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Abstract. Let H(D) be the set of all analytic functions on the open unit disk D
of C, u ∈ H(D) and φ an entire function on C. In this paper, we characterize the
boundedness and compactness of the weighted differentiation superposition operator

Dmu Sφ from H∞ to the nth weighted-type space.

1. Introduction

Let N denote the set of all positive integers, N0 = N∪{0}, D = {z ∈ C : |z| < 1}, H(D)
the set of all analytic functions on D and S(D) the set of all analytic self-maps of D.

First, we present some of the most interesting linear operators studied on some sub-
spaces of H(D). Let z ∈ D, then the multiplication operator with symbol u ∈ H(D)
is defined by Mu(f)(z) = u(z)f(z), and composition operator with symbol ϕ ∈ S(D) is
defined by Cϕ(f)(z) = f(ϕ(z)).

Let m ∈ N0 and f ∈ H(D), then the mth differentiation operator is defined by

Dmf(z) = f (m)(z), z ∈ D, (1)

where f (0) = f . If m = 1, then it is the standard differentiation operator D. In recent
years, there has been a lot of interest in the study of products of differential operator and
others. For example, products DCϕ and CϕD, which are the most basic product-type
operators involving the differentiation operator, have been studied, for example, in [1–9].
Many other results have evolved from them, for example, the following six operators were
studied in [10]

DMuCϕ, DCϕMu, CϕDMu, CϕMuD, MuCϕD,MuDCϕ. (2)

An operator, namely including all the operators in (2), was introduced and investigated
in [11, 12]. In some studies, for example, Wang et al. in [13] generalized operators in (2)
and studied the following operators

DnMuCϕ, D
nCϕMu, CϕD

nMu, CϕMuD
n, MuCϕD

n, MuD
nCϕ. (3)

Some other product-type operators on subspaces of H(D) can be found (see, e.g., [14–17]
and the related references therein).

Next, we introduce the superposition operator (see, for example, [18] or [19]). Let φ be
a complex-valued function on C. Then the superposition operator Sφ on H(D) is defined
as

Sφf = φ(f(z)), z ∈ D.
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2 CHENG-SHI HUANG AND ZHI-JIE JIANG*

Assume that X and Y are two metric spaces of analytic functions on D and Sφ maps
X into Y . Note that if X contain the linear functions, then φ must be an entire function.
Recently, the boundedness and compactness of Sφ have been characterized on or between
some analytic function spaces (see, for example, [19–26]).

The following weighted differentiation superposition operator, which is introduced in
[27], is a class of nonlinear operators. Let m ∈ N0, u ∈ H(D) and φ be an entire function
on C. The weighted differentiation superposition operator denoted as Dm

u Sφ on some
subspaces of H(D) is defined by

(Dm
u Sφf)(z) = u(z)φ(m)(f(z)), z ∈ D.

Our goal of this paper is to improve results of Kamal and Eissa in [27]. Here, we rethink
the boundedness and compactness of this operator from H∞ space to nth weighted-type
space, which can be regarded as a continuation of our work (see, for example, [19]).

Now, we introduce the important Bell polynomial (see, for example, [13, 15]). Let
n, k ∈ N0. Then the Bell polynomial is defined as

Bn,k := Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!∏n−k−1

i=1 ji!

n−k−1∏
i=1

(xi
i!

)ji
, (4)

where the sum is taken over all non-negative integer sequences j1, j2, . . . , jn−k+1 satisfying∑n−k+1
i=1 ji = k and

∑n−k+1
i=1 iji = n. In particular, if k = 0, we have B0,0 = 1 and

Bn,0 = 0 for n ∈ N.
Next, we collect some needed spaces as follows (see [7]). The symbol H∞ denotes the

space of all bounded analytic functions f on D such that

‖f‖∞ = sup
z∈D
|f(z)| < +∞.

Let µ be a weight function (i.e. a positive continuous function on D) and n ∈ N0. Then

the nth weighted-type space W(n)
µ (D) :=W(n)

µ consists of all f ∈ H(D) such that

bW(n)
µ

(f) := sup
z∈D

µ(z)|f (n)(z)| < +∞.

