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Abstract. In this article, we introduce a new generalized multifarious radical reciprocal func-

tional equation by generalizing the equation employed by Narasimman et al. in [5] and combining

three classical Pythagorean means arithmetic, geometric and harmonic. Also, we illustrate the

geometrical interpretation. Mainly, we find its general solution and stabilities related to Ulam

problem in modular spaces by using fixed point approach.

1. Introduction and preliminaries

In the development of broad field functional equations, we come acrossing various types like

additive, quadratic, cubic and so on. In recent research many researchers modeled functional
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equations from physical phenomena. In particular, by geometrical construction authors intro-

duced remarkable reciprocal type functional equations.

In 2010, Ravi and Senthil Kumar [6] introduced functional equation of reciprocal type

s(z + w) =
s(z)s(w)

s(z) + s(w)
. (1.1)

with solution s(z) = c
z .

In 2014, Bodaghi and Kim [1] introduced the quadratic reciprocal functional equation, which

was generalized by Song andSong citeAM.

In 2015, Narasimman, Ravi and Pinelas [5] introduced the radical reciprocal quadratic func-

tional equation

s
(

2
√
z2 + w2

)
=

s(z)s(w)

s(z) + s(w)
, z, w ∈ (0,∞), (1.2)

which is satisfied by s(z) = c
z2

. Also, they provided the solution and stability of (1.2) with

geometrical interpretation and application.

For the necessary introduction on stability related to Ulam problem and the notion of modular

spaces one can refer to [7, 8, 9, 10, 12].

2. Main results

Definition 2.1. A reciprocal functional equation is a functional equation with solution of the

form 1
s(z) . When s(z) = z, z2, z3 . . . we have various type of reciprocal functional equations like

reciprocal additive, reciprocal quadratic, reciprocal cubic and so on.

Definition 2.2. Pythagorean means [3] The three classical Pythagorean means are the arithmetic

mean (AM), the geometric mean (GM), and the harmonic mean (HM), which are defined by

AM(a1, a2, ..., an) =
1

n
(a1 + ...+ an),

GM(a1, a2, ..., an) = n
√
a1 + ...+ an,

HM(a1, a2, ..., an) =
n

1
a1

+ ...+ 1
an

.

Definition 2.3. A functional equations which are arisen from the relations between three Pythagorean

means (arithmetic, geometric and harmonic) are known as Pythagorean mean functional equa-

tions.

Definition 2.4. A reciprocal Pythagorean mean functional equation which shall possess the

nature of any type of functional equation like additive, quadratic, cubic and so on is said to be a

multifarious reciprocal Pythagorean mean functional equation.
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In this paper, using Pythagorean means, we introduce the new generalized 2−dimensional and

3−dimensional multifarious radical reciprocal functional equations.

The following 2−dimensional and 3−dimensional multifarious radical reciprocal functional

equations are obtained by generalizing (1.1) and (1.2)

s
(
m
√
zm + wm

)
=

s(z)s(w)

s(z) + s(w)
, (2.3)

s
(
m
√
zm1 + zm2 + zm3

)
=

s(z1)s(z2)s(z3)

s(z1)s(z2) + s(z2)s(z3) + s(z1)s(z3)
, (2.4)

which are satisfied by s(z) = c
zm , for all z, w, z1, z2, z3 ∈ (0,∞),m ∈ N. Observe that if m = 1

and m = 2 in (2.3), we have (1.1) and (1.2), respectively. Further, if m = 3, 4, · · · in (2.3), then

we have various type of functional equations. Hence the functional equation (2.3) is known as

two dimensional multifarious radical reciprocal functional equation. By similar argument, (2.4)

is known as three dimensional multifarious radical reciprocal functional equation.

2.1. Geometrical construction and geometrical interpretation of multifarious radical

reciprocal functional equations. Geometric construction of three Pythagorean means of two

variables can be constructed geometrically as showed in Figure 1. Geometric construction of

geometric mean of three variables are not possible but the other Pythagorean means can be

constructed for any number of variables, one can refer [4, 11].

Figure 1. Pythagorean means of a and b. A is the arithmetic mean, H is the

harmonic mean and G is the geometric mean.

The relations between three Pythagorean means of p−objects z1, z2, · · · , zp are represented by

the following equation

H (z1, z2, · · · , zp) =
G (z1, z2, · · · , zp)p

A
(

1
z1

∏p
i=1 zi,

1
z2

∏p
i=1 zi, · · · ,

1
zp

∏p
i=1 zi

) . (2.5)

Consider two spheres S1 and S2 of radii r1 and r2 with r1 > r2, which are located along the

x−axis centered at C1(0, 0, 0) and C2(d, 0, 0), respectively.
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Figure 2. Intersecting two spheres S1 and S2.

We can show that the length of C2C1 is z1+z2
2 which is the arithmetic mean of z1 and z2. We

can find the length AC1, using Pythagoras’ theorem, is the geometric mean
√
z1z2 of z1 and z2.

Also, we can obtain the length HC1 is 2z1z2
z1+z2

, which is the harmonic mean of z1 and z2, since

C2AC1 and AHC1 are similar.

