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Abstract. In this paper, we find solutions and investigate the superstability
bounded by function for the sine functional equation (S) from the approximate

inequality of the Pexider type functional equation:
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Furthermore, the results are extended to Banach algebras. As a consequence,
we obtain the superstability for the exponential functional equations, the hy-

perbolic functional equations, and the jointed Pexider Lobacevski equation.
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1. Introduction

In 1979, Baker et al. [4] announced the superstability as the new concept as
follows: If f satisfies |f(x + y) − f(x)f(y)| ≤ ε for some fixed ε > 0, then either f
is bounded or f satisfies the exponential functional equation

f(x+ y) = f(x)f(y). (E)

D’Alembert, in 1769, introduced the cosine (d’Alembert) functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), (C)

whose superstability was proved on Abelian group by Baker [3] in 1980.
The cosine (d’Alembert) functional equation (C) was generalized to the following:

f(x+ y) + f(x− y) = 2f(x)g(y), (W )

f(x+ y) + f(x− y) = 2g(x)f(y), (K)

in which (W ) is called the Wilson equation, and (K) was raised by Kim [9].
The superstability of the cosine (C), Wilson (W ) and Kim (K) was founded in

Badora [1], Ger [2], Kannappan and Kim [9], Kim [13, 15, 16, 20], and in [5, 7, 22].
In 1983, Cholewa [6] investigated the superstability of the sine functional equation

f
(x+ y

2

)2 − f
(x− y

2

)2
= f(x)f(y) (S)
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under the condition bounded by constant (Hyers sense). His result was improved to
the condition bounded by a function (Gǎvruta’s sense in [8]) in Badora and Ger [2].

Their results were also improved by Kim [11, 12, 14], which are the superstability
of the generalized sine functional equations:

f
(x+ y

2

)2 − f
(x− y

2

)2
= f(x)g(y) (Sfg)

f
(x+ y

2

)2 − f
(x− y

2

)2
= g(x)f(y) (Sgf )

f
(x+ y

2

)2 − f
(x− y

2

)2
= g(x)g(y) (Sgg)

f
(x+ y

2

)2 − f
(x− y

2

)2
= g(x)h(y) (Sgh)

under the condition bounded by a constant or a function.
The aim of this paper is to find solutions and to investigate the superstability

bounded by the function (Gǎvruta sense in [8]) for the sine functional equation (S)
from an approximate inequality of the Pexider type functional equation:

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= h(x)k(y), (Sfghk)

which is represented by the exponential equations, hyperbolic cosine(sine) equations,
and the jointed Pexider Lobacevski equation (PL).

As corollaries, we obtain the superstability bounded by a constant or the function
for the sine functional equation (S) from an approximate inequality of the sine type
functional equations (Sfg), (Sgf ), (Sgg), (Sgh), and the Pexider type functional
equations:
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= h(x)h(y) (Sfghh)

f

(
x+ y

2

)2
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= h(x)g(y) (Sfghg)
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= f(x)g(y) (Sfgfg)
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= g(x)g(y) (Sfggg)

23

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

GWANG HUI KIM 22-36



f

(
x+ y

2

)2

− g

(
x− y

2

)2

= g(x)f(y). (Sfggf )

Furthermore, the obtained results are extended to Banach algebras.
In this paper, let (G,+) be an uniquely 2-divisible Abelian group, C the field of

complex numbers, and G the field of real numbers. f, g, h, k are nonzero functions
and ε is a nonnegative real constant, φ : G → R be a mapping.

2. Creation of the equations and its solution.

The purpose of this chapter is to show the creation and the solution for the
frequently risen function equations dued by the trigonometric function.