If n = 0, it is the weighted-type space H∞µ (see, for example, [28–30]). If n = 1, the

Bloch-type space Bµ, and if n = 2 the Zygmund-type space Zµ. If µ(z) = 1 − |z|2, we
correspondingly get the classical weighted-type space, Bloch space and Zygmund space.
Some information on these classical function spaces and some operators on them can be
found, for example, in [31–37].

Let n ∈ N, then the quantity bW(n)
µ

(f) is a seminorm onW(n)
µ and a norm onW(n)

µ /Pn−1,

where Pn−1 is the class of all polynomials whose degrees are less than or equal to n − 1.

A natural norm on W(n)
µ can be introduced as follows

‖f‖W(n)
µ

=
n−1∑
j=0

|f (j)(0)|+ bW(n)
µ

(f).

The setW(n)
µ with this norm becomes a Banach space. The little nth weighted-type space

W(n)
µ,0 consists of all f ∈ H(D) such that

lim
|z|→1

µ(z)|f (n)(z)| = 0.
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WEIGHTED DIFFERENTIATION SUPERPOSITION OPERATOR 3

It is easy to see that W(n)
µ,0 is a closed subspace of W(n)

µ and the set of all polynomials is

dense in W(n)
µ,0 . If n = 1 and µ(z) = 1− |z|2, then it is the little Bloch space B0.

Finally, we will introduce the boundedness and compactness of a operator T . Let X
and Y be two Banach spaces, and T : X → Y be a operator. If there is a positive constant
K such that

‖Tf‖Y ≤ K‖f‖X
for all f ∈ X, we say that T is bounded. The operator T : X → Y is compact if it maps
bounded sets into relatively compact sets.

As usual, some positive constants are denoted by C, and they may differ from one
occurrence to another. The notation a . b (resp. a & b) means that there is a positive
constant C such that a ≤ Cb (resp. a ≥ Cb). When a . b and b & a, we write a � b.

2. Preliminary results

In this section, we need several auxiliary results for proving the main results. First, we
have the following useful result which can be found in [38].

Lemma 2.1. Let f ∈ H∞. Then for every n ∈ N, there exists a constant C > 0
independent of f such that

sup
z∈D

(1− |z|)n|f (n)(z)| ≤ C‖f‖∞.

The following lemma is introduced in [31].

Lemma 2.2. Let f ∈ B. Then for every n ∈ N

‖f‖B �
n−1∑
j=0

|f (j)(0)|+ sup
z∈D

(1− |z|2)n|f (n)(z)|.

The following lemma shows that any bounded analytic function on D is in Bloch space
(see Proposition 5.1.2 in [39]).

Lemma 2.3. H∞ ⊂ B. Moreover, ‖f‖B ≤ ‖f‖∞ for all f ∈ H∞.

The following gives an important test function (see [40]).

Lemma 2.4. For fixed t ≥ 0 and w ∈ C, the following function is in H∞

gw,t(z) =

(
1− |w|2

(1− 〈z, w〉)

)t+1

.

Moreover,

sup
w∈C
‖gw,t‖∞ . 1.

We construct some suitable linear combinations of the functions in Lemma 2.4, which
will be used in the proofs of the main results.

Lemma 2.5. Let w ∈ C. Then there are constants c0, c1, . . . , cn such that the function

hw(z) =
n∑
k=0

ckgw,k(z)
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satisfies

h(s)w (w) =
ws

(1− |w|2)s
, 0 ≤ s ≤ n and h(l)w (w) = 0, (5)

where l ∈ {0, 1, . . . , n}\{s}. Moreover,

sup
w∈C
‖hw‖∞ < +∞.

Proof. For the simplicity sake, we write dk = k + 1. By a direct calculation, it is easy to
see that the system (5) is equivalent to the following system

1 1 · · · 1
d0 d1 · · · dn
...