From Figure 2, we have the equality HC1 =
AC2

1
C2C1

, that is

H (z1, z2) =
G (z1, z2)

2

A
(

1
z1

∏2
i=1 zi,

1
z2

∏2
i=1 zi

) , (2.6)

which is the particular case of (2.5) by assuming p = 2 and which implies

1
1
z1

+ 1
z2

=
z1z2
z1 + z2

. (2.7)

Assuming z1 = 1
z and z2 = 1

w in (2.7), we obtain

1

z + w
=

1
z
1
w

1
z + 1

w

. (2.8)

In that case, (1.1) is valid by (2.8), which is satisfied by s(z) = c
z . Assuming z1 = 1

z2
and z2 = 1

w2

in (2.7) leads

1

z2 + w2
=

1
z2

1
w2

1
z2

+ 1
w2

. (2.9)

In that case (1.2) is valid by (2.9), which is satisfied by s(z) = c
z2

. In general, assuming z1 = 1
zm

and z2 = 1
wm in (2.7), we have

1

zm + wm
=

1
zm

1
wm

1
zm + 1

wm
. (2.10)

In that case, (2.3) is valid by (2.10), which is satisfied by s(z) = c
zm .
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In Figure 2, AB is the diameter of common circle. The common circle is the solution of the

system

z21 + z22 + z23 = r21, (2.11)

(z1 − d)2 + z22 + z23 = r22,

which implies

1

z21 + z22 + z23
=

1

r21
, (2.12)

1

(z1 − d)2 + z22 + z23
=

1

r22
.

The system (2.12) can be expressed by radical reciprocal quadratic functional equations of the

form

s
(
r21
)

=
s(z1)s(z2)s(z3)

s(z1)s(z2) + s(z2)s(z3) + s(z1)s(z3)
, (2.13)

s
(
r22
)

=
s(z1 − d)s(z2)s(z3)

s(z1 − d)s(z2) + s(z2)s(z3) + s(z1 − d)s(z3)
,

for z1, z2, z3, r1, r2 ∈ (0,∞), which is satisfied by s(z1) = c
z21

and the denominators are not equal

to zero. Also, observe that the equation (2.13) is the particular case of (2.4) for m = 2. By

assuming p = 3 in (2.5), we obtain

H (z1, z2, z3) =
G (z1, z2, z3)

3

A
(

1
z1

∏3
i=1 zi,

1
z2

∏3
i=1 zi,

1
z3

∏3
i=1 zi

) , (2.14)

which gives
1

1
z1

+ 1
z2

+ 1
z3

=
z1z2z3

z2z3 + z1z3 + z1z2
. (2.15)

Assuming z1 = 1
zm1

, z2 = 1
zm2

and z3 = 1
zm3

in (2.15), we have

1

zm1 + zm2 + zm3
=

1
zm1

1
zm2

1
zm3

1
zm1

+ 1
zm2

+ 1
zm3

. (2.16)

In that case (2.4) is valid by (2.16), which is satisfied by s(z1) = c
zm1

.

3. General solution of the multifarious radical reciprocal functional equations

The following theorems give the solution of (2.3) and (2.4) through motivated by the work of

Ger [?].

Theorem 3.1. A general solution of (2.3) is s(z) = c
zm ; z ∈ (0,∞) with s(z)

1
zm

a quotient at zero.
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Proof. Assuming z, w = z in (2.3), we have

s(
m
√

2z) =
1

2
s(z) (3.17)

for all z ∈ (0,∞). Assuming

g(z) =
s(z)
1

z
m
2

, (3.18)

for all z ∈ (0,∞), we have
lim

z → 0+
g(z)
1

z
m
2

=: c ∈ R

for all z ∈ (0,∞). Dividing (3.17) by 1

z
m
2

, we obtain

s( m
√

2z)
√
2√

2z
m
2

=
1
2s(z)

1

z
m
2

, (3.19)

for all z ∈ (0,∞). Using (3.18) in (3.19), we have

g(
m
√

2z) =
1√
2
g(z), (3.20)

for all z ∈ (0,∞). Replacing z by z
m√2 in (3.20), we get

√
2g(z) = g

(
z
m
√

2

)
. (3.21)

Again, replacing z by z
m√2 in (3.21), we have

(
√

2)2g(z) = g

(
z

( m
√

2)2

)
, (3.22)

for all z ∈ (0,∞). Continuing the same process k times, we obtain

(
√

2)kg(z) = g

(
z

( m
√

2)k

)
, (3.23)

for all z ∈ (0,∞).

Now,

g(z)
1

z
m
2

=
(
√

2)kg(z)

(
√

2)k 1

z
m
2

=
g
(

1
( m
√
2)k
z
)

(
√
2)k

z
m
2

→ c as k →∞,

for all z ∈ (0,∞). Eq. (3.18) implies that

s(z) =
1

z
m
2

g(z) =
1

z
m
2

1

z
m
2

c =
c

zm

for all z ∈ (0,∞). This completes the proof. �

Theorem 3.2. A general solution of (2.4) is s(z) = c
zm ; z ∈ (0,∞) with s(z)

1
zm

a quotient at zero.
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Proof. Assuming z1, z2, z3 = z in (2.4), we have

s(
m
√

3z) =
1

3
s(z), (3.24)

and assuming

h(z) =
s(z)
1

z
m
2

, (3.25)

we obtain

lim
z→0+

h(z)
1

z
m
2

=: c ∈ R.