Let us recall the trigonometric formula, except for (C), (W ) (K).

sin(x+ y) + cos(x− y) = [sin(x) + cos(x)][sin(y) + cos(y)] implies

f(x+ y) + g(x− y) = [f(x) + g(x)][f(y) + g(y)] = h(x)h(y). (fghh)

cos(x+ y) + sin(x− y) = [cos(x) + sin(x)][cos(y)− sin(y)] implies

f(x+ y) + g(x− y) = [f(x) + g(x)][f(y)− g(y)] = h(x)k(y). (fghk)

sin(x+ y)− sin(x− y) = 2 cos(x) sin(y) implies

f(x+ y)− f(x− y) = 2g(x)f(y). (Tgf )

cos(x+ y)− cos(x− y) = −2 sin(x) sin(y) implies

f(x+ y)− f(x− y) = −2g(x)g(y) = 2g(x)h(y). (Tgh)

cos(x+ y)− sin(x− y) = [cos(x)− sin(x)][cos(y) + sin(y)] implies

f(x+ y)− g(x− y) = [f(x)− g(x)][f(y) + g(y)] = h(x)k(y). (Tfghk)

sin(x+ y)− cos(x− y) = [sin(x)− cos(x)][cos(y)− sin(y)] implies

f(x+ y)− g(x− y) = [f(x)− g(x)][g(y)− f(y)] = h(x)k(y). (Tfghk)

f(x+ y)− f(x− y) = 2f(x)f(y). (T )

Like the cosine and the sine, the above functional equations are also derived
simultaneously by the hyperbolic cosine (sine), exponential equation, and Jensen
equation, as can be seen in the following relations:

cosh(x+ y)± cosh(x− y) = 2 cosh(x) cosh(y)
(
= −2 sinh(x) sinh(y)

)
sinh(x+ y)± sinh(x− y) = 2 sinh(x) cosh(y)

(
= 2 cosh(x) sinh(y)

)
ax+y ± ax−y = 2ax ay±a−y

2 ≈ 2ex ey±e−y

2 = 2ex cosh(y)
(
= 2ex sinh(y)

)
(n(x+ y) + c)± (n(x− y) + c) = 2(nx+ c)

(
= 2n(y)

)
: Jensen equation, for f(x) = nx+ c, g(y) = 1,

where the subtraction corresponds into parentheses ( ).
Since the trigonometric and hyperbolic functions are expressed by an exponential

function as following: sinx = eix−e−ix

2i and sinhx = ex−e−x

2 , respectively, all of the
above functional equations naturally have exponential and hyperbolic functions as
solution.
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Now, let’s bring the quadratic functional equation generated by a product or a
square of the above equations, which is the target of this paper.

It is well known that the sine functional equation (S) is derived as follows:

f
(
x+y
2

)2 − f
(
x−y
2

)2
= sin

(
x+y
2

)2 − sin
(
x−y
2

)2
= sin (x) sin (y) = f(x)f(y).

Eq. (S) has simultaneously an exponential solution as follows :(
1

2i

(
ei

x+y
2 − e−i x+y

2

))2

−
(

1

2i

(
ei

x−y
2 − e−i x−y

2

))2

=

(
eix − e−ix

2i

)(
eiy − e−iy

2i

)
.

Also, simultaneously, (S) is satisfied for the hyperbolic sine function as follows:

f
(
x+y
2

)2 − f
(
x−y
2

)2
= sinh

(
x+y
2

)2 − sinh
(
x−y
2

)2
=
(

1
2

(
e

x+y
2 − e−

x+y
2

))2
−
(

1
2

(
e

x−y
2 − e−

x−y
2

))2
=
(
1
2 (e

x − e−x)
) (

1
2 (e

y − e−y)
)