...
. . .

...
s−1∏
k=0

dk

s−1∏
k=0

dk+1 · · ·
s−1∏
k=0

dk+n

...
...

. . .
...

n−1∏
k=0

dk

n−1∏
k=0

dk+1 · · ·
n−1∏
k=0

dk+n





c0
c1
...

cs

...

cn


=



0
0
...

1

...

0


. (6)

Since dk > 0, k = 0, n, by Lemma 5 in [41], the determinant of system (6) is Dn+1(d0) =∏n
j=1 j!, which is different from zero. Therefore, there exist constants c0, c1, . . . , cn such

that the system (5) holds. Furthermore, we obtain supw∈C ‖hw‖∞ < +∞. �

Remark 2.1. In Lemma 2.5, it is clear that, if s = 0, then there are constants c0, c1, . . . , cn
such that the function hw(z) satisfies h

(0)
w (w) = hw(w) = 1 and h

(l)
w (w) = 0 for l = 1, n.

We also have the following characterization of compactness which can be proved similar
to that in [42] (Proposition 3.11), and so we omit the proof.

Lemma 2.6. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ be an entire function. Then the

bounded operator Dm
u Sφ : H∞ →W(n)

µ is compact if and only if for each bounded sequence
{fk}(k ∈ N) ⊂ H∞ such that fk → 0 uniformly on any compact subsets of D as k → ∞,
it follows that

lim
k→∞

‖Dm
u Sφfk‖W(n)

µ
= 0.

Finally, we need the following result proved in [34]. So, the details are omitted.

Lemma 2.7. A closed set K in W(n)
µ,0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(z)|f (n)(z)| = 0.
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WEIGHTED DIFFERENTIATION SUPERPOSITION OPERATOR 5

3. Main results and proofs

Now, we begin to characterize the boundedness and compactness of the operatorDm
u Sφ :

H∞ →W(n)
µ (or W(n)

µ,0 ).

Theorem 3.1. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ an entire function with φ(m)(1) 6= 0

and φ(m+1)(0) 6= 0. Then the operator Dm
u Sφ : H∞ →W(n)

µ is bounded if and only if

Mi := sup
z∈D

µ(z)|u(n−i)(z)|
(1− |z|2)i

< +∞ (7)

for i = 0, n.

Moreover, if the operator Dm
u Sφ : H∞ →W(n)

µ is bounded, then the following asymptotic
relationship holds

‖Dm
u Sφ‖H∞→W(n)

µ
�

n∑
i=0

Mi. (8)

Proof. Assume that condition (7) holds. Then for each z ∈ D and f ∈ H∞, we have

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ = sup

z∈D
µ(z)

∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(f(z))

)
φ(m+j)(f(z))

∣∣∣
≤ sup
z∈D

µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣∣∣Bi,j(f(z))

∣∣)∣∣φ(m+j)(f(z))
∣∣,

where

Bi,j(f(z)) := Bi,j

(
f ′(z), f ′′(z), . . . , f (i−j+1)(z)

)
, 0 ≤ j ≤ i ≤ n.

Applying formula (4) and Lemma 2.1, we obtain∣∣Bi,j(f(z))
∣∣ =

∣∣∣Bi,j (f ′(z), f ′′(z), . . . , f (i−j+1)(z)
) ∣∣∣

≤ Bi,j
(
‖f‖∞

1− |z|2
,
‖f‖∞

(1− |z|2)2
, . . . ,

‖f‖∞
(1− |z|2)i−j+1

)
. (9)

For the convenience, we write

B̂i,j(f, z) = Bi,j

(
‖f‖∞

1− |z|2
,
‖f‖∞

(1− |z|2)2
, . . . ,

‖f‖∞
(1− |z|2)i−j+1

)
. (10)

From (9) and (10), we get

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ ≤ sup

z∈D
µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣B̂i,j(f, z))∣∣φ(m+j)(f(z))

∣∣.
(11)

