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ABSTRACT. In this article, we introduce a new generalized multifarious radical reciprocal func-
tional equation by generalizing the equation employed by Narasimman et al. in [5] and combining
three classical Pythagorean means arithmetic, geometric and harmonic. Also, we illustrate the
geometrical interpretation. Mainly, we find its general solution and stabilities related to Ulam

problem in modular spaces by using fixed point approach.

1. INTRODUCTION AND PRELIMINARIES

In the development of broad field functional equations, we come acrossing various types like
additive, quadratic, cubic and so on. In recent research many researchers modeled functional
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equations from physical phenomena. In particular, by geometrical construction authors intro-
duced remarkable reciprocal type functional equations.

In 2010, Ravi and Senthil Kumar [6] introduced functional equation of reciprocal type

5()s(w) W

) = T stw)

with solution s(z) = <.

In 2014, Bodaghi and Kim [I] introduced the quadratic reciprocal functional equation, which
was generalized by Song andSong cite AM.

In 2015, Narasimman, Ravi and Pinelas [5] introduced the radical reciprocal quadratic func-
tional equation

s<\2/z2+w2> :Ss(z)s(w)7 z,w € (0,00), (1.2)

(2) + s(w)
which is satisfied by s(z) = 5. Also, they provided the solution and stability of 1) with
geometrical interpretation and application.

For the necessary introduction on stability related to Ulam problem and the notion of modular
spaces one can refer to 7, 8, [9] 10, 12].

2. MAIN RESULTS

Definition 2.1. A reciprocal functional equation is a functional equation with solution of the
form ﬁ When s(z) = z,22,2%... we have various type of reciprocal functional equations like

reciprocal additive, reciprocal quadratic, reciprocal cubic and so on.

Definition 2.2. Pythagorean means [3] The three classical Pythagorean means are the arithmetic

mean (AM), the geometric mean (GM), and the harmonic mean (HM), which are defined by
1
AM (a1, a2, ...,an) = ﬁ(al + ... Fan),
GM(ay,az,...,an) = Va1 + ... + an,

n

HM(Gl, ag, ..., an) e ——
a Tt

Definition 2.3. A functional equations which are arisen from the relations between three Pythagorean

means (arithmetic, geometric and harmonic) are known as Pythagorean mean functional equa-

tions.

Definition 2.4. A reciprocal Pythagorean mean functional equation which shall possess the
nature of any type of functional equation like additive, quadratic, cubic and so on is said to be a

multifarious reciprocal Pythagorean mean functional equation.
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In this paper, using Pythagorean means, we introduce the new generalized 2—dimensional and
3—dimensional multifarious radical reciprocal functional equations.

The following 2—dimensional and 3—dimensional multifarious radical reciprocal functional
equations are obtained by generalizing ((1.1)) and (|1.2)

s(VT T ) = en)olzy)ols) (2.4

s(z1)s(22) + s(22)s(z3) + s(21)s(23)’

which are satisfied by s(z) = &, for all z,w, 21, 22,23 € (0,00),m € N. Observe that if m =1
and m = 2 in , we have and , respectively. Further, if m = 3,4,--- in , then
we have various type of functional equations. Hence the functional equation is known as
two dimensional multifarious radical reciprocal functional equation. By similar argument,
is known as three dimensional multifarious radical reciprocal functional equation.

2.1. Geometrical construction and geometrical interpretation of multifarious radical
reciprocal functional equations. Geometric construction of three Pythagorean means of two
variables can be constructed geometrically as showed in Figure [[I Geometric construction of
geometric mean of three variables are not possible but the other Pythagorean means can be
constructed for any number of variables, one can refer [4, [IT].

a b

FicURE 1. Pythagorean means of a and b. A is the arithmetic mean, H is the

harmonic mean and G is the geometric mean.

The relations between three Pythagorean means of p—objects 21, 22, - - , 2, are represented by
the following equation

G p
H(z1,22, %) = G220 7) . (2.5)

117P LT R B i 12 )
A(Znizlzz’z2niz1zu 'z z‘:lzz)

P

Consider two spheres S7 and S of radii 71 and ro with 71 > ro, which are located along the
xr—axis centered at C(0,0,0) and Ca(d, 0,0), respectively.
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FIGURE 2. Intersecting two spheres S7 and Ss.