= sinh(x) sinh(y) = f(x)f(y),

which is added solutions as the hyperbolic sine, exponential function.
Also, the other examples of the Pexider type quadratic functional equations

f(x)f(y) =


(i) f

(
x+y
2

)2 − f
(
x−y
2

)2
(ii) g

(
x+y
2

)2 − g
(
x−y
2

)2
(iii) g

(
x+y
2

)2 − f
(
x−y
2

)2
(iv) −

(
f
(
x+y
2

)2 − g
(
x−y
2

)2)
have solutions to the hyperbolic sine(cosine) as follows:

sinh(x) sinh(y) =


(i) sinh2

(
x+y
2

)
− sinh2

(
x−y
2

)
(ii) cosh2

(
x+y
2

)
− cosh2

(
x−y
2

)
(iii) cosh2

(
x+y
2

)
− sinh2

(
x−y
2

)
(iv) −

(
sinh2

(
x+y
2

)
− cosh2

(
x−y
2

))
.

Next, the Lobacevski equation

f

(
x+ y

2

)2

= f(x)f(y) (L)

is considered to the exponential equation (E) by f
(
x+y
2

)2
=
(
e

x+y
2

)2
= ex+y =

exey = f(x)f(y).
The Lobacevski equation (L) was generalized by Kim [17, 18] Kim and Park [21]

to the Pexider type Lobacevski equations

f

(
x+ y

2

)2

= g(x)h(y), f
(x+ y

n

)m
= g(x)h(y). (PL)
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Hence (Sfghk) and all (S) type equations are also represented as joint of (L) and
(PL) as follows:

f

(
x+ y

m

)m

− g

(
x− y

n

)n

=
(

m
√
p
(
a

x+y
m

))m
−
(

n
√
q
(
a−

x−y
n

))n
= p (ax+y)− q (a−x+y) = (pax − qa−x) ay

= h(x)k(y),

where f(x) = m
√
p(ax), g(x) = n

√
q(a−x), h(x) = pax − qa−x, k(x) = ax.

As a result, the target function equation (Sfghk) has solutions as the trigonomet-
ric, exponential, hyperbolic function, jointed Pexider Lobacevski equation.

In the following, we show examples of solution applied to the trigonometric func-
tion for (Sgg), (Sgh), (Sfghk), (Sfghh). Of course, it is also natural to have the its so-
lutions as exponential function, hyperbolic sine(cosine) function, Pexider Lobacevski
equation. Their description will be skip.

Solution 1. The functions f, g, h : G −→ C satisfy (Sgh) if and only if f, g, h are
solutions with f(x) = cosx, g(x) = sinx, and h(x) = − sinx.

In particular, if the functions f, g : G −→ C satisfy the functional equation (Sgg)
if and only if f, g are solutions with f(x) = cosx and g(x) = i sinx.

Proof. f
(
x+y
2

)2−f
(
x−y
2

)2
= cos

(
x+y
2

)2−cos
(
x−y
2

)2
= − sinx sin y = g(x)h(y). In

particular case, it is established that f
(
x+y
2

)2−f
(
x−y
2

)2
= cos

(
x+y
2

)2−cos
(
x−y
2

)2
=

− sinx sin y = i2 sinx sin y = g(x)g(y). □

Solution 2. The functions f, g, h, k : G −→ C satisfy (Sfghk) if and only if f, g, h, k

are solutions with f(x) = sin(x), g(x) = cos(x), h(x) = (sin2 − cos2)(x), k(x) =
(cos2 − sin2)(x).

Proof. f
(
x+y
2

)2 − g
(
x−y
2

)2
= sin

(
x+y
2

)2 − cos
(
x−y
2

)2
= (sin2 x − cos2 x)(cos2 y −

sin2 y) = h(x)k(y). □

Solution 3. (i) The functions f, g, h : G −→ C satisfy (Sfghh) if and only if f, g, h

are solutions with f(x) = cos(2x), g(x) = sin(2x), h(x) = (cos2 − sin2)(x).
(ii) The functions f, g, h : G −→ C satisfy (Sfghh) if and only if f, g, h are

solutions with f(x) = sin(x), g(x) = cos(x), h(x) = i(sin2 − cos2)(x).