For i > j, we have B̂i,j(f, z) = 0. Let f ∈ H∞ and ‖f‖∞ ≤M . Then, we obtain

B̂i,j(f, z) .
1

(1− |z|2)i
, 0 ≤ j ≤ i, (12)

76

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

HUANG et al 72-84



6 CHENG-SHI HUANG AND ZHI-JIE JIANG*

where i = 0, n. From (11) and (12), we have

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ ≤ sup

z∈D
µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣B̂i,j(f, z))∣∣φ(m+j)(f(z))

∣∣
≤C sup

z∈D
µ(z)

(
|u(n)(z)||φ(m)(f(z))|

+
n∑
i=1

|u(n−i)(z)|
(1− |z|2)i

( i∑
j=1

∣∣φ(m+j)(f(z))
∣∣)). (13)

Since f ∈ H∞ and ‖f‖∞ ≤M and φ is an entire function, we obtain∣∣φ(m+j)(f(z))
∣∣ ≤ max

|w|=M

∣∣φ(m+j)(w)
∣∣ = Lj < +∞ (14)

for each z ∈ D and j = 0, n. From (13) and (14), we have

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ ≤ C sup

z∈D

(
µ(z)|u(n)(z)|+

n∑
i=1

µ(z)|u(n−i)(z)|
(1− |z|2)i

)
. (15)

On the other hand, we also have that for every l = 0, n− 1∣∣(Dm
u Sφf)(l)(0)

∣∣ ≤ ∣∣∣ l∑
j=0

( l∑
i=j

Cilu
(l−i)(0)Bi,j(f(0))

)
φ(m+j)(f(0))

∣∣∣ < +∞. (16)

From Lemma 2.2, (7), (15) and (16), we see that the operator Dm
u Sφ : B → W(n)

µ is
bounded. By Lemma 2.3 (or (7) and (15)), it is obvious that the operator Dm

u Sφ : H∞ →
W(n)
µ is bounded. Moreover, it follows that

‖Dm
u Sφ‖H∞→W(n)

µ
≤ C

n∑
i=0

Mi. (17)

Now assume that the operator Dm
u Sφ : H∞ →W(n)

µ is bounded, then there is a positive
constant C independent of f such that

‖Dm
u Sφf‖W(n)

µ
≤ C‖f‖∞ (18)

for each f ∈ H∞. By Remark 2.1, there is a function hw ∈ H∞ such that

hw(w) = 1 and h(l)w (w) = 0 (19)

for l = 1, n. Let L0 = ‖hw‖∞. Then, from (18) and (19), we obtain

L0‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφhw‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(hw(z))

)
φ(m+j)(hw(z))

∣∣∣
≥µ(w)

∣∣u(n)(w)
∣∣∣∣B0,0(hw(w))

∣∣∣∣φ(m)(1)
∣∣

=µ(w)
∣∣u(n)(w)

∣∣∣∣φ(m)(1)
∣∣. (20)

Since |φ(m)(1)| 6= 0, we have

L0‖Dm
u Sφ‖H∞→W(n)

µ
≥ ‖Dm

u Sφhw‖W(n)
µ
≥ Cµ(z)|u(n)(z)|, (21)

for each z ∈ D, which implies that M0 < +∞.
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By Lemma 2.4, there is a function h̃w ∈ H∞ such that

h̃(n)w (w) =
wn

(1− |w|2)n
and h̃(l)w (w) = 0 (22)

for l = 0, n− 1. Let Ln = ‖h̃w‖∞. Then, from (18) and (22), we have

Ln‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφh̃w‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(h̃w(z))

)
φ(m+j)(h̃w(z))

∣∣∣
≥µ(w)

∣∣u(w)Bn,1(h̃w(w))φ(m+1)(0) + u(n)(w)B0,0(h̃w(w))φ(m)(0)
∣∣

=µ(w)
∣∣∣ u(w)wn

(1− |w|2)n
φ(m+1)(0) + u(n)(w)φ(m)(0)

∣∣∣
≥µ(w)

∣∣∣ u(w)wn

(1− |w|2)n
φ(m+1)(0)

∣∣∣− µ(w)
∣∣u(n)(w)φ(m)(0)

∣∣, (23)

where

Bi,j(h̃w(z)) := Bi,j

(
h̃′w(z), h̃′′w(z), . . . , h̃(i−j+1)

w (z)
)
.