We can show that the length of CyC] is % which is the arithmetic mean of z; and zo. We
can find the length AC1, using Pythagoras’ theorem, is the geometric mean /z1z2 of 21 and zs.
Also, we can obtain the length HC is ZijrZ, which is the harmonic mean of z; and zy, since
CyACT and AH(C1 are similar.

From Figure we have the equality HC, = C C , that is

G (21,2)°
H (21722) — . (Zl 22) (26)
A(Z Hz 122322 H, 1Zz>
which is the particular case of (2.5) by assuming p = 2 and which implies
1 2129
i+*:Z1+22' (2.7)
21 z
Assuming z; = % and zo = i in , we obtain
L i
= . 2.8
z4+w % + % (2:8)

In that case, 1} is valid by 1} which is satisfied by s(z) = £. Assuming z; = Z% and zo = 2

in (2.7) leads

24w Ly
In that case 1) is valid by 1) which is satisfied by s(2) = 5. In general, assuming z; = zim

and zo = u%m in , we have

1 1 1
= (210
< w sw T oom

In that case, (2.3) is valid by (2.10]), which is satisfied by s(z) = -&.
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In Figure [2, AB is the diameter of common circle. The common circle is the solution of the
System

242422 =r (2.11)
(21 —d)> 4 23 + 23 = r3,
which implies
1
22+ 22+ 22
1
(21 — d)? + 23 + 23

(2.12)

= =
ww‘ = Hw‘ =

The system ([2.12)) can be expressed by radical reciprocal quadratic functional equations of the
form

s (r?) = ( ) ( )3( )
(1) s(z1)s(z2) + s(22)s(z3) + s(z1)s(23)’ (2.13)
s (7"2) = s(z1 — d)s(z2)s(z3)
2 s(z1 — d)s(22) + s(z2)s(z3) + s(z21 — d)s(z3)”

for z1, 29, 23,71, 72 € (0,00), which is satisfied by s(21) = 7 and the denominators are not equal
1

to zero. Also, observe that the equation (2.13]) is the particular case of (2.4) for m = 2. By
assuming p = 3 in (12.5)), we obtain

G (21, 22, 23)°

H (Zl, Z92, 23) = s (2.14)
A(LTE 20, 2T 20 2 T 2
21 =1 ~1» 29 =1~ 23 =1~
which gives
1 o Z129%3 (2 15)
1 1 T : :
Tt Rastamtzz
Assuming z; = Z%, 29 = Z% and 23 = sz in , we have
1 2 3
11 1
. e i (2.16)
m m m ~ 1 1 1 '
A I I i

In that case 1) is valid by l) which is satisfied by s(z1) = %

3. GENERAL SOLUTION OF THE MULTIFARIOUS RADICAL RECIPROCAL FUNCTIONAL EQUATIONS

The following theorems give the solution of (2.3)) and (2.4) through motivated by the work of
Ger [7].

Theorem 3.1. A general solution of is 8(2) = ;s 2z € (0,00) with S(ifz) a quotient at zero.

Zm
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Proof. Assuming z,w = z in ([2.3)), we have
1
s(V2z2) = 55(,2)

for all z € (0,00). Assuming

~—

9(z) = #

27
for all z € (0,00), we have

lim
z—>0+@::c€]&

=
for all z € (0,00). Dividing (3.17)) by i%, we obtain
s( ’{L/iz) B %s(z)
V2

o1

m
2

ﬁz% z

for all z € (0,00). Using (3.18) in (3.19), we have

o( V/22) = jigw),

for all z € (0,00). Replacing z by ’éﬁ in 1j we get

V29(2) = g (%) :

Again, replacing z by m%/i in l’ we have

(VBR(:) = ( %)) ,

for all z € (0,00). Continuing the same process k times, we obtain

(VDo) = ( %k) ,

for all z € (0, 00).