Proof. (i) f
(
x+y
2

)2−g
(
x−y
2

)2
= cos

(
2x+y

2

)2− sin
(
2x−y

2

)2
= cos

(
x+y

)2− sin
(
x−

y
)2

= (cos2 x− sin2 x)(cos2 y − sin2 y) = h(x)h(y).

(ii) f
(
x+y
2

)2 − g
(
x−y
2

)2
= sin

(
x+y
2

)2 − cos
(
x−y
2

)2
= (sin2 x − cos2 x)(cos2 y −

sin2 y) = i2(sin2 x− cos2 x)(sin2 y − cos2 y) = h(x)h(y). □

Remark 1. (i) It is trivial that all 1∼3 have solutions as an exponential functions,
hyperbolic sine (cosine) functions, and Lovachevsky equations.

(ii) The investigation of solutions associated with the generative method for (Sfghk)
can be further extended to that for the Pexider type function equation:

f

(
x+ y

2

)2

+ g

(
x− y

2

)2

= h(x)k(y). (Pfghk)
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3. Superstability of (S) from the approximate inequality of (Sfghk)

We investigate the superstability of the sine functional equation (S) from the
approximate inequality of the Pexider type functional equation (Sfghk) related to
(S). As a corollary, we obtain the superstability of the sine functional equation (S).

Theorem 1. Assume that f, g, h, k : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∣∣∣∣∣ ≤ φ(y) ∀x, y ∈ G, (3.1)

which satisfies one of the cases k(0) = 0, f(x)2 = g(x)2.
Then either h is bounded or k satisfies (S). In addition, if h satisfies (C), k and

h satisfy (Tgf ):= k (x+ y)− k (x− y) = 2h(x)k(y).

Proof. The inequality (3.1) may equivalently be written as

|f (x+ y)
2 − g (x− y)

2 − h(2x)k(2y)| ≤ φ(2y), ∀ x, y ∈ G. (3.2)

Let h be unbounded. Then we can choose a sequence {xn} in G such that

0 ̸= |h(2xn)| → ∞, as n → ∞. (3.3)

Taking x = xn in (3.2), we obtain∣∣∣∣∣f (xn + y)
2 − g (xn − y)

2

h(2xn)
− k(2y)

∣∣∣∣∣ ≤ φ(2y)

|h(2xn)|
,

and so by (3.3), we have

k(2y) = lim
n→∞

f (xn + y)
2 − g (xn − y)

2

h(2xn)
. (3.4)

Using (3.1) we have

2φ(y) ≥

∣∣∣∣∣h(2xn + x)k(y)− f

(
2xn + x+ y

2

)2

+ g

(
2xn + x− y

2

)2
∣∣∣∣∣

+

∣∣∣∣∣h(2xn − x)k(y)− f

(
2xn − x+ y

2

)2

+ g

(
2xn − x− y

2

)2
∣∣∣∣∣

≥ | (h(2xn + x) + h(2xn − x)) k(y)

−

(
f

(
xn +

x+ y

2

)2

− g

(
xn − x+ y

2

)2
)

−

(
f

(
xn +

−x+ y

2

)2

− g

(
xn − −x+ y

2

)2
)∣∣∣∣∣ (3.5)

for all x, y ∈ G and all n ∈ N. Consequently,
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2φ(y)

|h(2xn)|
≥
∣∣∣∣h(2xn + x) + h(2xn − x)

h(2xn)
k(y)

−
f
(
xn + x+y

2

)2 − g
(
xn − x+y

2

)2
h(2xn)

−
f
(
xn + −x+y

2

)2 − g
(
xn − −x+y

2

)2
h(2xn)

∣∣∣∣∣ (3.6)

for all x, y ∈ G and all n ∈ N.
Taking the limit as n −→ ∞ with the use of (3.4) and (3.6), we conclude that,

for every x ∈ G, there exists the limit function

L1(x) := lim
n→∞

h(2xn + x) + h(2xn − x)

h(2xn)
,

where the obtained function L1 : G → C satisfies the equation as even

k(x+ y) + k(−x+ y) = L1(x)k(y) ∀x, y ∈ G. (3.7)

