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Abstract
This study aims to assess the generalized matrix transform (M-transform)

of various incomplete types of special functions named generalized incom-
plete hypergeometric functions, incomplete H-functions, incomplete H-
functions, incomplete I-functions, all of which possess a matrix argument.
The matrix argument in this case is a real symmetric positive definite
matrix of size k x k having w variables. Here, we establish the spe-
cial functions with a matrix argument by extending the existing special
functions with a scalar argument. Both scalar and matrix arguments are
significant in statistical distribution problems, particularly in scenarios
where the null hypothesis is not assumed to be true. Additionally, we
derived specific cases by extending the univariate cases.

Keywords: Generalized Incomplete Hypergeometric functions, Incomplete H-
functions, Incomplete H-functions, Incomplete I-functions, M-transform.

1 Introduction

Special functions with a matrix argument have demonstrated their significance
since 1950 when Bochner [24] resolved a Lattice point problem utilizing the
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Bessel function of matrix argument. Furthermore, Herz [11] established the
hypergeometric function of matrix argument in terms of the hypergeometric
function by utilizing the Laplace transform, which is an extension of the uni-
variate Laplace transform presented in (Eq. 16, P. 219, [1]). This univariate
Laplace transform and its inverse formula aid in defining the hypergeometric
function ,F; for all p and q. However, the explicit expression of the hypergeo-
metric function ,F; with a matrix argument remains undefined.

In 1955, Herz [11] derived the hypergeometric function with matrix argument by
using the Laplace transform and inductive method starting from ¢ Fy(A) = e"(4)
and defined it by:

r+1Fy (al, cosGp,Ys b, by —z_l) |z|7Y

1 / —tr(Az) —¢
= — e T E (a1, ..., ap; b1, bgy —A) |AYTPAA, (1
Fk(y) A0 p q(l py Y1 q )| | ()

where, R(z2) > 0,¢ = k—;l,y =¢—1and

_ 1

PFIH-I (ala ceey a;wbla sy bq7y; _A) |A‘y ¢ = Fk(y)Wx

/ etrd2) (a1,...,apibr, ..., by —27 1) |2|Ydz, R(A)>0. (2)
R(2)=Xo>0

Further, Mathai [6, 8, 9] introduced the generalized matrix transform (M-
transform) defined an integral over the k x k positive symmetric definite matrix
A as follows:

M(f) = /A AT i 3)

This integral exists for R(s) > %t — 1, where R(.) is the real part of (.).
For f(A) = e~ *4 the M-transform will be M(f) = I'x(s) (real matrix-variate
gamma function).
Real matrix-variate gamma function I'y(s) is defined as follows:
1 k—1 k—1

[i(s) = aPE=D/AD ()T (s — P =1 T(s= =), R(s)>-—F— (4
The M-transform of the hypergeometric function of k x k real symmetric positive
definite matrix argument by the integral

/ |Z|3_%qu (@1,...,ap;b1,...,bg;—2)dZ
Z>0

— Hg:l Fk(b]) H;):l Fk(aj — s)
T Trlag) T Ty — S)Fk(8)7 (5)

provided the left-hand side integral exists and it is equal to the gamma products
on the right-hand side.
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Application of hypergeometric functions of matrix argument in the field of sta-
tistical distributions developed by Mathai [10].

Progressively, Mathai [7] figure out the Fox’s H-function H(Z) of k x k real
symmetric positive definite matrix argument z satisfies the integral equation:

/ \Z| "5 H(Z)dZ
Z>0
T2 Tuby + Bys) TTj—y Tu("5* — a; — A;s)

= ) (6)
i1 D55t — b5 = Bis) 15—, 1 Tla; + Ajs)

whenever the left-hand side integral exists, it is equal to the gamma products
on the right side and for more conditions (see [7]). Result (6) can transform to
two known results:

1. By putting £ = 1, matrix argument converts to scalar argument and

2. By putting 4; (j =1,...,p) =B; (j =1,...,q) = 1, Fox’s H-function of
matrix argument convert to Meijer’s G-function of matrix argument detail
literature available in [5].

Special functions with a matrix argument are employed to address fading issues
in wireless communication. Several authors have explored the applications of
special functions with scalar and matrix argument, including [3, 20, 16, 17, 28,
21, 26, 22, 29, 27].

2 Some Definitions and Preliminary Results

In this section, we discuss a few more elementary definitions and preliminary
results which we use to derive main theorems.