Now,
1
e (i)
g(lz) (v2) 9(12) V) o gy koo,
T VL v2)
z 2 z 2 Z%
for all z € (0,00). Eq. (3.18) implies that
1 1 1 c
s(z) = wy(2) = w—wmc=—;
z 2 zZ2 z2 z

for all z € (0,00). This completes the proof.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

g

Theorem 3.2. A general solution of is 5(2) = 2w 2 € (0,00) with 32 4 quotient at zero.

zm
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(3.24)

(3.25)

Proof. Assuming z1, 29, 23 = z in ([2.4]), we have
1
s(V/3z2) = gs(z),

and assuming

h(z

I =
(3.26)

we obtain

by —=, we get
z 2
s(¥/3z)
(3.27)

3.24

Dividing

and substituting (3.25)) in (3.26[), we obtain
1
h(¥3z) = —h(2),
(32) = (2
(3.28)

and replacing z by Tz/g in 1' we have
V3h(z) =h ( i ) .
( ) m 3
(3.29)

Again, replacing z by mi\/g in 1' we get

(3.30)

for all z € (0,00). Continuing the same process k times, we have
z
Y

for all z € (0,00). Now,
k h(—2z
o) e Mowe)
N S S ]
22 22 Z%
for all z € (0,00). Egs. (3.25)) and (3.30]) imply that
1 1 1
5(2) =~ h(2) = —ar € = —
22 22 722 zm
O

for all z € (0,00). This completes the proof.
In the following theorem, we obtain general solution of (2.3) and (2.4) by derivative method.
PACHAIYAPPAN et al 49-71
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Theorem 3.3. Let s : (0,00) — R be a continuously differentiable function with nowhere van-
ishing derivatives s'. Then s yields a solution to the functional equation if and only if there

exists a nonzero real constant ¢ such that s(z) = &, z € (0,00).

Proof. Differentiating (2.3)) with respect to z on both side, we get

o (21 B (5’(z)s(w)> [s(z)+s(w)} . (s(z)s(w)) [s'(z)}
) eyt (56 +sw)’ o

Assuming z,w = z in (3.31]), we obtain

/1 m _LS/Z
s(\/iz)—2% (2), (3.32)

and setting z = %/2z and w = z in (3.31)) and making use of (3.17) and (3.32)), we get

S'(V3z2) = @){{L/gs/(z) (3.33)

for all z € (0,00). By making use of (3.32) and (3.33)), we have

s’ (( V2)R(/3)! z) = ! ! ls'(z)

for all integers k, . We derive its linearity by assuming A = ( ¥/2)*( ¥/3)! and z = 1,
1
()\)erl
for A € (0,00). Therefore, there exist real numbers ¢ # 0, d such that s(z) = & +d for z € (0, 00).
Note that we have d = 0 because of the equality s( %/22) = £s(z) valid for all positive 2. This

s'(\) = ¢(1)

completes the proof. O

Theorem 3.4. Let s : (0,00) — R be a continuously differentiable function with nowhere van-
ishing derivatives s'. Then s yields a solution to the functional equation if and only if there

exists a nonzero real constant ¢ such that s(z) = &, z € (0,00).

Proof. Differentiating with respect to z; on both side, we obtain
sy — v (3
(3/a ) P R )
s (21) (s(22))* EAGY (5(2p11))°
(s(z1) +5(22))°  (s(21) + s(zp41))*
and implies

s'(V2z2) = s'(2). (3.35)
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Assuming z; = z and 23 = 2,41 = V22 in (3.34) and making use of (3.24)) and (3.35), we get

1
s'(V/3z2) = s'(2), 3.36
(932) = 5= (2) (3.30)
and from (3.35)) and ( -, we get
1 1
s’(%k%lz): s'(2),
for all integers k,l. We derive its linearity by assuming A = ( %/2)*( ¥/3)! and z = 1,
) =50 g3
sWA) =9 ()t
for A € (0, 00). Therefore, there exist real numbers ¢ # 0, d such that s(z) = 5% +d for z € (0, 00).
Note that we have to have d = 0 because of the equality s( ¥/2z) = 1s(2) exists. This completes
the proof. 0

4. GENERALIZED HYERS-ULAM STABILITY OF TWO DIMENSIONAL MULTIFARIOUS FUNCTIONAL

EQUATION

This section deals the generalized Hyers-Ulam stability of two dimensional multifarious func-
tional equation ([2.3]) in modular spaces by making use of fixed point approach.

