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ABSTRACT 
In this paper we study various results of invariant submanifolds of generalized Sasakian-space-forms. 
Here we search the necessary and sufficient condition for invariant submanifolds of generalized Sasakian-
space-forms to be totally geodesic satisfying𝑄 𝜎, 𝑅 = 0, 𝑄 𝑆, 𝜎 = 0, , 𝑄 𝜎, 𝐶 = 0, 𝑄 𝜎, 𝐶  = 0 and 

𝑄 𝜎, 𝐶  = 0 where 𝑅, 𝑆, 𝐶, 𝐶, 𝐶  and 𝜎 are curvature tensor, Riccitensor,concircular curvature 

tensor,conformal curvature tensor, conharmonic curvature tensor and the second fundamental form 
respectively. 
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1. INTRODUCTION  
In [2] Alegre, Blair and Carriazointroduced the concept of generalized Sasakian-space-forms, providing 
examples and establishing foundational properties. They demonstrated that any generalized Sasakian-
space-form endowed with a K-contact structure is necessarily a Sasakian manifold and, in dimensions 
greater than five, it is also a Sasakian-space-form. Additionally, they explored the conditions under which 
a generalized Sasakian-space-form may be a contact metric manifold, presenting more intricate examples 
of generalized Sasakian-space-forms characterized by non-constant structure functions. 
In differential geometry the curvature tensor plays an important role in and the sectional curvatures of a 
manifold  determine the curvature tensor R completely. A Riemannian manifold consists with sectional 
curvature tensor c is defined as a real-space-form and its curvature tensor R satisfies the following 
condition 
𝑅 𝑋, 𝑌 𝑍 = 𝑐 𝑔 𝑌, 𝑍 𝑋 − 𝑔 𝑋, 𝑍 𝑌 .          (1.1) 
These spaces are the Euclidean spaces, the spheres and the hyperbolic spaces according as 𝑐 = 0, 𝑐 >
0 and 𝑐 < 0. 
𝑅 𝑋, 𝑌 𝑍 =
𝑐+3

4
 𝑔 𝑌, 𝑍 𝑋 − 𝑔 𝑋, 𝑍 𝑌 +

𝑐−1

4
 𝑔 𝑋, 𝜙𝑍 𝜙𝑌 − 𝑔 𝑌, 𝜙𝑍 𝜙𝑋 + 2𝑔 𝑋, 𝜙𝑌 𝜙𝑍 +

𝑐−1

4
 𝜂 𝑋 𝜂 𝑍 𝑌 −

𝜂 𝑌 𝜂 𝑍 𝑋 + 𝑔 𝑋, 𝑍 𝜂 𝑌 𝜉 − 𝑔 𝑌, 𝑍 𝜂 𝑋 𝜉 .                   (1.2) 
𝑅 𝑋, 𝑌 𝑍 = 𝑓1 𝑔 𝑌, 𝑍 𝑋 − 𝑔 𝑋, 𝑍 𝑌 + 𝑓2 𝑔 𝑋, 𝜙𝑍 𝜙𝑌 − 𝑔 𝑌, 𝜙𝑍 𝜙𝑋 + 2𝑔 𝑋, 𝜙𝑌 𝜙𝑍 + 𝑓3{𝜂 𝑋 𝜂 𝑍 𝑌 −
𝜂 𝑌 𝜂 𝑍 𝑋 + 𝑔 𝑋, 𝑍 𝜂 𝑌 𝜉 − 𝑔 𝑌, 𝑍 𝜂 𝑋 𝜉}        (1.3) 
for all vector fields X, Y, Z on M, where R is the curvature tensor of M and such a manifold of dimension 
 2𝑛 + 1 , 𝑛 > 1 (the condition 𝑛 > 1 is assumed throughout the paper), is denoted by 𝑀2𝑛+1 𝑓1, 𝑓2,𝑓3 . 