From (21) and (23), we have

µ(w)
∣∣∣ u(w)wn

(1− |w|2)n
φ(m+1)(0)

∣∣∣ ≤ Ln‖Dm
u Sφ‖H∞→W(n)

µ
+ µ(w)

∣∣u(n)(w)φ(m)(0)
∣∣

≤ (Ln + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
.

Since |φ(m+1)(0)| 6= 0, we have

(Ln + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥ ‖Dm

u Sφh̃w‖W(n)
µ
≥ Cµ(z)|u(z)||z|n

(1− |z|2)n
. (24)

From (24), we have

(Ln + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥ C sup

|z|>1/2

µ(z)|u(z)||z|n

(1− |z|2)n
≥ C

2n
sup
|z|>1/2

µ(z)|u(z)|
(1− |z|2)n

. (25)

One the other hand, we have

sup
|z|≤1/2

µ(z)|u(z)|
(1− |z|2)n

≤
(

4

3

)n
sup
|z|≤1/2

µ(z)|u(z)|. (26)

From (25) and (26), we get that Mn < +∞.

By Lemma 2.4, there is a function ĥw ∈ H∞ such that

ĥ(n−1)w (w) =
wn−1

(1− |w|2)n−1
and ĥ(l)w (w) = 0, (27)

where l ∈ {0, 1, . . . , n} \ {n− 1}. Let Ln−1 = ‖ĥw‖∞. From (18) and (27), we have
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Ln−1‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφĥw‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(ĥw(z))

)
φ(m+j)(ĥw(z))

∣∣∣
≥µ(w)

∣∣∣Cn−1n u′(w)Bn−1,1(ĥw(w))φ(m+1)(0)

+
n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0) + u(n)(w)φ(m)(0)
∣∣∣

≥µ(w)
∣∣∣Cn−1n u′(w)Bn−1,1(ĥw(w))φ(m+1)(0)

+
n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣− µ(w)

∣∣u(n)(w)φ(m)(0)
∣∣,
(28)

where Bi,j(ĥw(z)) := Bi,j

(
ĥ′w(z), ĥ′′w(z), . . . , ĥ

(i−j+1)
w (z)

)
. From (21) and (28), by using

the triangle inequality, we obtain

(Ln−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ

≥µ(w)
∣∣∣Cn−1n u′(w)Bn−1,1(ĥw(w))φ(m+1)(0) +

n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣

≥µ(w)
∣∣∣u′(w)Bn−1,1(ĥw(w))φ(m+1)(0)

∣∣∣− µ(w)
∣∣∣ n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣. (29)

From (29), we have

µ(w)
∣∣u′(w)Bn−1,1(ĥw)φ(m+1)(0)

∣∣
≤(Ln−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ µ(w)
∣∣∣ n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣

≤(Ln−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
+
µ(w)|u(w)||w|n

(1− |w|2)n

( n∑
j=1

∣∣φ(m+j)(0)
∣∣). (30)

Since |φ(m+1)(0)| 6= 0, by using (24) and (30), we obtain

C
µ(z)|u′(z)||z|n−1

(1− |z|2)n−1
∣∣ ≤ (Ln−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ C
µ(z)|u(z)||z|n

(1− |z|2)n

≤ (Ln + Ln−1 + 2CL0)‖Dm
u Sφ‖H∞→W(n)

µ
. (31)

From (31), we have

(Ln + Ln−1 + 2CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥ C sup

|z|>1/2

µ(z)|u′(z)||z|n−1

(1− |z|2)n−1

≥ C

2n−1
sup
|z|>1/2

µ(z)|u′(z)|
(1− |z|2)n−1

. (32)
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One the other hand, we have

sup
|z|≤1/2

µ(z)|u′(z)|
(1− |z|2)n−1

≤
(

4

3

)n−1
sup
|z|≤1/2

µ(z)|u′(z)|. (33)

From (32) and (33), we get that Mn−1 < +∞.
Now, assume that (7) holds for k ≤ i ≤ n, where 1 ≤ k ≤ n − 2. Let Lk−1 = ‖hw‖∞.

