∈ R with |s| ̸= 1, 0 < |s|
1
q < k2 such that a constrained

function φ : X → Z satisfies the inequality

N ′(φ(kx), t) ≥ N ′(sφ(x), t),(3.2)

for all x ∈ X and all t > 0. Then there exists a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate
functional inequality

N(f(x)−Q(x), t) ≥ min
{
N ′

( φ(x)

|l − 1|q(k2 − |s|
1
q )q

, tq
)
,(3.3)

N ′
( φ(0)

|l − 1|q(k2 − |s|
1
q )q

, tq
)}

near f for all x ∈ X and all t > 0.

Proof. We consider the set of functions

Ω := {g : X → Y |g(0) = 0}
and define a generalized metric on Ω as follows:

dΩ(g, h) := inf
{
K ∈ [0,∞] : N(g(x)− h(x), Kt) ≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

∀x ∈ X, ∀t > 0
}
.

Then one can easily see that (Ω, dΩ) is a complete generalized metric space [20].
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Now, we define an operator J : Ω → Ω as

Jg(x) =
g(kx)

k2

for all g ∈ Ω, x ∈ X.
We first prove that J is strictly contractive on Ω. For any g, h ∈ Ω, let ε ∈ [0,∞)

be any constant with dΩ(g, h) ≤ ε. Then it follows from the use of (3.2) and the
definition of dΩ(g, h) ≤ ε that

N(g(x)− h(x), εt) ≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

⇒ N
(g(kx)

k2
− h(kx)

k2
,
|s|

1
q

k2
εt
)
≥ min{N ′(φ(kx), |s|tq), N ′(φ(0), |s|tq)},

⇒ N
(
Jg(x)− Jh(x),

|s|
1
q

k2
εt
)
≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

⇒ dΩ(Jg, Jh) ≤
|s|

1
q

k2
ε, ∀x ∈ X, t > 0.

Since ε is an arbitrary constant with dΩ(g, h) ≤ ε, we see that for any g, h ∈ Ω,

dΩ(Jg, Jh) ≤
|s|

1
q

k2
dΩ(g, h),

which implies J is strictly contractive with the constant |s|
1
q

k2
< 1 on Ω.

We now want to show that dΩ(f, Jf) < ∞. If we put y := 0, ti := t (i = 1, 2) in
(3.1), then we arrive at

N
(
f(x)− f(kx)

k2
,

t

|l − 1|k2

)
≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

which yields dΩ(f, Jf) ≤ 1
|l−1|k2 < ∞, and so

dΩ(J
nf, Jn+1f) ≤ dΩ(f, Jf) ≤

1

|l − 1|k2

for all n ∈ N. Now, applying the fixed point theorem of the alternative for con-
tractions on generalized complete metric spaces due to Margolis and Diaz [19], we
obtain the following approximate functional inequalities (a), (b) and (c):

(a) There is a mapping Q : X → Y with Q(0) = 0 such that

dΩ(f,Q) ≤ 1

1− |s|
1
q

k2

dΩ(f, Jf) ≤
1

|l − 1|(k2 − |s|
1
q )
,
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and thus Q is a fixed point of the operator J , that is, 1
k2
Q(kx) = JQ(x) = Q(x) for

all x ∈ X. Thus we arrive at

N
(
f(x)−Q(x),

t

|l − 1|(k2 − |s|
1
q )

)
≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

N(f(x)−Q(x), t) ≥ min
{
N ′

(
φ(x), |l − 1|q(k2 − |s|

1
q )q tq

)
,

N ′
(
φ(0), |l − 1|q(k2 − |s|

1
q )q tq

)}
for all t > 0 and all x ∈ X, which implies the approximation (3.3).
(b) Since dΩ(J

nf,Q) → 0 as n → ∞, we obtain

N
(f(knx)

k2n
−Q(x), t

)
= N(f(knx)−Q(knx), k2nt)