Theorem 4.1. Consider a mapping n: M? — [0, +00) with

khm L77 ((2) z z, (2)%10) =0, (4.37)
== (3)"
and
0 ((2)%,2, (2)%@0) (4.38)
% yn{z, w},Vz,w € M,

or Y < 1. Assume that s : — ulfills
fory <1. A h M — Z¢ fulfill

¢ (Mis(z,w)) < n(z,w), (4.39)
for all z,w € M. In that case, there is a unique reciprocal mapping R : M — Z¢ such that

€R(2) — 5(2)) < —— i(z,2), Y2 M. (4.40)

(1=
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Proof. Assume N = ¢’ and define £ on N as,
¢'(q) = mf{(2) > 0: €(h(j)) < (2)7n(z,w), ¥z € M.

One can easily prove that £ is a convex modular with Fatou property on N and Ngs is {—complete,

see [2]. Consider the function o : Neo — Ng defined by

04(2) = ga(272), (1.41)

for all z € M and q € Ng. Let ¢,r € N and (2)% € [0,1) with (¢ —r) < (2)# By definition
of ¢, we get

£(q(z) — 1(2)) < (2)mn(z,w),Vz,w € M. (4.42)

By making use of (4.38) and (4.42)), we get

(1259129 eyt et
2 2 2

for all z,w € M. In that case, o is a ' —contraction and (4.39)) implies
1
s((2)mz
¢ (W - s<z>) <
2

and replacing z by (2)%2 in 1} we get

_

Tn(2,2),Vz € M, (4.43)
2

¢ (W - s<<2>%z>> < M@ ey (4.44)
2 2
By making use of and , we get
¢ (W _ s(z)) < %77((2)%,2, (2)%2) + %77(2,2), (4.45)
22 22 p

for all z € M and by generalization, we get
((2)72) S 1
S mz 1= RN
f( T —8(2)> < (@) (2)m) 7 2)
— o

< —n(z,2) Z P’

< ﬁn(z, z), Vz € M. (4.46)
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We obtain from ,
(it _sop:) o
2k 2u
< %5 <28((222:z) — 28(2)) + ¢ (28((221;”2) — 23(2))
< 3¢ (5((22)1;"‘) - s<z>> + 3¢ (S“QQZU*”Z) - s<z>>
< %(1R—w)7](z z), Vze M
where k,u € . Thus
(ohs — ots) < — 0
€ < 15

and hence the boundedness of an orbit of o at s is given. {7¥s} is & —converges to R € Ng¢ by

Theorem 1.5 in [2]. By &' —contractivity of o, we get
¢'(oFs — oR) < &' (c"1s — R).
Letting k — oo and by Fatou property of £, we get
¢(cR—R) < 211_{1(()10 inf ¢'(0R — o)

< lim inf&'(R — o*~1s) = 0.
k—o0

Hence R is a fixed point of 0. In (4.39)), replacing (z, W) by ((2)5,2, (2)%10), we get

¢ (1Mls<<2>fiz, <2>’k"“’>> < ()= @) A9
ok 2k

By Theorems [3-3] and letting k — oo, we obtain that R is a reciprocal mapping and using
(4.46)), we obtain (4.40). For the uniqueness of R, consider another multifarious type reciprocal
mapping T : M — Z satisfying (4.40). Then 7" is a fixed point of o such that

§(R-T) = ¢(cR—oT) < v¢(R—T). (4.49)
From (4.49), we get R = T. This completes the proof. O

The proofs of the following corollaries [£.2] and [£.4] follow from the fact that, each normed space
implies a modular space with modular £(z) = ||z]|.

59 PACHAIYAPPAN et al 49-71



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Corollary 4.2. Assume 1 is a function from M? to [0, 4o0) for

) 1
lim T
k—o00 5%

n{(27)z, (27w} = 0,
and

n{(27)z, (27w} < %wn{z,w}, < 1.

Assume that s : M — Z satisfies the condition, for a Banach space Z,

[Ms(z, w) || < 1z, w),

(4.50)

(4.51)

(4.52)

for all z,w € M. Then there is a unique reciprocal mapping R : M — Z such that

z) —s(z _zz)
IRG) - ()1 < 7205

for all z € M.