By using the function in Lemma 2.4, we have

Lk−1‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφhw‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(hw(z))

)
φ(m+j)(hw(z))

∣∣∣
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

+
n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0) + u(n)(w)φ(m)(0)

∣∣∣
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

+
n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣− µ(w)
∣∣u(n)(w)φ(m)(0)

∣∣
(34)

for each w ∈ D. From (21) and (34), we have

(Lk−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

+

n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)
∣∣∣

− µ(w)
∣∣∣ n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣.
Then, we have

µ(w)
∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

∣∣∣
≤(Lk−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ µ(w)
∣∣∣ n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣
≤(Lk−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ C
n∑
i=k

i∑
j=1

µ(w)
∣∣∣u(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣
≤(Lk−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ
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+ C
n∑
i=k

µ(w)|u(n−i)(w)||w|i

(1− |w|2)i

( i∑
j=1

∣∣φ(m+j)(0)
∣∣) (35)

Since |φ(m+1)(0)| 6= 0, from (35) and the assumption (7), we have

C
µ(z)|u(n−(k−1))(z)||z|k−1

(1− |z|2)k−1

≤(Lk−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
+ C

n∑
i=k

µ(w)|u(n−i)(w)||w|i

(1− |w|2)i

≤
( n∑
t=k−1

Lt + (n− k + 2)CL0

)
‖Dm

u Sφ‖H∞→W(n)
µ
. (36)

From (36), we have( n∑
t=k−1

Lt + (n− k + 2)CL0

)
‖Dm

u Sφ‖H∞→W(n)
µ
≥ Cµ(z)|u(n−(k−1))(z)||z|k−1

(1− |z|2)k−1

≥ C

2k−1
µ(z)|u(n−(k−1))(z)|

(1− |z|2)k−1
(37)

One the other hand, we have

sup
|z|≤1/2

µ(z)|u(n−(k−1))(z)|
(1− |z|2)k−1

≤
(

4

3

)n−(k−1)
sup
|z|≤1/2

µ(z)|u(n−(k−1))(z)|. (38)

From (37) and (38), we get that Mk−1 < +∞. Hence, from the mathematical induction
it follows that (7) holds for every i = 0, n. Moreover, we also obtain

n∑
i=0

Mi ≤ C‖Dm
u Sφ‖H∞→W(n)

µ
. (39)

From (17) and (39), then the asymptotic relation (8) follows, as desired. �

Theorem 3.2. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ an entire function with φ(m)(1) 6= 0

and φ(m+1)(0) 6= 0. Then the operator Dm
u Sφ : H∞ →W(n)

µ,0 is bounded if and only if the

operator Dm
u Sφ : H∞ →W(n)

µ is bounded and for each i ∈ {0, 1, . . . , n}

lim
|z|→1

µ(z)|u(n−i)(z)| = 0. (40)

Proof. Assume that Dm
u Sφ : H∞ →W(n)

µ,0 is bounded. Then for each f ∈ H∞, we have

lim
|z|→1

µ(z)|(Dm
u Sφf)(n)(z)| = 0. (41)

Clearly, the operator Dm
u Sφ : H∞ →W(n)

µ is bounded. Hence, from (24), we obtain

µ(z)|u(z)||z|n

(1− |z|2)n
≤ Cµ(z)|(Dm

u Sφh̃w)(n)(z)|. (42)

From (42), we obtain

µ(z)|u(z)||z|n ≤ Cµ(z)|(Dm
u Sφh̃w)(n)(z)| (43)

By taking |z| → 1 in (43) and using (41), it follows that (40) holds for i = n. Hence, by
the proof of Theorem 3.1, we get that (40) holds for each i = 0, n.
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Conversely, assume that Dm
u Sφ : H∞ → W(n)

µ is bounded and condition (40) holds.
Let p̂ ∈ H∞ and ‖p̂‖∞ ≤M . Then, we have∣∣φ(m+j)(p̂(z))

∣∣ < +∞.