First, let us consider the case k(0) = 0. Then it forces by (3.7) that k is odd. So
(3.7) is

k(x+ y)− k(x− y) = L1(x)k(y) ∀x, y ∈ G. (3.8)

By means of (3.8) and the oddness of k, we have the following

k(x+ y)2 − k(x− y)2 = [k(x+ y) + k(x− y)]L1(x)k(y) (3.9)

=
[
k(2x+ y) + k(2x− y)

]
k(y)

=
[
k(y + 2x)− k(y − 2x)

]
k(y)

= L1(y)k(2x)k(y).

Putting x = y in (3.8), we conclude that

k(2y) = L1(y)k(y) for all x, y ∈ G. (3.10)

The equation (3.9), in return, leads with (3.10) to the equation

k(x+ y)2 − k(x− y)2 = k(2x)k(2y), (3.11)

which, by 2-divisibility of G, states nothing else but (S).
In addition, if h satisfies (C), L1 forces 2h, so (3.8) forces that k and h satisfy

(Tgf ).

For the other case f(x)2 = g(x)2, it is enough to show that k(0) = 0. Suppose
that this is not the case. Then, we may assume that k(0) = c: constant.

Putting y = 0 in (3.1), from the above assumption, we obtain the inequality

|h(x)| ≤ φ(0)

c
∀ x ∈ G.

This inequality means that h is globally bounded, which is a contradiction by
unboundedness assumption. Thus the claimed k(0) = 0 holds, so the proof is com-
pleted. □
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Theorem 2. Suppose that f, g, h, k : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∣∣∣∣∣ ≤ φ(x) ∀x, y ∈ G, (3.12)

which satisfies one of the cases h(0) = 0, f(x)2 = g(−x)2.
Then either k is bounded or h satisfies (S). In addition, if k satisfies (C), h and

k satisfy the Wilson equation (W ):= h (x+ y) + h (x− y) = 2h(x)k(y).

Proof. Let k be unbounded. Then we can choose a sequence {yn} in G such that
k(2yn)| → ∞ as n → ∞. An obvious slight change in the proof steps applied in the
start of Theorem 1 gives us

h(2x) = lim
n→∞

f (x+ yn)
2 − g (x− yn)

2

k(2yn)
. (3.13)

Replacing y by y + 2yn and −y + 2yn in (3.12), the same procedure of (3.5) and
(3.6) allows, with an applying of (3.13), one to state the existence of a limit function

L2(y) := lim
n→∞

k(y + 2yn) + k(−y + 2yn)

k(2yn)
,

where L2 : G −→ C satisfies the equation

h(x+ y) + h(x− y) = h(x)L2(y) ∀x, y ∈ G. (3.14)

For the case h(0) = 0, it forces by (3.14) that h is odd.
Putting y = x in (3.14), we get

h(2x) = h(x)L2(x) ∀x,∈ G. (3.15)

From (3.14), the oddness of h and (3.15), we obtain the equation

h(x+ y)2 − h(x− y)2 = h(x)L2(y)[h(x+ y)− h(x− y)]

= h(x)[h(x+ 2y)− h(x− 2y)]

= h(x)[h(2y + x) + h(2y − x)]

= h(x)h(2y)L2(x)

= h(2x)h(2y),

which, by 2-divisibility of G, states (S).
In addition, if k satisfies (C), L2 forces 2k, so (3.14) forces that h and k satisfy

(W ).
The other case f(x)2 = g(−x)2 also is established h(0) = 0 for the same reason

as that of Theorem 1, so the proof is completed. □

From Theorems 1 and 2, we obtain the following result as a corollary.

