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ABSTRACT

In this paper we study various results of invariant submanifolds of generalized Sasakian-space-forms.
Here we search the necessary and sufficient condition for invariant submanifolds of generalized Sasakian-
space-forms to be totally geodesic satisfyingQ(o,R) =0,Q(S,0) =0,,Q(5,C) =0,Q(c,C) =0 and
Q(a, ¢ ) =0 where R,S,C,C,C and o are curvature tensor, Riccitensor,concircular curvature
tensor,conformal curvature tensor, conharmonic curvature tensor and the second fundamental form
respectively.
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1. INTRODUCTION

In [2] Alegre, Blair and Carriazointroduced the concept of generalized Sasakian-space-forms, providing
examples and establishing foundational properties. They demonstrated that any generalized Sasakian-
space-form endowed with a K-contact structure is necessarily a Sasakian manifold and, in dimensions
greater than five, it is also a Sasakian-space-form. Additionally, they explored the conditions under which
a generalized Sasakian-space-form may be a contact metric manifold, presenting more intricate examples
of generalized Sasakian-space-forms characterized by non-constant structure functions.

In differential geometry the curvature tensor plays an important role in and the sectional curvatures of a
manifold determine the curvature tensor R completely. A Riemannian manifold consists with sectional
curvature tensor c is defined as a real-space-form and its curvature tensor R satisfies the following
condition

RX,Y)Z =c{g(Y,Z2)X — g(X,Z)Y}. (1.1)
These spaces are the Euclidean spaces, the spheres and the hyperbolic spaces according as ¢ = 0,¢ >
Oandc < 0.

R(X,Y)Z =

W, DX — gX, DY} + = {g(X, $2)BY — g(¥, Z)PX + 29 (X, $Y)$Z} + = (n(X)n(2)Y —
n(Yn2)X + g(X,Z)n(¥)§ — g(¥, Z)n(X)é} (1.2)

RX,YV)Z = filg(Y,2)X — g(X,2)Y} + fo{g(X, Z)pY — g(Y, pZ)pX + 29 (X, pY)PZ} + f3{n(XIn(2)Y —
nMn@2)X + gX,Z)n(¥)é — g(¥,Z)n(X)&} (1.3)

for all vector fields X, Y, Z on M, where R is the curvature tensor of M and such a manifold of dimension
(2n + 1),n > 1 (the condition n > 1 is assumed throughout the paper), is denoted by M2"*1 (fl_ fzfg).

The authors in[24] investigated doubly warped product manifolds and derived a general inequality for
such manifolds when they are isometrically immersed in arbitrary Riemannian manifolds. Several
applications of this inequality were also obtained.In [7] the authorsderived a sharp inequality relating the
squared norm of the second fundamental form to the warping function for contact CR-warped products in
isometrically immersed cosymplectic space forms. They also examined the equality case and explored
various applications of the result.The authorsin [25] derived relationships between the totally real
sectional curvature and the scalar curvature for invariant submanifolds of a generalized Sasakian-space-
form.In [19] the authors investigated the necessary and sufficient conditions for a submanifold, tangent to
the structure vector field § of a Sasakian manifold, to qualify as a contact CR submanifold. They also
examined the integrability conditions of the distributions that define the contact CR structure of these
submanifolds. Additionally, they explored contact CR submanifolds of a Sasakian manifold with flat
normal connections and minimal contact CR submanifolds within a Sasakian manifold.The authorsin [4]
examined submanifolds of a generalized Sasakian-space-form by characterizing invariant and anti-
invariant submanifolds through the action of the curvature tensor. For an almost semi-invariant
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submanifold of a generalized Sasakian-space-form, they introduced the concepts of Dy-sectional curvature
and (Dj,D,)-sectional curvature. Additionally, they derived results concerning the Ricci tensor, the scalar
curvature, and totally umbilical submanifolds. In [5] the authors investigated Trans-Sasakian manifolds
through D-conformal deformations. They analyzed the curvature tensor of a generalized Sasakian-space-
form following a D-conformal deformation and derived conditions for the resulting manifold to qualify as
a new generalized Sasakian-space-form. They also provided examples illustrating these conditions.The
authors in [8] explored the differential geometric theory of submanifolds immersed in a Kenmotsu
manifold. They derived new integrability conditions for the distributions defining contact CR-
submanifolds and established characterizations for when the induced structure is parallel.