≥ min
{
N ′

( φ(knx)

|l − 1|q(k2 − |s|
1
q )q

, k2nqtq
)
, N ′

( φ(0)

|l − 1|q(k2 − |s|
1
q )q

, k2nqtq
)}

≥ min
{
N ′

( φ(x)

|l − 1|q(k2 − |s|
1
q )q

,
(k2q

|s|

)n

tq
)
, N ′

( φ(0)

|l − 1|q(k2 − |s|
1
q )q

,
(k2q

|s|

)n

tq
)}

→ 1 as n → ∞
(k2q

|s|
> 1

)

for all t > 0 and all x ∈ X, that is, the mapping Q : X → Y given by

N - lim
n→∞

f(knx)

k2n
= Q(x)(3.4)

is well defined for all x ∈ X. In addition, it follows from the conditions (3.1), (3.2)
and (N4) that

N
(Dklf(k

nx, kny)

k2n
, t
)

≥ min
{
N ′

(
φ(knx),

k2nqtq

2q

)
, N ′

(
φ(kny),

k2nqtq

2q

)}
≥ min

{
N ′

(
|s|nφ(x), k

2nqtq

2q

)
, N ′

(
|s|nφ(y), k

2nqtq

2q

)}
≥ min

{
N ′

(
φ(x),

(k2q

|s|

)n tq

2q

)
, N ′

(
φ(y),

(k2q

|s|

)n tq

2q

)}
→ 1 as n → ∞, t > 0,(3.5)
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for all x ∈ X. Therefore we obtain, by use of (N4), (3.4) and (3.5),

N(DklQ(x, y), t) ≥ min
{
N
(
DklQ(x, y)− Dklf(k

nx, kny)

k2n
,
t

2

)
,

N
(Dklf(k

nx, kny)

k2n
,
t

2

)}
= N

(Dklf(k
nx, kny)

k2n
,
t

2

)
, (for sufficiently large n)

≥ min
{
N ′

(
φ(x),

(k2q

|s|

)n tq

4q

)
, N ′

(
φ(y),

(k2q

|s|

)n tq

4q

)}
→ 1 as n → ∞, t > 0,

which implies DklQ(x, y) = 0 by (N2), and so the mapping Q is quadratic satisfying
equation (1.2).

(c) The mapping Q is a unique fixed point of the operator J in the set ∆ = {g ∈
Ω|dΩ(f, g) < ∞}. Thus, if we assume that there exists another Euler-Lagrange type
quadratic mapping Q′ : X → Y satisfying inequality (3.3), then

Q′(x) =
Q′(kx)

k2
= JQ′(x), dΩ(f,Q

′) ≤ 1

|l − 1|(k2 − |s|
1
q )

< ∞,

and so Q′ is a fixed point of the operator J and Q′ ∈ ∆ = {g ∈ Ω|dΩ(f, g) < ∞}.
By the uniqueness of the fixed point of J in ∆, we find that Q = Q′, which proves
the uniqueness of Q satisfying inequality (3.3). This ends the proof of the theorem.

We observe that if 0 < |s| < 1 in Theorem 3.1, then

min
{
N ′(φ(x), tq), N ′(φ(0), tq)

}
= N ′(φ(x), tq)

for all x ∈ X and all t > 0 since N ′(φ(0), tq) ≥ N ′
(
φ(0), tq

|s|n

)
→ 1 as n → ∞ by

the condition (3.2).

Theorem 3.2 Assume that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

N(Dklf(x, y), t1 + t2) ≥ min{N ′(φ(x), tq1), N
′(φ(y), tq2)}

for all x, y ∈ X and all ti > 0 (i = 1, 2) and for some q > 0, and furthermore assume

that there exists a constant s ∈ R with |s| ̸= 1, |s|
1
q > k2 such that a constrained

function φ : X → Z satisfies

N ′
(
φ
(x
k

)
, t
)
≥ N ′

(1
s
φ(x), t

)
for all x ∈ X. Then there exists a unique Euler–Lagrange quadratic mapping
Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate functional
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inequality

N(f(x)−Q(x), t) ≥ min
{
N ′

( φ(x)

|l − 1|q(|s|
1
q − k2)q

, tq
)
,(3.6)

N ′
( φ(0)

|l − 1|q(|s|
1
q − k2)q

, tq
)}

,

for all t > 0 and all x ∈ X.