The authors in[24] investigated doubly warped product manifolds and derived a general inequality for 
such manifolds when they are isometrically immersed in arbitrary Riemannian manifolds. Several 
applications of this inequality were also obtained.In [7] the authorsderived a sharp inequality relating the 
squared norm of the second fundamental form to the warping function for contact CR-warped products in 
isometrically immersed cosymplectic space forms. They also examined the equality case and explored 
various applications of the result.The authorsin [25] derived relationships between the totally real 
sectional curvature and the scalar curvature for invariant submanifolds of a generalized Sasakian-space-
form.In [19] the authors investigated the necessary and sufficient conditions for a submanifold, tangent to 
the structure vector field ξ of a Sasakian manifold, to qualify as a contact CR submanifold. They also 
examined the integrability conditions of the distributions that define the contact CR structure of these 
submanifolds. Additionally, they explored contact CR submanifolds of a Sasakian manifold with flat 
normal connections and minimal contact CR submanifolds within a Sasakian manifold.The authorsin [4] 
examined submanifolds of a generalized Sasakian-space-form by characterizing invariant and anti-
invariant submanifolds through the action of the curvature tensor. For an almost semi-invariant 

mailto:dbmsagarika@gmail.com


Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 2, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                706                                                         Sagarika Nandy et al 705-710 

submanifold of a generalized Sasakian-space-form, they introduced the concepts of Dλ-sectional curvature 
and (Dλ,Dμ)-sectional curvature. Additionally, they derived results concerning the Ricci tensor, the scalar 
curvature, and totally umbilical submanifolds. In [5] the authors investigated Trans-Sasakian manifolds 
through D-conformal deformations. They analyzed the curvature tensor of a generalized Sasakian-space-
form following a D-conformal deformation and derived conditions for the resulting manifold to qualify as 
a new generalized Sasakian-space-form. They also provided examples illustrating these conditions.The 
authors in [8] explored the differential geometric theory of submanifolds immersed in a Kenmotsu 
manifold. They derived new integrability conditions for the distributions defining contact CR-
submanifolds and established characterizations for when the induced structure is parallel. 
In [18] the authorsinvestigated 𝑊2-flat generalized Sasakian-space-forms and derived a necessary and 
sufficient condition for a generalized Sasakian-space-form to be 𝑊2-flat. They also examined generalized 
Sasakian-space-forms satisfying the condition 𝑊2.S=0 and studied 𝑊2-semisymmetric generalized 
Sasakian-space-forms. They showed that if a generalized Sasakian-space-form satisfies 𝑊2.R=0, then 
either the manifold is 𝑊2-flat, or the curvature tensor R of the manifold satisfies a specific condition.The 
authors in[10] explored the pseudo-symmetry properties of Sasakian-space-forms.In [6] the authors 
derived the necessary and sufficient conditions for a contact CR-submanifold to be classified as a CR-
product, D-geodesic, and D⊥-geodesic. They further analyzed the properties of contact CR-products and 
totally umbilical contact CR-submanifolds (CR-products) within the context of a Kenmotsu space form. 
The authors in [14] explored the geometry of distributions for semi-slant submanifolds in  𝛼, 𝛽  trans-
Sasakian manifolds, examining cohomology groups and Bott connection-related forms. They investigated 
variational problems for slant submanifolds in generalized Sasakian-space-forms and derived conditions 
under which the first normal Chern class of integral submanifolds is trivial. 
In dimensions ≥5, the authors in [3] proved that the space must be a Sasakian manifold with constant 
functions 𝑓1,𝑓2,𝑓3. For 3D manifolds, they derived the curvature tensor for non-Sasakian contact metric 

generalized Sasakian-space-forms and studied trans-Sasakian generalized Sasakian-space-forms, showing 
that any 3D  𝛼, 𝛽 trans-Sasakian manifold is a generalized Sasakian-space-form. M. M. Tripathi and et al. 
[1] initiated the new type of curvature tensor called τ-curvature tensor. Nagaraja and Somashekhara [30] 
studied τ–curvature tensor in (k, µ)-contact manifold. 
This paper is organized as follows: Section 2 covers preliminaries on Generalized Sasakian-Space-Forms 
and curvature tensors. Section 3 discusses invariant submanifolds. The main results are presented in 
Sections 4 through 8. 
 