In [18] the authorsinvestigated W,-flat generalized Sasakian-space-forms and derived a necessary and
sufficient condition for a generalized Sasakian-space-form to be W;-flat. They also examined generalized
Sasakian-space-forms satisfying the condition W,.S=0 and studied W;-semisymmetric generalized
Sasakian-space-forms. They showed that if a generalized Sasakian-space-form satisfies W>.R=0, then
either the manifold is W»-flat, or the curvature tensor R of the manifold satisfies a specific condition.The
authors in[10] explored the pseudo-symmetry properties of Sasakian-space-forms.In [6] the authors
derived the necessary and sufficient conditions for a contact CR-submanifold to be classified as a CR-
product, D-geodesic, and D+-geodesic. They further analyzed the properties of contact CR-products and
totally umbilical contact CR-submanifolds (CR-products) within the context of a Kenmotsu space form.
The authors in [14] explored the geometry of distributions for semi-slant submanifolds in («, 8) trans-
Sasakian manifolds, examining cohomology groups and Bott connection-related forms. They investigated
variational problems for slant submanifolds in generalized Sasakian-space-forms and derived conditions
under which the first normal Chern class of integral submanifolds is trivial.

In dimensions =5, the authors in [3] proved that the space must be a Sasakian manifold with constant
functions f; f f3. For 3D manifolds, they derived the curvature tensor for non-Sasakian contact metric
generalized Sasakian-space-forms and studied trans-Sasakian generalized Sasakian-space-forms, showing
that any 3D (a, B)trans-Sasakian manifold is a generalized Sasakian-space-form. M. M. Tripathi and et al.
[1] initiated the new type of curvature tensor called t-curvature tensor. Nagaraja and Somashekhara [30]
studied t-curvature tensor in (k, pt)-contact manifold.

This paper is organized as follows: Section 2 covers preliminaries on Generalized Sasakian-Space-Forms
and curvature tensors. Section 3 discusses invariant submanifolds. The main results are presented in
Sections 4 through 8.

2.Preliminaries

A(2n + 1)and n > 1-dimensional Riemannian manifold M is called almost contact metric manifold [11], if
there exists on M2"*1(f,, f5, f3) a (1, 1) tensor field ¢, a vector field ¢ (called the structure vector field)
and a 1-formn such that

¢2(X) =-X+ TI(X)SC' ¢€ = 01 (21)
n(§) =1,9X,8) =n),n(@X) =0, (2.2)
9(@X,9Y) = g(X,Y) —n(Xn(Y), (2.3)
(Vxm(¥) = g(Vxé, Y). (2.5)
From (1.3) we have in a generalized Sasakian-space-form M?"*1(f,, f,, f3) and (n > 1)[2]:
(Vxd)¥) = (fi — DIgX, V)§ —n(¥)X], (2.6)
Vi == = )X

(2.7)
QX = (2nfy +3f, = )X — 3fs + @n = DfsInXn®), (2.8)
SX,Y) = @2nf1 +3f, — 29X, Y) — 3f; + 2n— 1) f3n(X)n(Y), (2.9)
r=2n(2n+ 1)f; + 6nf, — 4nfs, (2.10)
RX,Y)¢ = (fi — )In(MX —nCOY}, (2.11)
RE, XY = (fi — gX, Y)§ —n(N)X}, (2.12)
n(R(X,1)Z) = (f; — f){g(¥, n(X) — g(X, (¥}, (2.13)
SX,8) = 2n(f1 — f:)nX),

(2.14)
S8 =2n(f1 — f3) (2.15)
Q¢ =2n(f1 — f3)§

(2.16)
COVE = [(h = ) = 5| X =m0 (217)

1
(2n-1)

r

CHIE=[Ch—f) - | X = neOY1 - ——=mmex -neney]  (218)

2n(2n+1)
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~ _ r=2n(fi—f3) _ __1
CXYE == oy DX =n()Y] =

m(Y)QX —n(X)QY] (2.19)

3.Some important results of invariant submanifold of generalized sasakian-space-forms

Let N be a submanifoldof a generalized Sasakian-space-form M?**1(f,, f5, f5).

Also let V and V* be the induced connections on the tangent bundle TN and the normal bundle T*N of N
respectively. Then the Gauss-Weingarten formulae are given by

Vy¥ = Vi +0(X,Y) (3.1)
(3.2)

for all X,Y €I (TN) and V € I'(T1N), whereV* is the connection in the normal bundle,c and A4, are
second fundamental form and the shape operator (corresponding to the normal vector field V)
respectively for the immersion of N into M?"*1 (fly fz‘f3). The second fundamental form ¢ and the shape
operator Ay, are related byg(c(X,Y),V) = g(4yX,Y). N is called a totally geodesic submanifold if &
vanishes identically.
o(X,8=0

(3.3)

4. Invariant submanifold of generalized sasakian-space-forms satisfying Q(o,R) = 0

This section presents the necessary and sufficient condition for invariant submanifolds of generalized
Sasakian space forms to be totally geodesic under the condition thatQ (s, R) = 0.