2.1 Incomplete Gamma Functions

The incomplete gamma functions (s, z) and T'(s,z) for x = 1 was introduced
by Prym [13] in 1877. Systematically, the incomplete gamma functions (s, x)
and I'(s, z) defined by

A(sy) = / Tetetd, (R(s) > 0; y > 0), (7)

and -
I(s,y) = / ts"le7tdt, (y>0; R(s) >0 when y = 0), (8)
y

respectively. The incomplete gamma functions holds the decomposition formula
v(s,y) + T'(s,y) = I'(s), here T'(.) is the well known gamma function given by
L(s) = [y~ t""tetdt, R(s) > 0.
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2.2 Incomplete Pochhammer Symbols

In terms of incomplete gamma functions (s, y) and T'(s,y) defined in (7) and
(8) Srivastava et al. [14] introduced incomplete Pochhammer symbols (v;z)x
and [v;z]y as follows:

v+ A 8)
I'(v)

v+ A s)

r'v) )

(v;x)\ = and [v;z]) =

here v, A € C, z > 0. These incomplete Pochhammer symbols (v; x) and [v; z]y
given in (9) holds the decomposition formula as:

(v;o)a+[zla=Ww)x (nA€C, x>0),

where well known Pochhammer symbol (v)y = F%”&'))‘ ) ve C\Z, .

2.3 Generalized Incomplete Hypergeometric Functions

The incomplete Pochhammer symbols are the backbone of the incomplete form
of special functions defined in this section. For (Jarg(—z)| < m), Srivastava et
al. [14] introduced generalized incomplete hypergeometric functions along with
Mellin-Barnes integral in terms of incomplete Pochhammer symbols as follows:

n

(01, 2), 2, ..., Qp; z] _ Z (a;2)n(@2)n, - (ap)n 2

P (51,...76(1; (51)n7~-~7<6q)’ﬂ E

n=0
_ L ['(61)...T(dq) / v(ar + s,2) (e +5) ... T(ap + S)F(_ J(—2)*ds,
2miT(on) ... T(ey) Jp L1 +s)...T(6;+s)
(10)
and

(al,x),ag,... s 041, n 042 n7~-~7(ap)nzn
oI —
S I TP Z (01)ns -5 (Og)n n!

n=

_ b I'(01)...T'(dq) I(ag + s, )T (a2 +s)...T(ayp + 5) V() ds
~27mil(ay) ... T(ay) /L (01 4 5)...T(d, + 5) [(=s)(=2) d(~ |
11

Let L = L(5:7is0) be a MellinBarnes-type contour from o —iocc to o +ico (0 € R)
with the usual indentations to separate one set of poles from the other set of
poles of the integrand.

Further, we have the following decomposition formula in terms of the well-known
generalized hypergeometric function ,F, (p, ¢ € N) as follows:

(a1, ), a,...,0p; z] +p1—‘q[ (a1, x), a9, ..., 0p; z}

PIL Sy by 81y 0g;

o 0417...,Oép;
—qu{ ) R
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2.4 Incomplete H-Functions

The incomplete H-functions introduced by Srivastava et al. [15] in terms of
incomplete gamma functions (s, y) and I'(s,y) as follows:

3 1
VAN (2) = M {z‘ g;;ilﬁj;;(g;&)zlﬂ ] — %/ch(s,t)zfsds, (12)

where
N PR .
o(s,1) = (1 —f1 —Fis,t) H 1 T +20;5) Hj:z INCES S:JS)7 (13)
H] M41 NG QUS)HJ N+1 L(f; +§js)
and
F%V( )= F%\’ [z’ EE;%égl(;“& QP} = 2m/¢st ds, (14)
where

M N
¢(S’t) _ F(]. —le— Sls,t) Hj: (mj +Qﬁs) Hj:2 F(]_ _fj —3']'8)' (15)
[T pr (1 — oy —2;s) H] N1 (5 +8js)

The incomplete H-functions 7%&2 (z) and Fgé\[ (z) are exist for all ¢ > 0 and
for more existing conditions (see [12], [15]).