2.Preliminaries  
A 2𝑛 + 1 and  𝑛 > 1-dimensional Riemannian manifold M is called almost contact metric manifold [11], if 
there exists on 𝑀2𝑛+1(𝑓1 , 𝑓2, 𝑓3) a (1, 1) tensor field 𝜙, a vector field 𝜉 (called the structure vector field) 
and a 1-form𝜂 such that 
𝜙2 𝑋 = −𝑋 + 𝜂 𝑋 𝜉, 𝜙𝜉 = 0,        (2.1) 
𝜂 𝜉 = 1, 𝑔 𝑋, 𝜉 = 𝜂 𝑋 , 𝜂 𝜙𝑋 = 0,       (2.2) 
𝑔 𝜙𝑋, 𝜙𝑌 = 𝑔 𝑋, 𝑌 − 𝜂 𝑋 𝜂 𝑌 ,        (2.3) 
𝑔 𝜙𝑋, 𝑌 = −𝑔 𝑋, 𝜙𝑌 ,         (2.4) 
(∇𝑋𝜂) 𝑌 = 𝑔 ∇𝑋𝜉, 𝑌 .         (2.5) 
From (1.3) we have in a generalized Sasakian-space-form 𝑀2𝑛+1(𝑓1, 𝑓2, 𝑓3) and (𝑛 > 1)[2]: 
 ∇𝑋ϕ  𝑌 =  𝑓1 − 𝑓3  𝑔 𝑋, 𝑌 𝜉 − 𝜂 𝑌 𝑋 ,       (2.6) 
∇𝑋𝜉 = −(𝑓1 − 𝑓3)𝜙𝑋         
 (2.7) 
𝑄𝑋 =  2𝑛𝑓1 + 3𝑓2 − 𝑓3 𝑋 −  3𝑓2 +  2𝑛 − 1 𝑓3 𝜂 𝑋 𝜂 𝑌 ,    (2.8) 
𝑆 𝑋, 𝑌 =  2𝑛𝑓1 + 3𝑓2 − 𝑓3 𝑔 𝑋, 𝑌 −  3𝑓2 +  2𝑛 − 1 𝑓3 𝜂 𝑋 𝜂 𝑌 ,   (2.9) 
𝑟 = 2𝑛 2𝑛 + 1 𝑓1 + 6𝑛𝑓2 − 4𝑛𝑓3,       (2.10) 
𝑅 𝑋, 𝑌 𝜉 =  𝑓1 − 𝑓3  𝜂 𝑌 𝑋 − 𝜂 𝑋 𝑌 ,       (2.11) 
𝑅 𝜉, 𝑋 𝑌 =  𝑓1 − 𝑓3  𝑔(𝑋, 𝑌)𝜉 − 𝜂 𝑌 𝑋 ,       (2.12) 
𝜂 𝑅 𝑋, 𝑌 𝑍 =  𝑓1 − 𝑓3  𝑔 𝑌, 𝑍 𝜂 𝑋 − 𝑔 𝑋, 𝑍 𝜂 𝑌  ,     (2.13) 
𝑆 𝑋, 𝜉 = 2𝑛 𝑓1 − 𝑓3 𝜂 𝑋 ,        
 (2.14) 
𝑆 𝜉, 𝜉 = 2𝑛 𝑓1 − 𝑓3          (2.15) 
𝑄𝜉 = 2𝑛 𝑓1 − 𝑓3 𝜉         
 (2.16) 

𝐶 𝑋, 𝑌 𝜉 =   𝑓1 − 𝑓3 −
𝑟

2𝑛(2𝑛+1)
  𝜂 𝑌 𝑋 − 𝜂 𝑋 𝑌      (2.17) 

𝐶  𝑋, 𝑌 𝜉 =   𝑓1 − 𝑓3 −
𝑟

2𝑛(2𝑛+1)
  𝜂 𝑌 𝑋 − 𝜂 𝑋 𝑌 −

1

(2𝑛−1)
[𝜂 𝑌 𝑄𝑋 − 𝜂 𝑋 𝑄𝑌] (2.18) 
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𝐶  𝑋, 𝑌 𝜉 =
𝑟−2𝑛(𝑓1−𝑓3)