Dividing (3.24) by 1

z
m
2

, we get

s( m
√

3z)
√
3√

3z
m
2

=
1
3s(z)

1

z
m
2

, (3.26)

and substituting (3.25) in (3.26), we obtain

h(
m
√

3z) =
1√
3
h(z), (3.27)

and replacing z by z
m√3 in (3.27), we have

√
3h(z) = h

(
z
m
√

3

)
. (3.28)

Again, replacing z by z
m√3 in (3.28), we get

(
√

3)2h(z) = h

(
z

( m
√

3)2

)
, (3.29)

for all z ∈ (0,∞). Continuing the same process k times, we have

(
√

3)kh(z) = h

(
z

( m
√

3)k

)
, (3.30)

for all z ∈ (0,∞). Now,

h(z)
1

z
m
2

=
(
√

3)kh(z)

(
√

3)k 1

z
m
2

=
h
(

1
( m
√
3)k
z
)

(
√
3)k

z
m
2

→ c as k →∞,

for all z ∈ (0,∞). Eqs. (3.25) and (3.30) imply that

s(z) =
1

z
m
2

h(z) =
1

z
m
2

1

z
m
2

c =
c

zm

for all z ∈ (0,∞). This completes the proof. �

In the following theorem, we obtain general solution of (2.3) and (2.4) by derivative method.
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Theorem 3.3. Let s : (0,∞) → R be a continuously differentiable function with nowhere van-

ishing derivatives s′. Then s yields a solution to the functional equation (2.3) if and only if there

exists a nonzero real constant c such that s(z) = c
zm , z ∈ (0,∞).

Proof. Differentiating (2.3) with respect to z on both side, we get

s′( m
√
zm + wm)

(z)m−1

( m
√
zm + wm)m−1

=

(
s′(z)s(w)

)[
s(z) + s(w)

]
−
(
s(z)s(w)

)[
s′(z)

]
(
s(z) + s(w)

)2 . (3.31)

Assuming z, w = z in (3.31), we obtain

s′(
m
√

2 z) =
1

2 m
√

2
s′(z), (3.32)

and setting z = m
√

2z and w = z in (3.31) and making use of (3.17) and (3.32), we get

s′(
m
√

3 z) =
1

(3) m
√

3
s′(z) (3.33)

for all z ∈ (0,∞). By making use of (3.32) and (3.33), we have

s′
(

(
m
√

2)k(
m
√

3)l z
)

=
1

2k( m
√

2)k
1

(3)l( m
√

3)l
s′(z)

for all integers k, l. We derive its linearity by assuming λ = ( m
√

2)k( m
√

3)l and z = 1,

s′(λ) = s′(1)
1

(λ)m+1

for λ ∈ (0,∞). Therefore, there exist real numbers c 6= 0, d such that s(z) = c
zm +d for z ∈ (0,∞).

Note that we have d = 0 because of the equality s( m
√

2z) = 1
2s(z) valid for all positive z. This

completes the proof. �

Theorem 3.4. Let s : (0,∞) → R be a continuously differentiable function with nowhere van-

ishing derivatives s′. Then s yields a solution to the functional equation (2.4) if and only if there

exists a nonzero real constant c such that s(z) = c
zm , z ∈ (0,∞).

Proof. Differentiating (2.4) with respect to z1 on both side, we obtain

s′( m
√
zm1 + zm2 )

(z1)
m−1

( m
√
zm1 + zm2 )m−1

+ s′( m

√
zm1 + zmp+1)

(z1)
m−1

( m
√
zm1 + zmp+1)

m−1 (3.34)

=
s′(z1) (s(z2))

2

(s(z1) + s(z2))
2 +

s′(z1) (s(zp+1))
2

(s(z1) + s(zp+1))
2 ,

and (3.24) implies

s′(
m
√

2z) =
1

2 m
√

2
s′(z). (3.35)
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Assuming z1 = z and z2 = zp+1 = m
√

2z in (3.34) and making use of (3.24) and (3.35), we get

s′(
m
√

3z) =
1

3 m
√

3
s′(z), (3.36)

and from (3.35) and (3.36), we get

s′
(

(
m
√

2)k(
m
√

3)lz
)

=
1

2k( m
√

2)k
1

3l( m
√

3)l
s′(z),

for all integers k, l. We derive its linearity by assuming λ = ( m
√

2)k( m
√

3)l and z = 1,

s′(λ) = s′(1)
1

(λ)m+1

for λ ∈ (0,∞). Therefore, there exist real numbers c 6= 0, d such that s(z) = c
zm +d for z ∈ (0,∞).

Note that we have to have d = 0 because of the equality s( m
√

2z) = 1
2s(z) exists. This completes

the proof. �

4. Generalized Hyers-Ulam stability of two dimensional multifarious functional

equation

This section deals the generalized Hyers-Ulam stability of two dimensional multifarious func-

tional equation (2.3) in modular spaces by making use of fixed point approach.