Theorem 4.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M.Then N is
totally geodesic if and only if N satisfiesQ (o, R) = 0, provided that(1 — 2n)(f; — f3) # 0.

Proof. Let N be an invariant submanifold of a generalized Sasakian-space-formsM satisfying Q(a,R) = 0.
Therefore

0=Q(o,R) =Q(o,RA)X,Y,Z; U, V) = ((UN; V).R)(X,Y)Z = —R((U A V)X, Y)Z —RX,(UAN, VV)Z —

RX,Y)(U A, V)Z (4.1)
Where U A, V is defined by
UnAV)P=0(V,P)U—-0(U,P)V (4.2)

Using (4.2) in (4.1) we get
—o(V,X)R(U,Y)Z+o(U,X)RWV,Y)Z —a(V,Y)R(X,U)Z + (U, Y)R(X,V)Z —a(V,Z)R(X,Y)U +

o(U,2)RX,Y)V =0. (4.3)

Putting Z = V = £ in (4.3) and using (3.3), we get

o(U,X)R(EY)E+a(U,Y)R(X,E)E=0 (4.4)
Using (2.12) in (4.4) we obtain

a(U,X)(fi = f)n(¥)E =Y} +a(U,Y)(fi = )X —n(X)$} =0 (4-5)

Taking inner product with W, we get

o(U,X)(fi = LYInWnW) —g(¥, W)} + o (U, Y)(fi — f){gX, W) —n(X)n(W)} = 0(4.6)

Contracting Y and W we get

oU,X )1 —2n)(f — f3) =0 (4.7)

Hence o(U,X) = 0, provided

1-2n)(fi — f3) # 0.

Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the
theorem is proved.

5. Invariant submanifold of generalized sasakian-space-forms satisfying Q(S,0) =0

This section presents the necessary and sufficient condition for invariant submanifolds of generalized
Sasakian space forms to be totally geodesic under the condition thatQ(S, o) = 0.

Theorem 5.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is
totally geodesic if and only if N satisfiesQ (S, ) = 0, provided that2n(f; — f3) # 0.

Proof. Let N be an invariant submanifold of a generalized Sasakian-space-forms M satisfying Q(S, o) = 0.
Therefore

0=20Q(S5,0)=Q(S,0)X,Y;U, V)= (UAs V).o)X,Y) = —a((UAs V)X, Y) — (X, (U A V)Y)

(5.1)
Using (4.2) in (5.1) we get
-SW,X)eU,Y)+SWU,X)o(V,Y)-SWV,Y)oX,U)+SWU,Y)ao(X,V)=0 (5.2)
Putting Y = U = € in (5.2) and using (3.3) and (2.15) we get
2n(fi = f3)o(X,V) =0 (5-3)
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Hence o(U,X) = 0, provided

2n(fi — f3) # 0.

Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the
theorem is proved.

6. Invariant submanifold of generalized sasakian-space-forms satisfying Q(a,C) =0

This section presents the necessary and sufficient condition for invariant submanifolds of generalized
Sasakian space forms to be totally geodesic under the condition thatQ (o, C) = 0.

Theorem 6.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is
totally geodesic if and only if N satisfiesQ (o, C) = 0, provided that(1 — 2n)[(f; — f3) — 2n(2n+1)] *#0

Proof. Let N be an invariant submanifold of a generalized Sasakian-space-formsM satisfying Q(o, C) = 0.
Therefore

0=0Q(5,0)=Q(0,C)X,Y,Z; U V) = (U, V).OYX,Y)Z = —C((U A VX, Y)Z —CX,(UN,VY)Z —
CX,Y)UA,V)Z (6.1)

Using (4.2) in (6.1) we get

—o(V,X)CWU,Y)Z+0o(U,X)CV,Y)ZI -0V, Y)CX,U)Z+0U,Y)CX,V)Z—-0(V,Z)CX,Y)U +

o(U,2)CX, V)V =0 (6.2)

Putting Z = V = £ in (6.2) and using (3.3), we get

o(U,X)C(EY)E+a(U,YV)C(X,E)E=0 (6.3)
Using (2.17) in (6.3) we obtain

o(U,X) [(f1 -f)- m] VIO

+o(U) (i = f5) = grmsmy) & =008} = 0 (6.4)
Taking inner product with W, we get

oW )| = ) = grzn 5] HOMW) = 9 W)}

+oWUN|(h = ) = rgmm] W W) =n@OnW)} = 0 (6.5)

Contracting Y and W we get

oU,X)(1 - 2m) [(fi = f3) —

Hence (U, X) = 0, provided
r

(1-2n) [(ﬁ —f3) —m] #0

Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the
theorem is proved.