Proof. Finally, applying the same argument as in the proof of Theorem 3.1, we can
find a mapping Q : X → Y defined by

N - lim
n→∞

k2nf(
x

kn
) = Q(x)

satisfying the equation DklQ(x, y) = 0 and the approximate functional inequality
(3.6) near f .

4. Stability of equation (1.2) by direct method.

In the following, we are going to investigate alternatively generalized Hyers–Ulam
stability of the Euler–Lagrange functional equation (1.2) via the direct method in
fuzzy Banach spaces.

Theorem 4.1. Assume that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

N(Dklf(x, y), t) ≥ N ′(φ(x, y), t)(4.1)

and assume in addition that there exists a constant s ∈ R subject to 0 < |s| < k2

such that a constrained function φ : X2 → Z satisfies the functional inequality

N ′(φ(kx, ky), t) ≥ N ′(sφ(x, y), t)(4.2)

for all x ∈ X and all t > 0. Then there exists a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate
inequality

N(f(x)−Q(x), t) ≥ N ′
( φ(x, 0)

2|l − 1|(k2 − |s|)
, t
)
, t > 0,(4.3)

for all x ∈ X.

Proof. It follows from the assumption (4.2) that

N ′(φ(knx, kny), t) ≥ N ′(snφ(x, y), t)

= N ′
(
φ(x, y),

t

|s|n
)
, t > 0,

which yields

N ′(φ(knx, kny), |s|nt) ≥ N ′(φ(x, y), t), t > 0,(4.4)
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for all x, y ∈ X. Putting (x, y) := (x, 0) in (4.1), we have

N(2(l − 1)f(kx)− 2(l − 1)k2f(x), t) ≥ N ′(φ(x, 0), t),

or, N
(
f(x)− f(kx)

k2
,

t

2|l − 1|k2

)
≥ N ′(φ(x, 0), t)(4.5)

for all x ∈ X. Therefore it follows from (4.4), (4.5) that

N
(f(knx)

k2n
− f(kn+1x)

k2(n+1)
,

|s|nt
2|l − 1|k2(n+1)

)
≥ N ′(φ(knx, 0), |s|nt) ≥ N ′(φ(x, 0), t)

for all x ∈ X and any integer n ≥ 0. Thus, we deduce the functional inequality

N
(
f(x)− f(knx)

k2n
,
n−1∑
i=0

|s|it
2|l − 1|k2(i+1)

)
(4.6)

= N
( n−1∑

i=0

(f(kix)

k2i
− f(ki+1x)

k2(i+1)

)
,
n−1∑
i=0

|s|it
2|l − 1|k2(i+1)

)
≥ min

0≤i≤n−1

{
N
(f(kix)

k2i
− f(ki+1x)

k2(i+1)
,

|s|it
2|l − 1|k2(i+1)

)}
≥ N ′(φ(x, 0), t), t > 0,

which implies

N
(f(kmx)

k2m
− f(km+px)

k2(m+p)
,

m+p−1∑
i=m

|s|it
2|l − 1|k2(i+1)

)
= N

(m+p−1∑
i=m

(f(kix)

k2i
− f(ki+1x)

k2(i+1)

)
,

m+p−1∑
i=m

|s|it
2|l − 1|k2(i+1)

)
≥ min

m≤i≤m+p−1

{
N
(f(kix)

k2i
− f(ki+1x)

k2(n+1)
,

|s|it
2|l − 1|k2(i+1)

)}
≥ N ′(φ(x, 0), t), t > 0,

for all x ∈ X and any integers p > 0,m ≥ 0. Therefore, one concludes

N
(f(kmx)

k2m
− f(km+px)

k2(m+p)
, t
)
≥ N ′

(
φ(x, 0),

t∑m+p−1
i=m

|s|i
2|l−1|k2(i+1)