Theorem 4.1. Consider a mapping η : M2 → [0,+∞) with

lim
k→∞

1(
1
2

)k η ((2)
k
m z, (2)

k
mw
)

= 0, (4.37)

and

η
(

(2)
1
m z, (2)

1
mw
)

(4.38)

≤ 1

2
ψη{z, w},∀z, w ∈M,

for ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z, w)) ≤ η(z, w), (4.39)

for all z, w ∈M . In that case, there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ 1
1
2(1− ψ)

η(z, z), ∀z ∈M. (4.40)
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Proof. Assume N = ξ′ and define ξ′ on N as,

ξ′(q) =: inf{(2)
1
m > 0 : ξ(h(j)) ≤ (2)

1
m η(z, w),∀z ∈M}.

One can easily prove that ξ′ is a convex modular with Fatou property on N and Nξ′ is ξ−complete,

see [2]. Consider the function σ : Nξ′ → Nξ′ defined by

σq(z) =
1

2
q(2

1
m z), (4.41)

for all z ∈ M and q ∈ Nξ′ . Let q, r ∈ Nξ′ and (2)
1
m ∈ [0, 1] with ξ′(q − r) < (2)

1
m . By definition

of ξ′, we get

ξ(q(z)− r(z)) ≤ (2)
1
m η(z, w),∀z, w ∈M. (4.42)

By making use of (4.38) and (4.42), we get

ξ

(
q((2)

1
m z)

1
2

− r((2)
1
m z)

1
2

)
≤ 1

1
2

ξ
(
q((2)

1
m z)− r((2)

1
m z)

)
≤ 1

1
2

(2)
1
m η
(

(2)
1
m z, (2)

1
mw
)
≤ (2)

1
mψη (z, w) ,

for all z, w ∈M . In that case, σ is a ξ′−contraction and (4.39) implies

ξ

(
s((2)

1
m z)

1
2

− s(z)

)
≤ 1

1
2

η(z, z),∀z ∈M, (4.43)

and replacing z by (2)
1
m z in (4.43), we get

ξ

(
s((2)

2
m z)

1
2

− s((2)
1
m z)

)
≤ η((2)

1
m z, (2)

1
m z)

1
2

, ∀z ∈M. (4.44)

By making use of (4.43) and (4.44), we get

ξ

(
s((2)

2
m z)

1
22

− s(z)

)
≤ 1

1
22

η((2)
1
m z, (2)

1
m z) +

1
1
p

η(z, z), (4.45)

for all z ∈M and by generalization, we get

ξ

(
s((2)

k
m z)

1
2k

− s(z)

)
≤

k∑
i=1

1
1
2i

η(((2)
1
m )i−1z, ((2)

1
m )i−1z)

≤ 1

ψ 1
2

η(z, z)

k∑
i=1

ψi

≤ 1
1
2(1− ψ)

η(z, z), ∀z ∈M. (4.46)
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We obtain from (4.46),

ξ

(
s((2)

k
m z)

1
2k

− s((2)
u
m z)

1
2u

)
(4.47)

≤ 1

2
ξ

(
2
s((2)

k
m z)

1
2k

− 2s(z)

)
+

1

2
ξ

(
2
s((2)

u
m z)

1
2u

− 2s(z)

)

≤ κ

2
ξ

(
s((2)

k
m z)

1
2k

− s(z)

)
+
κ

2
ξ

(
s((2)

u
m z)

1
2u

− s(z)

)
≤ κ

1
2(1− ψ)

η(z, z), ∀z ∈M

where k, u ∈ N. Thus

ξ′(σks− σus) ≤ κ
1
2(1− ψ)

,

and hence the boundedness of an orbit of σ at s is given. {τks} is ξ′−converges to R ∈ Nξ′ by

Theorem 1.5 in [2]. By ξ′−contractivity of σ, we get

ξ′(σks− σR) ≤ ψξ′(σk−1s−R).

Letting k →∞ and by Fatou property of ξ′, we get

ξ′(σR−R) ≤ lim
2→∞

inf ξ′(σR− σks)

≤ ψ lim
k→∞

inf ξ′(R− σk−1s) = 0.

Hence R is a fixed point of σ. In (4.39), replacing (z,W ) by
(

(2)
k
m z, (2)

k
mw
)

, we get

ξ

(
1
1
2k

M1s((2)
k
m z, (2)

k
mw)

)
≤ 1

1
2k

η((2)
k
m z, (2)

k
mw). (4.48)

By Theorems 3.1, 3.3 and letting k → ∞, we obtain that R is a reciprocal mapping and using

(4.46), we obtain (4.40). For the uniqueness of R, consider another multifarious type reciprocal

mapping T : M → Zξ satisfying (4.40). Then T is a fixed point of σ such that

ξ′(R− T ) = ξ′(σR− σT ) ≤ ψξ′(R− T ). (4.49)

From (4.49), we get R = T . This completes the proof. �

The proofs of the following corollaries 4.2 and 4.4 follow from the fact that, each normed space

implies a modular space with modular ξ(z) = ‖z‖.
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Corollary 4.2. Assume η is a function from M2 to [0,+∞) for

lim
k→∞

1
1
2k

η{(2
k
m )z, (2

k
m )w} = 0, (4.50)

and

η{(2
1
m )z, (2

1
m )w} ≤ 1

2
ψη{z, w}, ψ < 1. (4.51)

Assume that s : M → Z satisfies the condition, for a Banach space Z,

‖M1s(z, w)‖ ≤ η(z, w), (4.52)

for all z, w ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ η(z, z)
1
2(1− ψ)

, (4.53)

for all z ∈M .