2n(2n+1)] =0 (66)

7. Invariant submanifold of generalized sasakian-space-forms satisfying Q(o,C) = 0

This section presents the necessary and sufficient condition for invariant submanifolds of generalized
Sasakian space forms to be totally geodesic under the condition thatQ (g, C) = 0.

Theorem 7.1.Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is
totally geodesic if and only if N satisfiesQ (g, C) = 0, provided that(2n — 1)[(2n + 1)f; + 3f; — 2f3] # 0.
Proof. Let N be an invariant submanifold of a generalized Sasakian-space-forms N Q(a, C) = 0.Therefore
0=20Q(s, O) =Q(0, OOX,Y,Z;U, V) = (U, V).OYX,Y)Z = =C((U N, V)X, Y)Z — C(X,(U A, VIY)Z —
CX,VNWUANVZ (7.1)

Using (4.2) in (7.1) we get

—o(V,X)CWU,Y)Z+a(U,X)CV,Y)Z-0a(V,Y)CX,U)Z +0o(U,Y)C(X,V)Z —0a(V,Z)C(X,Y)U +

a(U,Z2)CX,Y)V =0 (7.2)
Putting Z = V = £ in (7.2) and using (3.3), we get
a(U,X)C(E,Y)§+a(U,)CX,E)E=0 (7.3)
Using (2.18) in (7.3) we obtain
(s -A)
o(U,X) [(2 —5mE -V} - ){Zn(fl IALIGIE QY}]

+o(U,V) [EL X - (08} - 550X = 2n(fi — fn(0EY = 0 (7.4)

Taking inner product with W, we get
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o, x) [L — fm@mW) - g(Qv,w)}| +
oW, & f”{g(x W) =X} - o {g(ox W) = 2n(f; = LX)} = 0

(7.5)
Contracting Y and W and using (2.8) we get
o(U,X)2n - D[@2n+ 1f, +3f, — 2f;] = 0. (7.6)
Hence o(U,X) = 0, provided
Cn—-1D[2n+1)f; +3f, —2f;] # 0.
Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the
theorem is proved.

8. Invariant submanifold of generalized sasakian-space-forms satisfying Q( o, E) =0

This section presents the necessary and sufficient condition for invariant submanifolds of generalized
Sasakian space forms to be totally geodesic under the condition thatQ(cr, (f) =0.

Theorem 8.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is
totally geodesic if and only if N satisfiesQ(a, C) = 0, provided thatr # 2n[(2n + 1)f; + 3f; — 2f5].

Proof. Let N be an invariant submanifold of generalized Sasakian-space-formsM satisfying Q(O‘, 5) =0.
Therefore

0=0(0,C)=0Q(c,C)X,Y,Z; U, V) = (U V).OYX,Y)Z = =C((U A, VX, Y)Z = C(X, (U A, VIV)Z —
CX,Y)(U A, V)Z (8.1)

Using (4.2) in (8.1) we get

—o(V,X)CWU,Y)Z+o(U,X)CWV,Y)Z-a(V,Y)CX,U)Z + a(U,Y)CX,V)Z—0a(V,Z)C(X,Y)U +

a(U,Z)CX,Y)V =0 (8.2)
Putting Z = V = £ in (8.2) and using (3.3), we get
o(U,X)C(E, V)¢ + (U, V)CEX,§E =0 (8.3)

Using (2.19) in (8.3) we obtain

r=2n(f1—f3)
U(U X)[ 2n(2n—1) ()¢ - Y}_(Zn -1

5 10X = 2n(fy = fn(0EY| = 0 (8:4)
Taking inner product with W, we get

o(U, )[%{n(Y)n(W)—g(Y,W)}—(Zn ={2n(f; = fN(MW) - g (@Y, W)}| +

oW, 1) [SoaB2 (g (X, W) = n(OmW)} = 25 9 (@X, W) = 2n(fy = FIn(XInW)}| = 0
(8.5)

@n(f = fINE = Qv + o, V) [SELL ix — n(x)e) -

2n(2n-1)

Contracting Y and W and using (2.8) we get

o(U,X)[r —2n{2n + 1)f, + 3, — 2f;}] = 0. (8.6)

Hence (U, X) = 0, provided

r# 2n[(2n+ 1)f; + 3f;, — 2f3].

Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the
theorem is proved.
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