2.5 Incomplete H-Functions

The incomplete H-functions 7%5\[ (z) and fgg (z) introduced by Srivastava et
al. [15] in terms of incomplete gamma functions v(s,y) and I'(s,y) as follows:

SMN [ (f1,81: 61 : 1), (§, 855 Bj)a.n, (55, 85) N+1,P }
PQ (mwm)l Ma(mj,mjvaj)M+lQ
= L [ (s, 0)2%ds, (16)
2mi Jy,
where
_ (1 —f1 = §rs, )] TTL, T, +20,8) [T, 000 — §; — §59))%
(p(s,t) = 0 P )
Hj:M-H[F(l — v — Ws)] Hj:N+1 L(f; +3;s)
(1)
and
FMN[ ‘ (1,81 61 : 1), (§5, 855 Bj)a.n, (5, 85) N+1,P }
PQ (0, 2;5)1,m (W05, W5 ) 41,0

2m/q§st )z~ %ds, (18)
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6(5715) _ [ (1 —f1 —3S1s, t)]ﬂl H (mj +QB S)PHJ 2[F 1-— fj — S'js)]ﬁj

(
[ M1 = j—%ﬁﬂ Tl na D5+ §59)

(19)
: = . _M,N =M,N .
The incomplete H-functions 7p ;' (2) and I'p ; (2) for conditions (see [15]) are
exist for all ¢ > 0 and for more existing conditions (see, [15]).

2.6 Incomplete I-Functions

The incomplete I-functions (V)I%"gi p(z)and € P o R(z) introduced by Bansal
et al. [18] in terms of incomplete gamma functlons ~v(s,y) and I'(s, y) as follows:

(’Y)]MN (F1.81,t), (75 8)2,n» (i Bji) N+1, P,
P;.Qi,R (mj,m )LM’ (mj“mjz M+1,Q,

where

@@ﬂ_vﬂfh*&SQH I(w; +20;5) [T;2, (1~ ; — §5)
Zf 1 [Hg M+1 (1 —roj; —Wy;s) H;'D;N+1 L(fj: + Sjis)}

and

(r) JM.N [z (F1, 81, 8), (F75 85)2.55 (Fjis §ji ) N+1,P; ]
PiQi R (105, 20;5)1,05 (W0, W) M +1,Q;
2m/¢ (s,t)z%ds, (22)

_ D(1—f1 = &1s,t) [T)2, T(w + W) [[L, T(1 — f; — §;5)
Zz 1 HJ a1 L(1 =1y — Wis) Hf:'NH I'(f; +Sj7:5)]

(23)

The incomplete I-functions ("/)I R( ) and (F)IM guR( ) exists for all ¢ > 0
and for existing conditions (see, [18 21, 23]). We can easily define the decom-
position formula of incomplete form of spec1al functions.

2.7 Jacobians of Matrix Transformations

This section will present a few outcomes on the Jacobians of transformations
that we require. For now, we will focus on the prerequisites for formulating the
special functions with matrix argument. We define a real symmetric positive
definite matrix X as X = X’ > 0 (where X' is the transpose of matrix X).
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We use the notations X > 0 to represent a positive semi-definite matrix, X < 0
for a negative definite matrix, X < 0 for a negative semi-definite matrix,
and indefinite matrices for all other matrices. The notations [y, f(X)dX

and [ )I(:O g(X)dX represent the integration of f(X) over all positive matrices
X = X’ > 0 and the integration of g(X) over all matrices I — X > 0 that are
positive definite. The symbol dX represents the differential element.

Let us now discuss some elementary results regarding the Jacobians of transfor-
mations. Let L be a symmetric matrix of order k. Then L involves @ vari-
ables, and its differential element is defined as dL = dly1 ... dlyg;dlos ... dlo . ..
dl—1k; dlkr. In the case of an asymmetric (non-symmetric) matrix L = [I] 45
of order k, L involves k2 variables, and its differential element dL is defined
as dlyy...dlyg;dlay ... dlog ... dlgy ... dlg,. Transformation of L = Mij to M =

[m];; here both are symmetric matrix of order k. Which implies that w
variables of L transform to w variables of M. Here, we have a few results

given in the previous literature.

1. If A and B are k x k symmetric and X is a £ X k non singular then
A= XBX' — dA=|X|""dB, (24)

where | X| and X’ represent the determinant and transpose of X.

2. If L = [l];; is k x k symmetric and M = [m],; is k x k lower triangular
matrices respectively then
k .
L=MM — dL = |2* Hmfj“] dM. (25)
i=1

Convolution Property: If M-transform of two symmetric functions fi(A)
and fy(A) are G1(s) and Gs(s) respectively, then M.transform of a function
f3(A) = [i2olA1* f1(AA) fo(A)dA is defiend by

M(fg) = Gl(S)G2 <k2—’_1 +a— S) . (26)

From the (3) we observe that M(f) is a function of s (univariate), although
f(A) is a multivariate we need not have uniqueness for f(A).
Real matrix-variate Beta function By(s1, s2) define as follows:

Fk(sl)Fk(Sg) k—1 k—1
B =——= R >—— R > —.
k(s1,82) Tr(s1 +52) (1) 5 (s2) B
The integral representation of the Real Matrix-variate Beta function is defined
as follows:
Bi(s1,52) = / X[ - XX, (27)
X
7
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here, X >0, 0 < X <] = I—X >0and R(s1) > 551, R(sy) > £51. Eigen
values of X i.e. A1, Aa,..., A are in the interval of (0,1).