Theorem 4.3. Assume 1 is a function from M? to [0, +0c0) with

. 1 z w 0
im — =
el (2)%’ (2)% ’

z w P
9 1 S EN Z7w 9
' <<2>3n <2>m> e

for all z,w € M, < 1. Assume that s : M — Z¢ fulfills

and

§ (Mis(z,w)) < n(z,w).

Then there is a unique reciprocal mapping R : M — Z¢ such that

E(R(z) —s(2)) < 777(2,2), Vz e M.

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

Proof. Replacing z by —%1 in (4.41]) of Theorem and using a similar method to that of

(2)m
Theorem we complete the proof.

Corollary 4.4. Assume 0 is a function from M? to [0, 4+o00) with
1 z w
lim — =0
oo ok ((2»’%’ <2>w‘i>

n( S )S?n{z,w},w<1.
2

and

60

g

(4.58)

(4.59)
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Assume that s : M — Z fulfills
[ Mys(z,w)| < n(z,w), (4.60)

for all z,w € M. Then there is a unique reciprocal mapping R : M — Z such that

IR(:) = s < 725Gz, 2), (461)

forall ze M.

Using Corollaries and [£.4] we obtain the following corollaries.

Corollary 4.5. Assume 1 is a function from M? to [0,+cc), Z is a Banach space and € > 0 is

a real number such that

lim (@2, @)% w) =0, (4.62)
o
and
M@z, (2w} < Jonlz w) b <1 (463)

Assume that s : M — Z fulfills
[Mys(z,w)|| <, (4.64)

for all zyw € M. Then there is a unique reciprocal mapping R : M — Z, defined by R(z) =

k
2)m
limg_ 00 M, such that
ok

|R(2) — s(2)| < 2e, (4.65)

for all z € M.

Proof. Assume that n(z,w) = € for all z,w € Z. The Corollary implies
I1R(2) = s(2)]| < 2,

for all z € Z and making use of Corollary we get
[1R(z) = s(2)]| < 2,

forall z € Z. O
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Corollary 4.6. Assume that s : M — X fulfills the following, for a linear space M and a Banach

space Z , respectively,

[Mys(z,w)l| < e (2" + [[w]®), (4.66)
forall z,w € M with0 <u < —m oru > —m for some € > 0. Then there is a reciprocal mapping
k
s((2)mz
R: M — Z, defined by R(z) = limg_, o M, such that
ok
4e w
IR(z) — s(2)| < 7’ — Iz, Vze M. (4.67)

Proof. If we choose n(z,w) = €(||z]|* 4 ||w||*), then Corollary 4.2/ implies

4e w
18(z) =)l = w1

for all z € Z and u < —m. Using Corollary{4.4] we obtain

4e
m-+u

27m —1

[17(2) = s(2)]| < I121%,

for all z € Z and u > —m. O

The following is an example to elucidate (2.3)), which is not stable for u = —m in Corollary
4.0l

Ezxample 4.7. Define ¢ : R — R with a > 0 as

QS(Z):{ S, if z € (1,00)

a, otherwise

and a function s : R — R by s(z) = > 5y 92 "2 Then s fulfills

omk

a 2m
M5z )] < gy *

1 1
for all z;,w € R. In that case there does not exist a reciprocal mapping R : R — R as

1s(2) — R(2)| < B ‘;ﬂ L B>0,Vz€R. (4.69)

Corollary 4.8. Let s: Z1 — Z3 be a mapping. Assume that there exists € > 0 such that

M5z, w)ll < e (Il )
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for all z,w € Zy. Then there exists a unique reciprocal mapping R : Z1 — Z3 satisfying and

ﬁllzll“ foru < —m
—2™m

Ir(2) = s(2)] <

Z __|z|* foru>-—m

+
o™ 1

for all z € 7.

Proof. Replace n(z,w) by € (HZH% HwH%) Then Corollary implies

2e

m4u
— m

[17(z) = s(2)[| < 12112,

for u < —m and for all z € Z; and making use of Corollary{4.4] we get
2¢

m-+tu
m —

1B(2) = s(2)|| < ; 12112, (4.70)

for u > —m and for all z € Z;. O

Corollary 4.9. Let € > 0 and a < =% or a > — be real numbers, and s : Zy — Z3 be a

mapping satisfying the functional inequality
1M15(z, w)| < € {[12]7* + [lwl** + (|21 |w]|*)}

Then e there exists a unique reciprocal mapping R : Z1 — Zs fulfilling and

%Hzll%‘ fora < -3
1-2"m

[1R(2) = s(2)|| <

et fora>—3
27 m 1

for all z € Z3.