2𝑛(2𝑛−1)
 𝜂 𝑌 𝑋 − 𝜂 𝑋 𝑌 −

1

(2𝑛−1)
[𝜂 𝑌 𝑄𝑋 − 𝜂 𝑋 𝑄𝑌]   (2.19) 

 
3.Some important results of invariant submanifold of generalized sasakian-space-forms 
Let N be a submanifoldof a generalized Sasakian-space-form 𝑀2𝑛+1(𝑓1, 𝑓2, 𝑓3). 
Also let ∇ and ∇⊥  be the induced connections on the tangent bundle 𝑇𝑁 and the normal bundle 𝑇⊥𝑁 of 𝑁 
respectively. Then the Gauss-Weingarten formulae are given by 
∇ 𝑋𝑌 = ∇𝑋𝑌 + 𝜎(𝑋, 𝑌)         (3.1) 
∇ 𝑋𝑉 = −A𝑉𝑋 + ∇𝑋

⊥𝑉         
 (3.2) 
for all 𝑋, 𝑌 ∈ Γ 𝑇𝑁  and 𝑉 ∈ Γ 𝑇⊥𝑁 , where∇⊥  is the connection in the normal bundle,𝜎 and 𝐴𝑉  are 
second fundamental form and the shape operator (corresponding to the normal vector field V) 
respectively for the immersion of N into 𝑀2𝑛+1 𝑓1, 𝑓2,𝑓3 . The second fundamental form 𝜎 and the shape 

operator 𝐴𝑉  are related by𝑔 𝜎 𝑋, 𝑌 , 𝑉 = 𝑔(𝐴𝑉𝑋, 𝑌). N is called a totally geodesic submanifold if 𝜎 
vanishes identically. 
𝜎(𝑋, 𝜉) = 0          
 (3.3) 
 
4. Invariant submanifold of generalized sasakian-space-forms  satisfying 𝑸 𝝈, 𝑹 = 𝟎 
This section presents the necessary and sufficient condition for invariant submanifolds of generalized 
Sasakian space forms to be totally geodesic under the condition that𝑄 𝜎, 𝑅 = 0. 
Theorem 4.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M.Then N is 
totally geodesic if and only if N satisfies𝑄 𝜎, 𝑅 = 0, provided that(1 − 2𝑛)(𝑓1 − 𝑓3) ≠ 0. 
Proof. Let N be an invariant submanifold of a generalized Sasakian-space-formsM satisfying 𝑄 𝜎, 𝑅 = 0. 
Therefore  