Theorem 3. Suppose that f, g, h, k : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)} (3.16)

for all x, y ∈ G. Then
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(i) either h under the cases k(0) = 0 or f(x)2 = g(x)2 is bounded or k satisfies
(S). In addition, if h satisfies (C), k and h satisfy (Tgf ):= k(x+ y) − k(x− y) =
2h(x)k(y);

(ii) either k under the cases h(0) = 0 or f(x)2 = g(−x)2 is bounded, or h
satisfies (S). In addition, if k satisfies (C), h and k satisfy the Wilson equation
(W ):=h(x+ y) + h(x− y) = 2h(x)k(y).

As a corollary, we obtain the stability of the sine functional equation (S) from
Theorems 1, 2, 3.

Corollary 1. Assume that f : G −→ C satisfies the inequality∣∣∣∣∣f
(
x+ y

2

)2

− f

(
x− y

2

)2

− f(x)f(y)

∣∣∣∣∣ ≤

(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.

Then, either f is bounded or f satisfies (S).

Proof. Assumption f(0) = 0 in Theorems is simply eliminated (see [2, Theorem
5]). □

4. Application of the equations (Sfghh), (Sfghf ), (Sfgfh), (Sfgfg)

Replacing according to the location by f , g, or h for the functions k, h in Theorems
1, 2, and 3, as corollaries, we obtain the stability of the sine functional equation (S)
from the approximate inequalities of (Sfghh), (Sfghf ), (Sfgfh), (Sfgfg). Other cases
are skipped. All proofs follow from that of Theorems 1, 2, 3.

4.1. Stability of the equation (Sfghh).

Corollary 2. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)h(y)

∣∣∣∣∣ ≤

(i) φ(y)

(ii) φ(x)

(iii) min{φ(x), φ(y)}
∀x, y ∈ G.

Then, either h is bounded or h satisfies (S) under one of the cases h(0) = 0,
f(x)2 = g(x)2, f(x)2 = g(−x)2, respectively.

4.2. Stability of the equation (Sfghf ).

Corollary 3. Assume that f, g, h : G → C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∣∣∣∣∣ ≤ φ(y), ∀x, y ∈ G

which satisfies one of the cases f(0) = 0, f(x)2 = g(x)2.
Then, either h is bounded or f satisfy (S). In addition, if h satisfies (C), then f

and h satisfy (Tgf ):= f (x+ y)− f (x− y) = 2h(x)f(y).
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Corollary 4. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∣∣∣∣∣ ≤ φ(x), ∀x, y ∈ G

which satisfies one of the cases h(0) = 0, f(x)2 = g(−x)2.
Then, either f is bounded or h satisfies (S). In addition, if f satisfies (C), h and

f satisfy the Wilson equation (W ):=h (x+ y) + h (x− y) = 2h(x)f(y).

The following result follows from Corollaries 3 and 4.

Corollary 5. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)}

for all x, y ∈ G. Then
(i) either h is bounded under one of the cases f(0) = 0, f(x)2 = g(x)2 or f satisfy

(S). In addition, if h satisfies (C), f and h satisfy (Tgf ):= f (x+ y)− f (x− y) =
2h(x)f(y);

(ii) either f is bounded under one of the cases h(0) = 0, f(x)2 = g(−x)2 or h
satisfies (S). In addition, if f satisfies (C), h and f satisfy the Wilson equation
(W ):=h (x+ y) + h (x− y) = 2h(x)f(y).

4.3. Stability of the equation (Sfgfh).

Corollary 6. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∣∣∣∣∣ ≤ φ(y),

which satisfies one of the cases h(0) = 0, f(x)2 = g(x)2.
Then, either f is bounded or h satisfies (S). In addition, if f satisfies (C), h and

f satisfy (Tgf ):= h (x+ y)− h (x− y) = 2f(x)h(y).