Proof. Set e{HzHQO‘ + [Jw|?* + (||2]]*Jw]|*) } instead of 7(z,w). Then Corollary implies

e o
1R(2) = s(z)I| < 127m+mll2ll2 :

for o < —% and for all z € Z; and making use of Corollary-f.4] we get
b€

IR(2) = s()]l < —gagm—Il2117,

fora>—% and for all z € Z. O

The following is an example to elucidate (2.3]), which is not stable for & = —% in Corollary
4.9
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Ezample 4.10. Define ¢ : R — R with a constant [ > 0 as

Loz 00

[, otherwise

and a function s : R — R by s(z) = > pey 9272 Then s fulfills

omk
1 1
‘ m’ 'wm > (4.71)

a22m(3) (
for all z,w € R. In that case, there does not exist a reciprocal mapping R : R — R as

[[Mys(z,w)

”—2@m—1

|s(z) — R(2)] < , B>0,Vz e R. (4.72)

5. GENERALIZED HYERS-ULAM STABILITY OF THREE DIMENSIONAL MULTIFARIOUS

FUNCTIONAL EQUATION

This section deals the Hyers-Ulam stability of the three dimensional multifarious functional
equation (2.4) in modular spaces by making use of fixed point approach.

Theorem 5.1. Consider a mapping n: M? — [0, +00) with

. 1 k k k
i, e ()7 21,(3)7 22, (3) 7 23) =0, (5.73)
3
and
1 1 1 1
n ((3)’”Zl> (3)m 22, (3)mz3) < §¢77{Z1722723}7V21,Z2,Z3 €M, (5.74)

for ¢ < 1. Assume that s : M — Z¢ fulfills
g(Mls(Zl,Zg,Zg)) S 77(21722723)) (575)

for all z1, 20,23 € M. Then there is a unique reciprocal mapping R : M — Z¢ such that
1

E(R(z) —s(2)) < wn(z,z,z), Vz e M. (5.76)
3

Proof. Assume N = ¢’ and define £ on N by

€'(q) = inf{(3)m > 0: £(h())) < (3)mn(21, 22, 23), V= € M},

One can easily prove that £ is a convex modular with Fatou property on NV and Ng is {—complete,

see [2]. Consider the mapping o : Neo — Ng defined by

oq(z) = éq(l’)iz)7 (5.77)
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for all z € M and g € Ngr. Let ¢,r € Ng and (3)% € [0,1) with &'(¢ —r) < (3)# By definition
of ¢, we get

E(q(z) — 7(2)) < (3)mn(21, 22, 23), Va1, 22, 23 € M. (5.78)

By making use of (5.74) and (5.78)), we have

¢ <Q((33mz) B r((33m2)> < %5 (q((g)%z) _ r((g)%z))
3 3 3

< %(3)%77 ((3)#2, (3)%;;2,(3)#2;3) < (3)#@7 (21,22, 23)
3

for all 21, 29,23 € M. Then o is a {'—contraction and ([5.75|) implies

¢ (SW _ 5(z)> < %n(z,z,z),v,z € M, (5.79)
3 3
and replacing z by (3)%2 in , we get
¢ (“337") - s<<3>iz>> s T VN
3 3

and by making use of (5.79)) and (5.80)), we get

¢ (W - s<z>> < (@), (B)mz, (3)72) + 1a(z 2. 2)
9 9

for all z € M and by generalization, we get

1@77(2,2,,2), Vz € M. (5.81)
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We obtain from ,
c <s<<3>i3> ) s<<3>%iz>>
1 1
3k 3u
< %5 <28((32mz) — 28(2)) + 5{ (28((337’12) - 23(2))
3k 3u
ki, (s((3)m2) ko (s((3)72)
< 25( T —s<z>> +2£< ! —s<z>>
< %(1 _w)n(z,z,z), Ve M
where k,u € . Thus
"(o%s — os n

and hence the boundedness of an orbit of o at s is given. So {r¥s} is ¢ —convergent to R € Ng

by Theorem 1.5 in [2]. By &'—contractivity of o, we get
¢ (oFs — oR) < € (6" s — R).
Taking k — oo and by Fatou property of &', we get