)
(4.7)

for all x ∈ X and any integers p > 0,m ≥ 0, t > 0. Since
∑m+p−1

i=m
|s|i
k2i

is a convergent

series, we know that the sequence {f(knx)
k2n

} is Cauchy in the fuzzy Banach space
(Y,N), and so it converges in Y . Therefore a mapping Q : X → Y defined by

Q(x) := N - lim
n→∞

f(knx)

k2n
⇔ lim

n→∞
N(

f(knx)

k2n
−Q(x), t) = 1, ∀t > 0,

is well defined for all x ∈ X. In addition, we see from (4.6) that

N
(
f(x)− f(knx)

k2n
, t
)
≥ N ′

(
φ(x, 0),

t∑n−1
i=0

|s|i
2|l−1|k2(i+1)

)
,(4.8)

111

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

ICK-SOON CHANG et al 103-116



10 I.-S. CHANG, H.-M. KIM, AND JOHN M. RASSIAS

and thus for any ε with 0 < ε < 1 the following inequality

N(f(x)−Q(x), t) ≥ min
{
N
(
f(x)− f(knx)

k2n
, (1− ε)t

)
,(4.9)

N
(f(knx)

k2n
−Q(x), εt

)}
≥ N ′

(
φ(x, 0),

(1− ε)t∑n−1
i=0

|s|i
2|l−1|k2(i+1)

)
≥ N ′(φ(x, 0), 2|l − 1|(1− ε)(k2 − |s|)t),

holds good for sufficiently large n, and for all x ∈ X and all t > 0. Since ε is
arbitrary and N ′ is a left continuous function, we obtain

N(f(x)−Q(x), t) ≥ N ′(φ(x, 0), 2|l − 1|(k2 − |s|)t), t > 0,

for all x ∈ X, which yields the approximation (4.3).
On the other hand, it is clear from (4.1) and (N5) that the relation

N
(Dklf(k

nx, kny)

k2n
, t
)

≥ N ′(φ(knx, kny), k2nt)

≥ N ′
(
φ(x, y),

k2n

|s|n
t
)

→ 1 as n → ∞

holds for all x, y ∈ X and all t > 0. Therefore, we figure out by definition of

limn→∞ N(f(k
nx)

k2n
−Q(x), t) = 1 for all (t > 0) that

N(DklQ(x, y), t) ≥ min
{
N
(
DklQ(x, y)− Dklf(k

nx, kny)

k2n
,
t

2

)
,

N
(Dklf(k

nx, kny)

k2n
,
t

2

)}
= N

(Dklf(k
nx, kny)

k2n
,
t

2

)
(for sufficiently large n)

≥ N ′
(
φ(x, y),

k2n

2|s|n
t
)
, t > 0

→ 1 as n → ∞,

which implies DklQ(x, y) = 0 by (N2). Thus we find that Q is a quadratic map-
ping satisfying equation (1.2) and inequality (4.3) near the approximate quadratic
mapping f : X → Y .

To prove the uniqueness, we now assume that there is another quadratic mapping
Q′ : X → Y which satisfies the approximate inequality (4.3). Then it follows from
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the equality Q′(knx) = k2nQ′(x), Q(knx) = k2nQ(x) and (4.3) that

N(Q(x)−Q′(x), t) = N
(Q(knx)

k2n
− Q′(knx)

k2n
, t
)

≥ min
{
N
(Q(knx)

k2n
− f(knx)

k2n
,
t

2

)
, N

(f(knx)

k2n
− Q′(knx)

k2n
,
t

2

)}
≥ N ′(φ(knx, 0), (k2 − |s|)k2nt)

≥ N ′
(
φ(x, 0),

(k2 − |s|)k2nt

|s|n
)
, t > 0,

for all n ∈ N, which tends to 1 as n → ∞ by (N5). Therefore one obtains Q(x) =
Q′(x) for all x ∈ X, completing the proof of uniqueness. This completes the proof
of the theorem.