We can extend more univariate integrals to matrix cases by using convolution
property (26) as follows:

k+1

1. Taking a = oo — £ f1(A) = e7¥4 and fo(A) = [I — AJP~"= in (26),
we get

/|A\a—ﬁ|f AP~ et gA

RVIC) VG I N E+1
= Trat ) Ti(@e+Bi=A) Rl@), R(B) > ——=—1. (28)

2. Puttinga = a — 551, f1(4) = 1~ A7 and fo(4) = [1 - AP~ in
(26), we get

I J—
/ T — AA|-BlAje— 5 1 — Apma—tt gy = D@k =a)
0 Tr(v)

2R B A), R(B) > 0, Ra), Ry —a) > "1~ 1. (29)

3. Another extension of univariate integral to matrix case as follows:

/ A[“ 5 |1+ AA|#dA
A>0

_D@le(n=a) . k1
- T A7, A>0, R(a), R(u—a) > —— — 1 (30)

Here, we substitute V = AY/2AAY2. Then dV = |A|"3" dA in (30).
4. Further, set U=! = I+ V ie. dV = |U|~*+DdU and 0 < U < I then LHS

of (30) can be written as |A| ™ fv>0|V|°‘_ﬂ |I +V|~#dV and reduces to
beta integral defined in (27) and on transforming CV = A in (29), we get

a new univariate integral as follows:

Tr(e)Tw(551)

Tyat 50

C
/ I+ ZA|MA[*~ "5 dA =
0

SFi(a, u,a+% ~2C), C>0, R(a )>%—1. (31)

5. In (31), making the transformations V =1 + A, U = V! and then use
oFi(a, B;7; A) = |(I — A)|7PoF1 (v — a, B;v; —A(I — A)~1). We have
Pr()Te(v +p — a) «
Li(—v —p)
kE+1
P (—v,a;—v— ;I —Z), —R(v+ p) > R(a) > 5~ 1. (32)

/ |A|*= "5 [T+ A[M|T + ZA|YdA =
A>0
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6. Making the transformation V = A=1/2AA~1/2 in (28). We get

4 r T (kL
‘A|a7%67trCAdA:|Z|a k(a> k( 2 >><

1
0 Lo+ Tl)

k41 k41
1F1(a;a+%;—ZC), R(a)>%—1. (33)

It is important to note that the incomplete gamma function can be gen-
eralized using C' = I in (33). The incomplete gamma functions for univariate
matrix cases can be written as:

Z
ela, Z) = / [A[2~ 55 et AGA,
A=0 (34)
and Ty (a, Z) = / IA[* " F e AGA = Ty (@) — (e, 2).
A>Z

k41

For multivariate cases [, ,[A|* 7 e RGN # T (o) =y (v, Z) since ff + fBC #

ff is not valid for all values of Z when Z is a matrix.
There are three approaches to deriving special functions of matrix argument:

1. Bochner [24] and Herz’s [11] using Laplace approach,
2. James [2, 3] and Constantine’s [4] develop zonal polynomial approach and
3. Mathai’s [19, 7] generalized matrix transform (M-transform) method.

In this work, we use the M-transform method to derive the special functions of
the matrix argument.

3 Main Results

In this section, we evaluate some results using the M-transform of various incom-
plete types of special functions like generalized incomplete hypergeometric func-
tions, incomplete H-functions, incomplete H-functions, incomplete I-functions.
Theorem 1: Let Z be a kx k real symmetric positive definite matrix with eigen-
values A1 > Ag > -+ > A\, > 0 and generalized incomplete hypergeometric func-
tions ,v4(Z) and ,I';(Z) are symmetric functions in the sense ,v,(Z) = ,v,(1Z1')
and ,I'y(Z) = ,T,(1Z1"), I = I for all orthogonal matrices. If s is an arbitrary
parameter then consider the integral equations:

/Z 0|Z|s_%p’7q |: (041,14)7042,...,0[1); 7l dz
>

O1yeey 0
= Tw(5; — s, Ao Tlo —
;_1 k( j) ’Yk(al Sq’ ) =2 k)(az S) Fk(8)7 (35)
iz1 Do) Hj:l T(0; =)
9
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and
st (a1, A), g, ..., Qp;
Z S 3 F b ) b) b P 7Z dZ
[z |
_ ?=1 Fk(éj) Fk(al -5 A) Hf:2 Fk(ai — S) Fk(s) (36)
Hf:1 I () Hj‘:1 Lk (6; — ) ’

provided these gamma products are defined.