¢(cR — R) < lim inf¢(oR — o"s) < ¢ lim inf & (R — 0" 1s) = 0.
k—o0 k—o0

Hence R is a fixed point of . In (5.75)), replacing (z1, 22, 23) by ((3)521, (3)%2'2, (3)%z3>, we

get
1 L3 L3 k 1 k L3 E
E| T Mis((B)mz1,(3)mz2,(8)mz3) | < - n((3)m 21, (3)m 22, (3) 7 23).
3k
By Theorems and taking k — oo, we obtain that R is a reciprocal mapping and using
(5.81)), we have (5.76)). For the uniqueness of R, consider another multi-type reciprocal mapping

T : M — Z satisfying (5.76)). Then T is a fixed point of o such that

E(R-T)=¢(oR—0oT) <y&(R-T). (5.82)
From ([5.82)), we get R =T. This completes the proof. O

The proofs of Corollaries [5.2] and [5.4] follows from the fact that every normed space is a modular
space of modular £(z) = ||z]|.

Corollary 5.2. Assume 1 is a function from M? to [0, 400) such that

. 1 k k L3
khm Tn{(?)m)zh(3m)22,(3m)Z3} =0,
=00 o
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and

I3 )21, (3%)22, (3%) 25} < et 22,20}, 0 < 1.

Assume that s : M — Z satisfies the following, for a Banach space Z,

HMlS(Zla 22, 23)” < 77(217 22 Z3)>
for all z1, 29,23 € M. Then there is a unique reciprocal mapping R : M — Z such that

IR(=) — s(2)] < He22)
3

(1-9)
for all z € M.

Theorem 5.3. Assume 1 is a function from M? to [0, +o0) with

lim in “1 =2 “3 =0
G ENCOENOLY

and

2 oz 7z Y
n ( 1 1 1> < T,O{Zl,ZQ,Zg},
@B)m (3)m (3)m 3
for all z1, 29,23 € M,y < 1. Assume that s : M — Z¢ fulfills

& (Mis(z1, 22, 23)) < n(21, 22, 23).

Then there is a unique reciprocal mapping R : M — Z¢ such that

E(R(z) —s(2)) < &n(zz,z,z), Vz e M.

Proof. Replacing z by (3)2 — in (5.77) of Theorem and by a similar method to that of Theorem
.1 we complete the proof.

[l
Corollary 5.4. Assume 1 is a function from M? to [0, 4o00) with

lim in Al =2 = =0
e\ @) @) @)

and

Assume that s : M — Z fulfills
[ Ms(21, 22, 23) || < (21, 22, 23),
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for all z1, 29,23 € M. Then there is a unique reciprocal mapping R : M — Z such that
[R(z) — s(z)]| <

forall ze M.

Using Corollaries [5.2] and we obtain the following corollaries.

Corollary 5.5. Assume 1 is a function from M? to [0,+o0), Z is a Banach space and € > 0 is

a real number such that

. 1 k k LA
khm 71 7”{(3) m 217 (3)TVLZ2, (3)mZ3} =0,
=00

and

1 1

1 i 1 1
n{(3) a1 B)m a2, B)mzs} < gum{a, 22,2}, 9 < L
Assume that s : M — Z fulfills

[Mys(z1, 22, 23)|| < €,

for all z1,29,23 € M. Then there is a unique reciprocal mapping R : M — Z, defined by

. s(@)m =)
R(z) = limy_yoo =%, such that
3k

forall ze M.