Theorem 4.3. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

κk
η

(
z

(2)
k
m

,
w

(2)
k
m

)
= 0, (4.54)

and

η

(
z

(2)
1
m

,
w

(2)
1
m

)
≤ ψ

1
2

ρ{z, w}, (4.55)

for all z, w ∈M,ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z, w)) ≤ η(z, w). (4.56)

Then there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ pψ

1− ψ
η(z, z), ∀z ∈M. (4.57)

Proof. Replacing z by z

(2)
1
m

in (4.41) of Theorem 4.1 and using a similar method to that of

Theorem 4.1, we complete the proof. �

Corollary 4.4. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

σk
η

(
z

(2)
k
m

,
w

(2)
k
m

)
= 0, (4.58)

and

η

(
z

(2)
1
m

,
w

(2)
1
m

)
≤ ψ

1
2

η{z, w}, ψ < 1. (4.59)
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Assume that s : M → Z fulfills

‖M1s(z, w)‖ ≤ η(z, w), (4.60)

for all z, w ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ pψ

1− ψ
η(z, z), (4.61)

for all z ∈M .

Using Corollaries 4.2 and 4.4, we obtain the following corollaries.

Corollary 4.5. Assume η is a function from M2 to [0,+∞), Z is a Banach space and ε ≥ 0 is

a real number such that

lim
k→∞

1
1
2k

η{(2)
k
m z, (2)

k
mw} = 0, (4.62)

and

η{(2)
1
m z, (2)

1
mw} ≤ 1

2
ψη{z, w}, ψ < 1. (4.63)

Assume that s : M → Z fulfills

‖M1s(z, w)‖ ≤ ε, (4.64)

for all z, w ∈ M . Then there is a unique reciprocal mapping R : M → Z, defined by R(z) =

limk→∞
s
(
(2)

k
m z

)
1

2k

, such that

‖R(z)− s(z)‖ ≤ 2ε, (4.65)

for all z ∈M .

Proof. Assume that η(z, w) = ε for all z, w ∈ Z. The Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 2ε,

for all z ∈ Z and making use of Corollary 4.4, we get

‖R(z)− s(z)‖ ≤ 2ε,

for all z ∈ Z. �
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Corollary 4.6. Assume that s : M → X fulfills the following, for a linear space M and a Banach

space Z , respectively,

‖M1s(z, w)‖ ≤ ε (‖z‖u + ‖w‖u) , (4.66)

for all z, w ∈M with 0 ≤ u < −m or u > −m for some ε ≥ 0. Then there is a reciprocal mapping

R : M → Z, defined by R(z) = limk→∞
s
(
(2)

k
m z

)
1

2k

, such that

‖R(z)− s(z)‖ ≤ 4ε∣∣∣1− 2
m+u
m

∣∣∣ ‖z‖u , ∀z ∈M. (4.67)

Proof. If we choose η(z, w) = ε
(
‖z‖u + ‖w‖u

)
, then Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 4ε

1− 2
m+u
m

‖z‖u,

for all z ∈ Z and u < −m. Using Corollary-4.4, we obtain

‖R(z)− s(z)‖ ≤ 4ε

2
m+u
m − 1

‖z‖u,

for all z ∈ Z and u > −m. �

The following is an example to elucidate (2.3), which is not stable for u = −m in Corollary

4.6.

Example 4.7. Define φ : R→ R with a > 0 as

φ(z) =

{
a
zm , if z ∈ (1,∞)

a , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(2−kz)
2mk

. Then s fulfills

‖M1s(z, w)‖ ≤ a22m(3)

2(2m − 1)
×
(∣∣∣∣ 1

zm

∣∣∣∣+

∣∣∣∣ 1

wm

∣∣∣∣) (4.68)

for all z1, w ∈ R. In that case there does not exist a reciprocal mapping R : R→ R as

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R. (4.69)

Corollary 4.8. Let s : Z1 → Z2 be a mapping. Assume that there exists ε ≥ 0 such that

‖M1s(z, w)‖ ≤ ε
(
‖z‖

u
2 ‖w‖

u
2

)
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for all z, w ∈ Z1. Then there exists a unique reciprocal mapping R : Z1 → Z2 satisfying (2.3) and

‖r(z)− s(z)‖ ≤


2ε

1−2
m+u
m
‖z‖u for u < −m

2ε

2
m+u
m −1

‖z‖u for u > −m

for all z ∈ Z1.

Proof. Replace η(z, w) by ε
(
‖z‖

u
2 ‖w‖

u
2

)
. Then Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 2ε

1− 2
m+u
m

‖z‖2,

for u < −m and for all z ∈ Z1 and making use of Corollary-4.4, we get

‖R(z)− s(z)‖ ≤ 2ε

2
m+u
m − 1

‖z‖2, (4.70)

for u > −m and for all z ∈ Z1. �

Corollary 4.9. Let ε > 0 and α < −m
2 or α > −m

2 be real numbers, and s : Z1 → Z2 be a

mapping satisfying the functional inequality

‖M1s(z, w)‖ ≤ ε
{
‖z‖2α + ‖w‖2α + (‖z‖α‖w‖α)

}
.

Then e there exists a unique reciprocal mapping R : Z1 → Z2 fulfilling (2.3) and

‖R(z)− s(z)‖ ≤


6ε

1−2
2α+m
m
‖z‖2α for α < −m

2

6ε

2
2α+m
m −1

‖z‖2α for α > −m
2

for all z ∈ Z1.