0 = 𝑄 𝜎, 𝑅 = 𝑄 𝜎, 𝑅  𝑋, 𝑌, 𝑍; 𝑈, 𝑉 = ( 𝑈 ∧𝜎 𝑉 . 𝑅) 𝑋, 𝑌 𝑍 = −𝑅  𝑈 ∧𝜎 𝑉 𝑋, 𝑌 𝑍 − 𝑅 𝑋,  𝑈 ∧𝜎 𝑉 𝑌 𝑍 −

𝑅 𝑋, 𝑌  𝑈 ∧𝜎 𝑉 𝑍       (4.1) 
Where 𝑈 ∧𝜎 𝑉 is defined by  
 𝑈 ∧𝜎 𝑉 𝑃 = 𝜎 𝑉, 𝑃 𝑈 − 𝜎 𝑈, 𝑃 𝑉    (4.2) 
Using (4.2) in (4.1) we get 
−𝜎 𝑉, 𝑋 𝑅 𝑈, 𝑌 𝑍 + 𝜎 𝑈, 𝑋 𝑅 𝑉, 𝑌 𝑍 − 𝜎 𝑉, 𝑌 𝑅 𝑋, 𝑈 𝑍 + 𝜎 𝑈, 𝑌 𝑅 𝑋, 𝑉 𝑍 − 𝜎 𝑉, 𝑍 𝑅 𝑋, 𝑌 𝑈 +
𝜎 𝑈, 𝑍 𝑅 𝑋, 𝑌 𝑉 = 0.       (4.3) 
Putting 𝑍 = 𝑉 = 𝜉 in (4.3) and using (3.3), we get 
𝜎 𝑈, 𝑋 𝑅 𝜉, 𝑌 𝜉 + 𝜎 𝑈, 𝑌 𝑅 𝑋, 𝜉 𝜉 = 0       (4.4) 
Using (2.12) in (4.4) we obtain 
𝜎 𝑈, 𝑋  𝑓1 − 𝑓3 {𝜂 𝑌 𝜉 − 𝑌} + 𝜎 𝑈, 𝑌  𝑓1 − 𝑓3 {𝑋 − 𝜂 𝑋 𝜉} = 0   (4.5) 
Taking inner product with W, we get 
𝜎 𝑈, 𝑋  𝑓1 − 𝑓3 {𝜂 𝑌 𝜂 𝑊 − 𝑔 𝑌, 𝑊 } + 𝜎 𝑈, 𝑌  𝑓1 − 𝑓3 {𝑔(𝑋, 𝑊) − 𝜂 𝑋 𝜂(𝑊)} = 0(4.6) 
Contracting Y and W we get  
𝜎 𝑈, 𝑋  1 − 2𝑛  𝑓1 − 𝑓3 = 0        (4.7) 
Hence 𝜎 𝑈, 𝑋 = 0, provided 
 1 − 2𝑛  𝑓1 − 𝑓3 ≠ 0.  
Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the 
theorem is proved. 
 
5. Invariant submanifold of generalized sasakian-space-forms  satisfying 𝑸 𝑺, 𝝈 = 𝟎 
This section presents the necessary and sufficient condition for invariant submanifolds of generalized 
Sasakian space forms to be totally geodesic under the condition that𝑄 𝑆, 𝜎 = 0. 
Theorem 5.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is 
totally geodesic if and only if N satisfies𝑄 𝑆, 𝜎 = 0, provided that2𝑛(𝑓1 − 𝑓3) ≠ 0. 
Proof. Let N be an invariant submanifold of a generalized Sasakian-space-forms M satisfying 𝑄 𝑆, 𝜎 = 0. 
Therefore  

0 = 𝑄 𝑆, 𝜎 = 𝑄 𝑆, 𝜎  𝑋, 𝑌; 𝑈, 𝑉 = ( 𝑈 ∧𝑆 𝑉 . 𝜎) 𝑋, 𝑌 = − 𝜎  𝑈 ∧𝑆 𝑉 𝑋, 𝑌 −  𝜎 𝑋,  𝑈 ∧𝑆 𝑉 𝑌  

         (5.1) 
Using (4.2) in (5.1) we get  
−𝑆 𝑉, 𝑋  𝜎 𝑈, 𝑌 + 𝑆 𝑈, 𝑋  𝜎 𝑉, 𝑌 − 𝑆 𝑉, 𝑌  𝜎 𝑋, 𝑈 + 𝑆 𝑈, 𝑌  𝜎 𝑋, 𝑉 = 0  (5.2) 
Putting 𝑌 = 𝑈 = 𝜉 in (5.2) and using (3.3) and (2.15) we get 
2𝑛(𝑓1 − 𝑓3)𝜎(𝑋, 𝑉) = 0         (5.3) 
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Hence 𝜎 𝑈, 𝑋 = 0, provided 
2𝑛(𝑓1 − 𝑓3) ≠ 0. 
Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the 
theorem is proved. 
 
6. Invariant submanifold of generalized sasakian-space-forms  satisfying 𝑸  𝝈, 𝑪 = 𝟎 
This section presents the necessary and sufficient condition for invariant submanifolds of generalized 
Sasakian space forms to be totally geodesic under the condition that𝑄 𝜎, 𝐶 = 0. 
Theorem 6.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is 

totally geodesic if and only if N satisfies𝑄 𝜎, 𝐶 = 0, provided that 1 − 2𝑛 [ 𝑓1 − 𝑓3 −
𝑟

2𝑛 2𝑛+1 
] ≠ 0. 