Proof. Assume that n(z1, 22, 23) = € for all z1, 29, z3 € Z. Then Corollary implies

pe
IR() - s()] < &

for all 2 € Z and p # 0,+1 and making use of Corollary we get

3e
IRE) - ()] < 5

forall z € Z. O

Corollary 5.6. If s : M — X fulfills the following inequality, for a linear space M and a Banach

space Z, respectively,

[Mys(z1, 22, 28) | < € (2]l + 22l + llzs]®)
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for all z1,29,23 € M with 0 < u < —m or u > —m for some € > 0. Then there is a reciprocal

k
sl (3)m z
mapping R : M — Z, defined by R(z) = limy_, o %)) such that
3k
¢ u
[R(2) — s(2)]| < I2||“, Vze M.

m+tu
— m

Proof. If we choose 7(z1, 22, 23) = €(||z1[[* + ||22]|“ + || 23]*), then Corollary |4.2|implies

e w
[R(2) —s(2)|| < WH'ZH ;

for all z € Z and u < —m. Using Corollary we obtain

IR(2) — ()| <

— m+u

3m —1

21"
for all z € Z and u > —m. O

The following is an example to elucidate (2.4), which is not stable for « = —m in Corollary
0.0l

Ezxample 5.7. Define ¢ : R — R with @ > 0 as

qb(z):{ S, if z € (1,00)

a , otherwise

and a function s : R — R by s(z) = > 72, M?%’]ZZ) Then s fulfills

a3?m(4) y (

1
| Mys(21, 22, 23)|| < 3(3m —1)

m
21

1

m
Z9

1

m
Z3

)

for all z1, 22, 23 € R. In that case, there does not exist a reciprocal mapping R : R — R such that

15(2) — R(2)| Sﬁ‘;n ,8>0,YzeR

Corollary 5.8. Assume s: Z1 — Zo is a mapping. Assume that there exists ¢ > 0 such that
|Mys(z1, 22, 28) | < e (0¥ 120l 125117

for all z1, 29,23 € Zy. Then there exists a unique reciprocal mapping R : Z1 — Zso fulfilling

and
3¢ u B
[r(2) —s(2)|| < 1-37" 2] foru<—m
B 3e ”
thllzn foru> —m
m —

forall z € Zy.
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Proof. Replace n(z1, 22, 23) by € (HZ1H%HZ2H%H2’3H%> Then Corollaryimplies

3e

m4u
— m

[1R(2) = s(2)|| < =11,

for u < —m and for all z € Z; and making use of Corollary [5.4] we get

3e
IR(2) = s(2)|| <z l=11%,

3 m —1
for u > —m and for all z € Z;.

0

Corollary 5.9. Let € > 0 and o < —§ or a > —% be real numbers, and s : Zy — Z3 be a

mapping satisfying the functional inequality

1Ms(21, 22, 28) || < € {llzl® + [zl + sl + (L2l llz2]*[l23]1%) } -

Then there exists a unique reciprocal mapping R : Z1 — Zy fulfilling and

12¢

1)~ s(2)] < 4 13

— e l21P fora < -2
m

WHZHM fora> -2
35w —1

for all z € Z3.

Proof. Replace n(z1, 22, 23) by 6{H21H3°‘+|!22H3“+HZsH?’aJr(||21H°‘H22H°“H23Ha) } Then Corollary

implies
12¢

[1R(2) — s(2)]| < oz 121

for < —* and for all z € Z; and making use of Corollary we get

12¢
[R(2) — s(2)]| < WHZHBQ,

for a > —% and for all z € Z.

g

The following is an example to elucidate (2.4)), which is not stable for & = —% in Corollary

0.9

Ezample 5.10. Define ¢ : R — R with a constant [ > 0 as

L ifz o0
¢<z>—{z’”’ e e ()

[, otherwise

and a function s : R — R by s(z) = > pey 962 Then s fulfills

3mk
a32m(4) 1 1 !
M =3 -\ Tl T
H 18(2’1,2’2,2'3)” = 3(3m _ 1) x ( Z{n + 2’5" - Zi?’)n

70

1

m
2]

1

m
22

1

m
Z3

)
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for all z1, 22, 23 € R. In that case, there does not exist a reciprocal mapping R : R — R such that

15(2) — R(2)| Sﬁ\;n ,8>0,VzER

6. CONCLUSION

In this work, we introduced the new generalized multifarious type radical reciprocal functional

equations combining three classical Pythagorean means arithmetic, geometric and harmonic.

Importantly, we obtained their general solution and stabilities related to Ulam problem with

suitable counter examples in modular spaces by using fixed point approach. Furthermore, we

illustrated their geometrical interpretation.
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