Proof. Set ε
{
‖z‖2α + ‖w‖2α + (‖z‖α‖w‖α)

}
instead of η(z, w). Then Corollary 4.4 implies

‖R(z)− s(z)‖ ≤ 6ε

1− 2
2α+m
m

‖z‖2α,

for α < −m
2 and for all z ∈ Z1 and making use of Corollary-4.4, we get

‖R(z)− s(z)‖ ≤ 6ε

2
2α+m
m − 1

‖z‖2α,

for α > −m
2 and for all z ∈ Z. �

The following is an example to elucidate (2.3), which is not stable for α = −m
2 in Corollary

4.9.
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Example 4.10. Define φ : R→ R with a constant l > 0 as

φ(z) =

{
l
zm , if z ∈ (1,∞)

l , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(2−kz)
2mk

. Then s fulfills

‖M1s(z, w)‖ ≤ a22m(3)

2(2m − 1)
×
(∣∣∣∣ 1

zm

∣∣∣∣+

∣∣∣∣ 1

wm

∣∣∣∣+

∣∣∣∣ 1

zm

∣∣∣∣ ∣∣∣∣ 1

wm

∣∣∣∣) (4.71)

for all z, w ∈ R. In that case, there does not exist a reciprocal mapping R : R→ R as

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R. (4.72)

5. Generalized Hyers-Ulam stability of three dimensional multifarious

functional equation

This section deals the Hyers-Ulam stability of the three dimensional multifarious functional

equation (2.4) in modular spaces by making use of fixed point approach.

Theorem 5.1. Consider a mapping η : M2 → [0,+∞) with

lim
k→∞

1(
1
3

)k η ((3)
k
m z1, (3)

k
m z2, (3)

k
m z3

)
= 0, (5.73)

and

η
(

(3)
1
m z1, (3)

1
m z2, (3)

1
m z3

)
≤ 1

3
ψη{z1, z2, z3},∀z1, z2, z3 ∈M, (5.74)

for ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z1, z2, z3)) ≤ η(z1, z2, z3), (5.75)

for all z1, z2, z3 ∈M . Then there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ 1
1
3(1− ψ)

η(z, z, z), ∀z ∈M. (5.76)

Proof. Assume N = ξ′ and define ξ′ on N by

ξ′(q) =: inf{(3)
1
m > 0 : ξ(h(j)) ≤ (3)

1
m η(z1, z2, z3),∀z ∈M}.

One can easily prove that ξ′ is a convex modular with Fatou property on N and Nξ′ is ξ−complete,

see [2]. Consider the mapping σ : Nξ′ → Nξ′ defined by

σq(z) =
1

3
q(3

1
m z), (5.77)

64

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

PACHAIYAPPAN et al 49-71



for all z ∈ M and q ∈ Nξ′ . Let q, r ∈ Nξ′ and (3)
1
m ∈ [0, 1] with ξ′(q − r) < (3)

1
m . By definition

of ξ′, we get

ξ(q(z)− r(z)) ≤ (3)
1
m η(z1, z2, z3),∀z1, z2, z3 ∈M. (5.78)

By making use of (5.74) and (5.78), we have

ξ

(
q((3)

1
m z)

1
3

− r((3)
1
m z)

1
3

)
≤ 1

1
3

ξ
(
q((3)

1
m z)− r((3)

1
m z)

)
≤ 1

1
3

(3)
1
m η
(

(3)
1
m z, (3)

1
m z2, (3)

1
m z3

)
≤ (3)

1
mψη (z1, z2, z3) ,

for all z1, z2, z3 ∈M . Then σ is a ξ′−contraction and (5.75) implies

ξ

(
s((3)

1
m z)

1
3

− s(z)

)
≤ 1

1
3

η(z, z, z),∀z ∈M, (5.79)

and replacing z by (3)
1
m z in (5.79), we get

ξ

(
s((3)

2
m z)

1
3

− s((3)
1
m z)

)
≤ η((3)

1
m z, (3)

1
m z, . . . , (3)

1
m z)

1
3

, ∀z ∈M (5.80)

and by making use of (5.79) and (5.80), we get

ξ

(
s((3)

2
m z)

1
9

− s(z)

)
≤ 1

1
9

η((3)
1
m z, (3)

1
m z, (3)

1
m z) +

1
1
3

η(z, z, z),

for all z ∈M and by generalization, we get

ξ

(
s((3)

k
m z)

1
3k

− s(z)

)
≤

k∑
i=1

1
1
3i

η(((3)
1
m )i−1z, ((3)

1
m )i−1z, ((3)

1
m )i−1z)

≤ 1

ψ 1
3

η(z, z, z)

k∑
i=1

ψi

≤ 1
1
3(1− ψ)

η(z, z, z), ∀z ∈M. (5.81)
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We obtain from (5.81),

ξ

(
s((3)

k
m 3)

1
3k

− s((3)
u
m z)

1
3u

)

≤ 1

2
ξ

(
2
s((3)

k
m z)

1
3k

− 2s(z)

)
+

1

2
ξ

(
2
s((3)

u
m z)

1
3u

− 2s(z)

)

≤ κ

2
ξ

(
s((3)

k
m z)

1
3k

− s(z)

)
+
κ

2
ξ

(
s((3)

u
m z)

1
3u

− s(z)

)
≤ κ

1
3(1− ψ)

η(z, z, z), ∀z ∈M

where k, u ∈ N. Thus

ξ′(σks− σus) ≤ κ
1
3(1− ψ)

,

and hence the boundedness of an orbit of σ at s is given. So {τks} is ξ′−convergent to R ∈ Nξ′

by Theorem 1.5 in [2]. By ξ′−contractivity of σ, we get

ξ′(σks− σR) ≤ ψξ′(σk−1s−R).