Corollary 7. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∣∣∣∣∣ ≤ φ(x),

which satisfies one of the cases f(0) = 0, f(x)2 = g(−x)2.
Then, either h is bounded or f satisfies (S). In addition, if h satisfies (C), f and

h satisfy the Wilson equation (W ):= f (x+ y) + f (x− y) = 2f(x)h(y).

Corollary 8. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)}

for all x, y ∈ G. Then
(i) either f is bounded under one of the cases h(0) = 0, f(x)2 = g(x)2 or h

satisfies (S). In addition, if f satisfies (C), h and f satisfy (Tgf ):= h (x+ y) −
h (x− y) = 2f(x)h(y);
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(ii) either h is bounded under one of the cases f(0) = 0, f(x)2 = g(−x)2 or f
satisfies (S). In addition, if h satisfies (C), f and h satisfy the Wilson equation
(W ):=f (x+ y) + f (x− y) = 2f(x)h(y).

4.4. Stability of the equation (Sfgfg).

Corollary 9. Suppose that f, g : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)g(y)

∣∣∣∣∣ ≤ φ(y),

which satisfies one of the cases g(0) = 0, f(x)2 = g(x)2.
Then, either f is bounded or g satisfies (S). In addition, if f satisfies (C), g and

f satisfy (Tgf ):= g (x+ y)− g (x− y) = 2f(x)g(y).

Corollary 10. Suppose that f, g : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)g(y)

∣∣∣∣∣ ≤ φ(x),

which satisfies one of the cases f(0) = 0, f(x)2 = g(−x)2.
Then, either g is bounded or f satisfies (S). In addition, if g satisfies (C), then

f and g satisfy the Wilson equation (W ).

Corollary 11. Suppose that f, g : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)g(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)}

for all x, y ∈ G. Then
(i) either f is bounded under one of the cases g(0) = 0, f(x)2 = g(x)2 or g satisfies

(S). In addition, if f satisfies (C), g and f satisfy (Tgf ):= g (x+ y)− g (x− y) =
2f(x)g(y);

(ii) either g is bounded under one of the cases f(0) = 0, f(x)2 = g(−x)2 or f
satisfies (S). In addition, if g satisfies (C), then f and g satisfy the Wilson equation
(W ).

Remark 2. As corollaries, we obtain more stability results for the following reduced
equations of (Sfghk).

(i) The stability for the functional equations (Sfghg), (Sfggh), (Sfggf ), (Sfgff ),
(Sfggg), and (Sgh), (Sgf ), (Sfg), (Sgg) is skipped by same reason as the cases
(Sfghh), (Sfghf ), (Sfgfh), (Sfgfg). In particular, the stability for the equations
(Sgh), (Sgf ), (Sfg), (Sgg) is found in papers (see [11, 14, 19]).

(ii) Applying φ(x) = φ(y) = ε in all results containing (i), then it imply the
stability results.

5. Extension of the stability results to Banach algebras

All the results in Sections 3 and 4 can be also extended to Banach algebras. The
following theorem is an extension dued by Theorem 1, Theorem 2, and Theorem 3.
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Theorem 4. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g, h, k : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.

Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i) either the superposition x∗ ◦ h under the cases k(0) = 0 or f(x)2 = g(x)2 is

bounded or k satisfies (S), In addition, if h satisfies (C), k and h satisfy (Tgf ):=
k (x+ y)− k (x− y) = 2h(x)k(y);

(ii) either the superposition x∗ ◦ k under the cases h(0) = 0 or f(x)2 = g(−x)2 is
bounded or h satisfies (S). In addition, if k satisfies (C), h and k satisfy the Wilson
equation (W ):= h (x+ y) + h (x− y) = 2h(x)k(y);

(iii) (i) and (ii) hold.