For every polynomial p̂, we have

µ(z)
∣∣(Dm

u Sφp̂)
(n)(z)

∣∣ = sup
z∈D

µ(z)

∣∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(p̂(z))

)
φ(m+j)(p̂(z))

∣∣∣∣
≤ sup

z∈D
µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣∣∣Bi,j(p̂(z))∣∣)∣∣φ(m+j)(p̂(z))

∣∣→ 0

as |z| → 1. From this, we have that for every polynomial p̂, Dm
u Sφp̂ ∈ W

(n)
µ,0 . Since the set

of all polynomials is dense in H∞, we have that for each f ∈ H∞ there exist a sequence
of polynomial {p̂k} such that

lim
k→∞

‖f − p̂k‖∞ = 0. (44)

From (44) and using the boundedness of Dm
u Sφ : H∞ →W(n)

µ , we obtain

‖Dm
u Sφf −Dm

u Sφp̂k‖W(n)
µ
≤ ‖Dm

u Sφ‖H∞→W(n)
µ
‖f − p̂k‖∞ → 0 (45)

as k →∞. Hence, Dm
u Sφ(H∞) ⊆ W(n)

µ,0 and the operator Dm
u Sφ : H∞ →W(n)

µ,0 is bounded.
The proof is finished. �

Theorem 3.3. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ an entire function with φ(m)(1) 6= 0
and φ(m+1)(0) 6= 0. Then the following statements are equivalent:

(a) The operator Dm
u Sφ : H∞ →W(n)

µ is compact.

(b) The operator Dm
u Sφ : H∞ →W(n)

µ,0 is compact.

(c) For each i ∈ {0, 1, . . . , n}, it follows that

lim
|z|→1

µ(z)|u(n−i)(z)|
(1− |z|2)i

= 0. (46)

Proof. (c)⇒ (b). From (13) and using (46), we obtain

lim
|z|→1

sup
‖f‖∞≤1

µ(z)|(Dm
u Sφf)n(z)| = 0.

Obviously, the set is bounded. Hence, by Lemma 2.6 the compactness of the operator

Dm
u Sφ : H∞ →W(n)

µ,0 follows.

(b)⇒ (a) is obvious.

(a) ⇒ (c). Suppose that Dm
u Sφ : H∞ → W(n)

µ is compact. Then it is clear that the
operator is bounded. Let {zk} be a sequence in D such that |zk| → 1 as k → ∞. If such

a sequence does not exist, then condition (46) is vacuously satisfied. Let h̃k = h̃zk , where

h̃w is defined in the proof of the Theorem 3.1 (or Lemma 2.4). Since limk→∞ h̃zk = 0, we

have h̃k → 0 uniformly on any compact subset of D as k →∞. Hence, by Lemma 2.5 we
have

lim
k→∞

‖Dm
u Sφh̃k‖W(n)

µ
= 0. (47)
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On the other hand, from (25), for sufficiently large k it follows that

‖Dm
u Sφh̃k‖W(n)

µ
≥ µ(zk)|u(zk)|

(1− |zk|2)n
, (48)

which along with (47) and letting k →∞ in inequality (48) and since {zk} is an arbitrary
sequence such that |zk| → 1 as k →∞, implies that (46) holds for i = n. By the proof of
the Theorem 3.1, we get that equality (46) holds for each i ∈ {0, 1, ..., n}. This completes
the proof. �
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[11] S. Stević, A. K. Sharma, A. Bhat, Essential norm of multiplication composition and differentiation
operators on weighted Bergman spaces, Appl. Math. Comput., 218, 2386-2397 (2011).
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