Proof. Let N be an invariant submanifold of a generalized Sasakian-space-formsM satisfying 𝑄 𝜎, 𝐶 = 0. 
Therefore  

0 = 𝑄 𝜎, 𝐶 = 𝑄 𝜎, 𝐶  𝑋, 𝑌, 𝑍; 𝑈, 𝑉 = ( 𝑈 ∧𝜎 𝑉 . 𝐶) 𝑋, 𝑌 𝑍 = −𝐶  𝑈 ∧𝜎 𝑉 𝑋, 𝑌 𝑍 − 𝐶 𝑋,  𝑈 ∧𝜎 𝑉 𝑌 𝑍 −

𝐶 𝑋, 𝑌  𝑈 ∧𝜎 𝑉 𝑍       (6.1) 
Using (4.2) in (6.1) we get  
−𝜎 𝑉, 𝑋 𝐶 𝑈, 𝑌 𝑍 + 𝜎 𝑈, 𝑋 𝐶 𝑉, 𝑌 𝑍 − 𝜎 𝑉, 𝑌 𝐶 𝑋, 𝑈 𝑍 + 𝜎 𝑈, 𝑌 𝐶 𝑋, 𝑉 𝑍 − 𝜎 𝑉, 𝑍 𝐶 𝑋, 𝑌 𝑈 +
𝜎 𝑈, 𝑍 𝐶 𝑋, 𝑌 𝑉 = 0       (6.2) 
Putting 𝑍 = 𝑉 = 𝜉 in (6.2) and using (3.3), we get 
𝜎 𝑈, 𝑋 𝐶 𝜉, 𝑌 𝜉 + 𝜎 𝑈, 𝑌 𝐶 𝑋, 𝜉 𝜉 = 0       (6.3) 
Using (2.17) in (6.3) we obtain 

𝜎 𝑈, 𝑋   𝑓1 − 𝑓3 −
𝑟

2𝑛 2𝑛 + 1 
  𝜂 𝑌 𝜉 − 𝑌  

+𝜎 𝑈, 𝑌   𝑓1 − 𝑓3 −
𝑟

2𝑛(2𝑛+1)
  𝑋 − 𝜂 𝑋 𝜉 = 0      (6.4) 

Taking inner product with W, we get 

𝜎 𝑈, 𝑋   𝑓1 − 𝑓3 −
𝑟

2𝑛 2𝑛 + 1 
  𝜂 𝑌 𝜂(𝑊) − 𝑔(𝑌, 𝑊)  

+𝜎 𝑈, 𝑌   𝑓1 − 𝑓3 −
𝑟

2𝑛(2𝑛+1)
  𝑔(𝑋, 𝑊) − 𝜂 𝑋 𝜂(𝑊) = 0    (6.5) 

Contracting Y and W we get  

𝜎 𝑈, 𝑋 (1 − 2𝑛)   𝑓1 − 𝑓3 −
𝑟

2𝑛 2𝑛+1 
 = 0.      (6.6) 

Hence 𝜎 𝑈, 𝑋 = 0, provided 

(1 − 2𝑛)   𝑓1 − 𝑓3 −
𝑟

2𝑛 2𝑛 + 1 
 ≠ 0. 

Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the 
theorem is proved. 
 
7. Invariant submanifold of generalized sasakian-space-forms  satisfying 𝑸  𝝈, 𝑪  = 𝟎 
This section presents the necessary and sufficient condition for invariant submanifolds of generalized 
Sasakian space forms to be totally geodesic under the condition that𝑄 𝜎, 𝐶  = 0. 
Theorem 7.1.Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is 
totally geodesic if and only if N satisfies𝑄 𝜎,  𝐶  = 0, provided that 2𝑛 − 1   2𝑛 + 1 𝑓1 + 3𝑓2 − 2𝑓3 ≠ 0. 
Proof. Let N be an invariant submanifold of a generalized Sasakian-space-forms N 𝑄 𝜎, 𝐶  = 0.Therefore  