Proof. Assume that (i) holds and fix arbitrarily a linear multiplicative functional
x∗ ∈ E. As is well known we have ∥x∗∥ = 1 whence, for every x, y ∈ G, we have

φ(y) ≥

∥∥∥∥∥h(x)k(y)− f

(
x+ y

2

)2

+ g

(
x− y

2

)2
∥∥∥∥∥

= sup
∥y∗∥=1

∣∣∣∣∣y∗
(
h(x)k(y)− f

(
x+ y

2

)2

+ g

(
x− y

2

)2
)∣∣∣∣∣

≥

∣∣∣∣∣x∗(h(x)) · x∗(k(y))− x∗
(
f

(
x+ y

2

))
+ x∗

(
g

(
x− y

2

)2
)∣∣∣∣∣ ,

which states that the superpositions x∗ ◦ h and x∗ ◦ k yield a solution of stability
inequality (3.1) of Theorem 1. Since, by assumption, the superposition x∗ ◦ h is
unbounded, an appeal to Theorem 1 forces that the function x∗ ◦ k solves the sine
equation (S). In other words, bearing the linear multiplicativity of x∗ in mind, for
all x, y ∈ G, the difference DS : G −→ E defined by

DS(x, y) := k

(
x+ y

2

)2

− k

(
x− y

2

)2

− k(x)k(y)

falls into the kernel of x∗. Therefore, in view of the unrestricted choice of x∗, we
infer that

DS(x, y) ∈
⋂

{kerx∗ : x∗ is a multiplicative member of E∗}

for all x, y ∈ G. Since the algebra E has been assumed to be semisimple, the last
term of the above formula coincides with the singleton {0}, that is,

DS(x, y) = 0 for all x, y ∈ G,

as claimed. The cases(ii), (iii) also are the same. □
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Corollary 12. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g, h : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)h(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition

x∗ ◦ h is bounded or h satisfies (S) under one of the cases h(0) = 0, f(x)2 = g(x)2,
f(x)2 = g(−x)2, respectively.

Corollary 13. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i) either the superposition x∗ ◦ h under one of the cases f(0) = 0, f(x)2 = g(x)2

is bounded or f satisfies (S), In addition, if h satisfies (C), f and h satisfy (Tgf );
(ii) either the superposition x∗◦f under one of the cases h(0) = 0, f(x)2 = g(−x)2

is bounded or h satisfies (S). In addition, if f satisfies (C), h and f satisfy the
Wilson equation (W );

(iii) (i) and (ii) hold.

Corollary 14. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i)) either the superposition x∗ ◦f under one of the cases h(0) = 0, f(x)2 = g(x)2

is bounded or h satisfy (S);
In addition, if f satisfies (C), h and f satisfy (Tgf ):= h (x+ y) − h (x− y) =

2f(x)h(y).
(ii) either the superposition x∗ ◦ h under the cases f(0) = 0 or f(x)2 = f(−x)2 is

bounded or f satisfies (S). In addition, if h satisfies (C), f and h satisfy the Wilson
equation (W ):= f (x+ y) + f (x− y) = f(x)h(y);

(iii) (i) and (ii) hold.

Corollary 15. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f : G −→ E satisfies the inequality∥∥∥∥∥f

(
x+ y

2

)2

− f

(
x− y

2

)2

− f(x)f(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)},
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition

x∗ ◦ f is bounded or f satisfies (S).
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Remark 3. All items of Remark 2 also hold to same results for all functional
equations on Banach algebras.

6. Conclusion

We investigated the superstability bounded by function for the sine functional
equation (S) from the approximate inequality of the Pexider type functional equa-
tion (Sfghk), and we studied a creative process for the sine, cosine(d’Alembert),
Wilson, Kim’s, (S) type functional equations, which are a frequently arisen function
equations related for the sine functional equation (S) and the Pexider type functional
equation(Sfghk).

As a result, all (S) types functional equations related with (S) and (Sfghk) can be
represented by the trigonometric, exponential, hyperbolic function, jointed Pexider
Lobacevski equation. Furthermore, we showed the application of our results to a
myriad of equations and the results were extended to Banach algebra.
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