We remark that if k = 1 in Theorem 4.1, then

N ′(φ(x, y), t) ≥ N ′(φ(x, y), t

|s|n
)
→ 1

as n → ∞, and so φ(x, y) = 0 for all x, y ∈ X. Hence, Dklf(x, y) = 0 for all x, y ∈ X
and thus f is itself an Euler–Lagrange quadratic mapping.

Theorem 4.2. Assume that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

N(Dklf(x, y), t) ≥ N ′(φ(x, y), t)(4.10)

and assume in addition that there exists a constant s ∈ R subject to |s| > k2 such
that a constrained function φ : X2 → Z satisfies the inequality

N ′
(
φ
(x
k
,
y

k

)
, t
)
≥ N ′

(1
s
φ(x, y), t

)
, t > 0,(4.11)

for all x ∈ X and all t > 0. Then there exists a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate
inequality

N(f(x)−Q(x), t) ≥ N ′
( φ(x, 0)

2|l − 1|(|s| − k2)
, t
)
, t > 0,(4.12)

for all x ∈ X.

Proof. It follows from (4.5) and (4.11) that

N
(
f(x)− k2f

(x
k

)
,

t

2|l − 1||s|

)
≥ N ′(φ(x, 0), t), t > 0,

for all x ∈ X. Therefore it follows that

N
(
f(x)− k2nf

( x

kn

)
,
n−1∑
i=0

k2i

2|l − 1||s|i+1
t
)
≥ N ′(φ(x, 0), t), t > 0,
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for all x ∈ X and any integer n > 0. Thus we see from the last inequality that

N
(
f(x)− k2nf

( x

kn

)
, t
)

≥ N ′
(
φ(x, 0),

t∑n−1
i=0

k2i

2|l−1||s|i+1

)
≥ N ′(φ(x, 0), 2|l − 1|(|s| − k2)t), t > 0.

The remaining assertions go through the corresponding part of Theorem 4.1 by
the similar way.

We also observe that if k = 1 in Theorem 4.2, then

N ′(φ(x, y), t) ≥ N ′(φ(x, y), |s|nt) → 1

as n → ∞, and so φ(x, y) = 0 for all x, y ∈ X. Hence, Dklf = 0 and thus f is itself
an Euler–Lagrange quadratic mapping.

Corollary 4.3. Let X be a normed space and (R, N ′) be a fuzzy normed space.
Assume that there exist real numbers θ1 ≥ 0, θ2 ≥ 0 and that p is a real number
such that either 0 < p < 2 or p > 2. If a mapping f : X → Y with f(0) = 0 satisfies
the inequality

N(Dklf(x, y), t) ≥ N ′(θ1∥x∥p + θ2∥y∥p, t)

for all x, y ∈ X and all t > 0, then we can find a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the inequality

N(f(x)−Q(x), t) ≥

{
N ′( θ1∥x∥p

2|l−1|(k2−|k|p) , t
)
, if 0 < p < 2, |k| > 1, (p > 2, |k| < 1)

N ′( θ1∥x∥p
2|l−1|(|k|p−k2)

, t
)
, if p > 2, |k| > 1, (0 < p < 2, |k| < 1)

for all x ∈ X and all t > 0.

Proof. Taking φ(x, y) = θ1∥x∥p + θ2∥y∥p and applying Theorem 4.1 and Theorem
4.2, we obtain the desired approximations, respectively.

Corollary 4.4. Assume that for k ̸= 1, there exists a real number θ ≥ 0 such that
the mapping f : X → Y with f(0) = 0 satisfies the inequality

N(Dklf(x, y), t) ≥ N ′(θ, t)

for all x, y ∈ X and all t > 0. Then we can find a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the inequality

N(f(x)−Q(x), t) ≥ N ′
( θ

2|l − 1||k2 − 1|
, t
)

for all x ∈ X and all t > 0.

We remark that if θ = 0, then N(Dklf(x, y), t) ≥ N ′(0, t) = 1, and soDklf(x, y) =
0. Thus we get f = Q is itself an Euler–Lagrange quadratic mapping.
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