0 = 𝑄 𝜎, 𝐶  = 𝑄 𝜎, 𝐶   𝑋, 𝑌, 𝑍; 𝑈, 𝑉 = ( 𝑈 ∧𝜎 𝑉 . 𝐶 ) 𝑋, 𝑌 𝑍 = −𝐶   𝑈 ∧𝜎 𝑉 𝑋, 𝑌 𝑍 − 𝐶  𝑋,  𝑈 ∧𝜎 𝑉 𝑌 𝑍 −

𝐶  𝑋, 𝑌  𝑈 ∧𝜎 𝑉 𝑍       (7.1) 
Using (4.2) in (7.1) we get  
−𝜎 𝑉, 𝑋 𝐶  𝑈, 𝑌 𝑍 + 𝜎 𝑈, 𝑋 𝐶  𝑉, 𝑌 𝑍 − 𝜎 𝑉, 𝑌 𝐶  𝑋, 𝑈 𝑍 + 𝜎 𝑈, 𝑌 𝐶  𝑋, 𝑉 𝑍 − 𝜎 𝑉, 𝑍 𝐶  𝑋, 𝑌 𝑈 +
𝜎 𝑈, 𝑍 𝐶  𝑋, 𝑌 𝑉 = 0       (7.2) 
Putting 𝑍 = 𝑉 = 𝜉 in (7.2) and using (3.3), we get 
𝜎 𝑈, 𝑋 𝐶  𝜉, 𝑌 𝜉 + 𝜎 𝑈, 𝑌 𝐶  𝑋, 𝜉 𝜉 = 0       (7.3) 
Using (2.18) in (7.3) we obtain 

𝜎 𝑈, 𝑋  
 𝑓3 − 𝑓1 

 2𝑛 − 1 
 𝜂 𝑌 𝜉 − 𝑌 −

1

 2𝑛 − 1 
 2𝑛 𝑓1 − 𝑓3 𝜂 𝑌 𝜉 − 𝑄𝑌   

+𝜎 𝑈, 𝑌  
 𝑓3−𝑓1 

 2𝑛−1 
 𝑋 − 𝜂 𝑋 𝜉 −

1

 2𝑛−1 
 𝑄𝑋 − 2𝑛 𝑓1 − 𝑓3 𝜂 𝑋 𝜉  = 0   (7.4) 

Taking inner product with W, we get 
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𝜎 𝑈, 𝑋  
 𝑓3−𝑓1 

 2𝑛−1 
 𝜂 𝑌 𝜂(𝑊) − 𝑔(𝑌, 𝑊) −

1

 2𝑛−1 
 2𝑛 𝑓1 − 𝑓3 𝜂 𝑌 𝜂(𝑊) − 𝑔(𝑄𝑌, 𝑊)  +

𝜎 𝑈, 𝑌  
 𝑓3−𝑓1 

 2𝑛−1 
 𝑔(𝑋, 𝑊) − 𝜂 𝑋 𝜂(𝑊) −

1

 2𝑛−1 
 𝑔(𝑄𝑋, 𝑊) − 2𝑛 𝑓1 − 𝑓3 𝜂 𝑋 𝜂(𝑊)  = 0  

           (7.5) 
Contracting Y and W and using (2.8) we get  
𝜎 𝑈, 𝑋  2𝑛 − 1   2𝑛 + 1 𝑓1 + 3𝑓2 − 2𝑓3 = 0.      (7.6) 
Hence 𝜎 𝑈, 𝑋 = 0, provided 

 2𝑛 − 1   2𝑛 + 1 𝑓1 + 3𝑓2 − 2𝑓3 ≠ 0. 
Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the 
theorem is proved. 
 

8. Invariant submanifold of generalized sasakian-space-forms  satisfying 𝑸  𝝈, 𝑪  = 𝟎 

This section presents the necessary and sufficient condition for invariant submanifolds of generalized 

Sasakian space forms to be totally geodesic under the condition that𝑄 𝜎, 𝐶  = 0. 

Theorem 8.1. Let N be an invariant submanifold of a generalized Sasakian-space-forms M. Then N is 

totally geodesic if and only if N satisfies𝑄 𝜎, 𝐶  = 0, provided that𝑟 ≠ 2𝑛  2𝑛 + 1 𝑓1 + 3𝑓2 − 2𝑓3 . 