Taking k →∞ and by Fatou property of ξ′, we get

ξ′(σR−R) ≤ lim
k→∞

inf ξ′(σR− σks) ≤ ψ lim
k→∞

inf ξ′(R− σk−1s) = 0.

Hence R is a fixed point of σ. In (5.75), replacing (z1, z2, z3) by
(

(3)
k
m z1, (3)

k
m z2, (3)

k
m z3

)
, we

get

ξ

(
1
1
3k

M1s((3)
k
m z1, (3)

k
m z2, (3)

k
m z3)

)
≤ 1

1
3k

η((3)
k
m z1, (3)

k
m z2, (3)

k
m z3).

By Theorems 3.1, 3.3 and taking k → ∞, we obtain that R is a reciprocal mapping and using

(5.81), we have (5.76). For the uniqueness of R, consider another multi-type reciprocal mapping

T : M → Zξ satisfying (5.76). Then T is a fixed point of σ such that

ξ′(R− T ) = ξ′(σR− σT ) ≤ ψξ′(R− T ). (5.82)

From (5.82), we get R = T . This completes the proof. �

The proofs of Corollaries 5.2 and 5.4 follows from the fact that every normed space is a modular

space of modular ξ(z) = ‖z‖.

Corollary 5.2. Assume η is a function from M2 to [0,+∞) such that

lim
k→∞

1
1
3k

η{(3
k
m )z1, (3

k
m )z2, (3

k
m )z3} = 0,
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and

η{(3
1
m )z1, (3

1
m )z2, (3

1
m )z3} ≤

1

3
ψη{z1, z2, z3}, ψ < 1.

Assume that s : M → Z satisfies the following, for a Banach space Z,

‖M1s(z1, z2, z3)‖ ≤ η(z1, z2, z3),

for all z1, z2, z3 ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ η(z, z, z)
1
3(1− ψ)

,

for all z ∈M .

Theorem 5.3. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

κk
η

(
z1

(3)
k
m

,
z2

(3)
k
m

,
z3

(3)
k
m

)
= 0,

and

η

(
z1

(3)
1
m

,
z2

(3)
1
m

,
z3

(3)
1
m

)
≤ ψ

1
3

ρ{z1, z2, z3},

for all z1, z2, z3 ∈M,ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z1, z2, z3)) ≤ η(z1, z2, z3).

Then there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ pψ

1− ψ
η(z, z, z), ∀z ∈M.

Proof. Replacing z by z

(3)
1
m

in (5.77) of Theorem 5.1 and by a similar method to that of Theorem

5.1, we complete the proof. �

Corollary 5.4. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

σk
η

(
z1

(3)
k
m

,
z2

(3)
k
m

,
z3

(3)
k
m

)
= 0,

and

η

(
z1

(3)
1
m

,
z2

(3)
1
m

,
z3

(3)
1
m

)
≤ ψ

1
3

η{z1, z2, z3}, ψ < 1.

Assume that s : M → Z fulfills

‖M1s(z1, z2, z3)‖ ≤ η(z1, z2, z3),
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for all z1, z2, z3 ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ pψ

1− ψ
η(z, z, z),

for all z ∈M .

Using Corollaries 5.2 and 5.4, we obtain the following corollaries.

Corollary 5.5. Assume η is a function from M2 to [0,+∞), Z is a Banach space and ε ≥ 0 is

a real number such that

lim
k→∞

1
1
3k

η{(3)
k
m z1, (3)

k
m z2, (3)

k
m z3} = 0,

and

η{(3)
1
m z1, (3)

1
m z2, (3)

1
m z3} ≤

1

3
ψη{z1, z2, z3}, ψ < 1.

Assume that s : M → Z fulfills

‖M1s(z1, z2, z3)‖ ≤ ε,

for all z1, z2, z3 ∈ M . Then there is a unique reciprocal mapping R : M → Z, defined by

R(z) = limk→∞
s
(
(3)

k
m z

)
1

3k

, such that

‖R(z)− s(z)‖ ≤ 3ε

2
,

for all z ∈M .

Proof. Assume that η(z1, z2, z3) = ε for all z1, z2, z3 ∈ Z. Then Corollary 5.2 implies

‖R(z)− s(z)‖ ≤ pε

2
,

for all z ∈ Z and p 6= 0,±1 and making use of Corollary 5.4, we get

‖R(z)− s(z)‖ ≤ 3ε

2
,

for all z ∈ Z. �

Corollary 5.6. If s : M → X fulfills the following inequality, for a linear space M and a Banach

space Z, respectively,

‖M1s(z1, z2, z3)‖ ≤ ε (‖z1‖u + ‖z2‖u + ‖x3‖u) ,
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for all z1, z2, z3 ∈ M with 0 ≤ u < −m or u > −m for some ε ≥ 0. Then there is a reciprocal

mapping R : M → Z, defined by R(z) = limk→∞
s
(
(3)

k
m z

)
1

3k

, such that

‖R(z)− s(z)‖ ≤ 9ε∣∣∣1− 3
m+u
m

∣∣∣ ‖z‖u , ∀z ∈M.