Proof. Let N be an invariant submanifold of generalized Sasakian-space-formsM satisfying 𝑄 𝜎, 𝐶  = 0. 

Therefore  

0 = 𝑄 𝜎, 𝐶  = 𝑄 𝜎, 𝐶   𝑋, 𝑌, 𝑍; 𝑈, 𝑉 = ( 𝑈 ∧𝜎 𝑉 . 𝐶 ) 𝑋, 𝑌 𝑍 = −𝐶   𝑈 ∧𝜎 𝑉 𝑋, 𝑌 𝑍 − 𝐶  𝑋,  𝑈 ∧𝜎 𝑉 𝑌 𝑍 −

𝐶  𝑋, 𝑌  𝑈 ∧𝜎 𝑉 𝑍       (8.1) 
Using (4.2) in (8.1) we get  
−𝜎 𝑉, 𝑋 𝐶  𝑈, 𝑌 𝑍 + 𝜎 𝑈, 𝑋 𝐶  𝑉, 𝑌 𝑍 − 𝜎 𝑉, 𝑌 𝐶  𝑋, 𝑈 𝑍 + 𝜎 𝑈, 𝑌 𝐶  𝑋, 𝑉 𝑍 − 𝜎 𝑉, 𝑍 𝐶  𝑋, 𝑌 𝑈 +
𝜎 𝑈, 𝑍 𝐶  𝑋, 𝑌 𝑉 = 0       (8.2) 
Putting 𝑍 = 𝑉 = 𝜉 in (8.2) and using (3.3), we get 
𝜎 𝑈, 𝑋 𝐶  𝜉, 𝑌 𝜉 + 𝜎 𝑈, 𝑌 𝐶  𝑋, 𝜉 𝜉 = 0       (8.3) 
Using (2.19) in (8.3) we obtain 

𝜎 𝑈, 𝑋  
𝑟−2𝑛 𝑓1−𝑓3 

2𝑛 2𝑛−1 
 𝜂 𝑌 𝜉 − 𝑌 −

1

 2𝑛−1 
 2𝑛 𝑓1 − 𝑓3 𝜂 𝑌 𝜉 − 𝑄𝑌  + 𝜎 𝑈, 𝑌  

𝑟−2𝑛 𝑓1−𝑓3 

2𝑛 2𝑛−1 
 𝑋 − 𝜂(𝑋)𝜉 −

1

 2𝑛−1 
 𝑄𝑋 − 2𝑛 𝑓1 − 𝑓3 𝜂(𝑋)𝜉  = 0   (8.4) 

Taking inner product with W, we get 

𝜎 𝑈, 𝑋  
𝑟−2𝑛 𝑓1−𝑓3 

2𝑛 2𝑛−1 
 𝜂 𝑌 𝜂(𝑊) − 𝑔(𝑌, 𝑊) −

1

 2𝑛−1 
 2𝑛 𝑓1 − 𝑓3 𝜂 𝑌 𝜂(𝑊) − 𝑔(𝑄𝑌, 𝑊)  +

𝜎 𝑈, 𝑌  
𝑟−2𝑛 𝑓1−𝑓3 

2𝑛 2𝑛−1 
 𝑔(𝑋, 𝑊) − 𝜂(𝑋)𝜂(𝑊) −

1

 2𝑛−1 
 𝑔(𝑄𝑋, 𝑊) − 2𝑛 𝑓1 − 𝑓3 𝜂(𝑋)𝜂(𝑊)  = 0  

          (8.5) 
Contracting Y and W and using (2.8) we get 
𝜎 𝑈, 𝑋  𝑟 − 2𝑛  2𝑛 + 1 𝑓1 + 3𝑓2 − 2𝑓3  = 0.      (8.6) 
Hence 𝜎 𝑈, 𝑋 = 0, provided 
𝑟 ≠ 2𝑛  2𝑛 + 1 𝑓1 + 3𝑓2 − 2𝑓3 . 
Therefore, the manifold is totally geodesic. The converse part of the theorem is trivial. Therefore, the 
theorem is proved. 
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