Proof. If we choose η(z1, z2, z3) = ε
(
‖z1‖u + ‖z2‖u + ‖z3‖u

)
, then Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 9ε

1− 3
m+u
m

‖z‖u,

for all z ∈ Z and u < −m. Using Corollary 4.4, we obtain

‖R(z)− s(z)‖ ≤ 9ε

3
m+u
m − 1

‖z‖u,

for all z ∈ Z and u > −m. �

The following is an example to elucidate (2.4), which is not stable for u = −m in Corollary

5.6.

Example 5.7. Define φ : R→ R with a > 0 as

φ(z) =

{
a
zm , if z ∈ (1,∞)

a , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(3−kz)
3mk

. Then s fulfills

‖M1s(z1, z2, z3)‖ ≤
a32m(4)

3(3m − 1)
×
(∣∣∣∣ 1

zm1

∣∣∣∣+

∣∣∣∣ 1

zm2

∣∣∣∣+

∣∣∣∣ 1

zm3

∣∣∣∣)
for all z1, z2, z3 ∈ R. In that case, there does not exist a reciprocal mapping R : R→ R such that

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R.

Corollary 5.8. Assume s : Z1 → Z2 is a mapping. Assume that there exists ε ≥ 0 such that

‖M1s(z1, z2, z3)‖ ≤ ε
(
‖z1‖

u
3 ‖z2‖

u
3 ‖z3‖

u
p

)
for all z1, z2, z3 ∈ Z1. Then there exists a unique reciprocal mapping R : Z1 → Z2 fulfilling (2.4)

and

‖r(z)− s(z)‖ ≤


3ε

1−3
m+u
m
‖z‖u for u < −m

3ε

3
m+u
m −1

‖z‖u for u > −m

for all z ∈ Z1.
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Proof. Replace η(z1, z2, z3) by ε
(
‖z1‖

u
3 ‖z2‖

u
3 ‖z3‖

u
3

)
. Then Corollary 5.2 implies

‖R(z)− s(z)‖ ≤ 3ε

1− 3
m+u
m

‖z‖3,

for u < −m and for all z ∈ Z1 and making use of Corollary 5.4, we get

‖R(z)− s(z)‖ ≤ 3ε

3
m+u
m − 1

‖z‖3,

for u > −m and for all z ∈ Z1. �

Corollary 5.9. Let ε > 0 and α < −m
3 or α > −m

3 be real numbers, and s : Z1 → Z2 be a

mapping satisfying the functional inequality

‖M1s(z1, z2, z3)‖ ≤ ε
{
‖z1‖3α + ‖z2‖3α + ‖z3‖3α + (‖z1‖α‖z2‖α‖z3‖α)

}
.

Then there exists a unique reciprocal mapping R : Z1 → Z2 fulfilling (2.4) and

‖R(z)− s(z)‖ ≤


12ε

1−3
3α+m
m
‖z‖3α for α < −m

3

12ε

3
3α+m
m −1

‖z‖3α for α > −m
3

for all z ∈ Z1.

Proof. Replace η(z1, z2, z3) by ε
{
‖z1‖3α+‖z2‖3α+‖z3‖3α+(‖z1‖α‖z2‖α‖z3‖α)

}
. Then Corollary

5.4 implies

‖R(z)− s(z)‖ ≤ 12ε

1− 3
3α+m
m

‖z‖3α,

for α < −m
3 and for all z ∈ Z1 and making use of Corollary 5.4, we get

‖R(z)− s(z)‖ ≤ 12ε

3
3α+m
m − 1

‖z‖3α,

for α > −m
3 and for all z ∈ Z. �

The following is an example to elucidate (2.4), which is not stable for α = −m
3 in Corollary

5.9.

Example 5.10. Define φ : R→ R with a constant l > 0 as

φ(z) =

{
l
zm , if z ∈ (1,∞)

l , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(3−kz)
3mk

. Then s fulfills

‖M1s(z1, z2, z3)‖ ≤
a32m(4)

3(3m − 1)
×
(∣∣∣∣ 1

zm1

∣∣∣∣+

∣∣∣∣ 1

zm2

∣∣∣∣+

∣∣∣∣ 1

zm3

∣∣∣∣+

∣∣∣∣ 1

zm1

∣∣∣∣ ∣∣∣∣ 1

zm2

∣∣∣∣ ∣∣∣∣ 1

zm3

∣∣∣∣)
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for all z1, z2, z3 ∈ R. In that case, there does not exist a reciprocal mapping R : R→ R such that

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R.

6. Conclusion

In this work, we introduced the new generalized multifarious type radical reciprocal functional

equations combining three classical Pythagorean means arithmetic, geometric and harmonic.

Importantly, we obtained their general solution and stabilities related to Ulam problem with

suitable counter examples in modular spaces by using fixed point approach. Furthermore, we

illustrated their geometrical interpretation.
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