Proof: Here Z is a k x k real symmetric positive definite matrix with eigenvalues
A1 > Ao > -+ > X > 0 and generalized incomplete hypergeometric functions
»Yq(Z) and ,I'¢(Z) are symmetric functions in the sense that ,v,(Z) = pv,(1Z1')
and ,I'(Z) = pIq(1Zl"), ' = I for all orthogonal matrices. In this case, we
have f(ZA) = f(AZ) = f(AY2ZA"/?) whenever A'/? is defined.

For the positive semi definite matrix Z there exists a lower triangular matrix
T such that Z = TT’. Now transforming Z to T by using (25) as dZ =

[2’“ Il t’”l_i} dT and |TT'| = [[F_, t2. After substituting these values in

i=1 "1 =1 "Yii*
the left-hand of (35) and (36), use (34) and after a bit of simplification, we get
the desired result.

Theorem 2: This generalized incomplete hypergeometric functions with matrix
argument hold the decomposition formula as follows:

|Z|S_%p7q (OélaA)va.Qa"'aap; —7Z\dz
oo 51y Oy

+/ \Z|5*%pf‘q { ((Sal,A),(Sa.g,...,ap; —Z} dz
Z>0 1,---5Yg
:/ \Z]*=* F, [ g‘l""’da%’? Z} dz. (37)
Z>0 1y- -5 0q;
Proof: We can write left hand side of (37) by using (35) and (36) as follows:

521 Te(07) y(er — 8, A) [T0y Tk (i — s)

" Tola)  IMabib-s 5
$o1Tw(05) Ty(an — 8, A) [T7y Ti(cvi — 8) Tu(s)
Hf:1 [g(cv) HZ:1 Ik (53' )
L D) T2 Dl = o) T.(s). (38)

[T Tr(ci) TT5=, Tw(d; — s)

The right-hand side of (38) is the same as derived by Mathai (eq. 3.3, [6]).

Theorem 3: Let Z be a k X k real symmetric positive definite matrix with
eigenvalues A\; > Ao > -+ > A\ > 0 and the incomplete H-functions ygéN(Z )

10
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and Fg’é\[ (Z) be a symmetric functions in the sense ’y%@N(Z )= vg{éN(lZ ") and
ryN(z) = Fg’év(lZl’), [I" =T for all orthogonal matrices. If s is an arbitrary

P,Q
parameter then consider the integral equations for incomplete H-functions as
follows:
s—ktl NN (f1, 81, 4), (5, 5)2,p }
Z|s= S AMN Pl dz
/Z>O| | TRQ [ ’ (0;, Wj)1.0
M N
’Yk(% —f1 — 3815, A) Hj:l Iy (ro; +20;s) Hj:Q Fk(% —§i —8i9) (39)
= P K
H]Q:JVI—H Ly (55 —w; — 2;s) IT—nsa Ty + 35s)
and
/ |Z|S,%FM,N [Z‘ (fl,%l»A)a (fjagj)Z,P ] dz
Z>0 Pe (0}, 205)1.0
_ L5 — i — Fis, A) H;V; [y (; +Wjs) H;V:2 Le(P5 — 15 — i) (40)

[T arpa T (B — vy —20,8) [Ty s Tu(Fs + §55)

provided these gamma products are defined.

Proof: Here Z is a k x k real symmetric positive definite matrix with eigenvalues
A1 > Ao > -+ > A > 0 and generalized incomplete hypergeometric functions
»Yq(Z) and ,I'¢(Z) are symmetric functions in the sense that ,v4(Z) = pv4(121')
and ,I',(Z) = ,I',(1Zl'), II' = I for all orthogonal matrices. In this case, we
have f(ZA) = f(AZ) = f(A/?ZA'/?) whenever A'/? is defined.

For the positive semi definite matrix Z there exists a lower triangular matrix
T such that Z = TT’. Now transforming Z to T by using (25) as dZ =

{2k I, tfi“_i} dT and |TT’| = []I_, 2. After substituting these values in

the left-hand of (35) and (36), use (34) and after a bit of simplification, we get
the desired result.

Theorem 4: The incomplete H-functions with matrix argument also hold the
decomposition formula as follows:

s_ktl AN (f17%’17A)a(fjvsj)2P:|
A £ , VA ’ dzZ+
/Z>O| | TrQ { (rv;, W;j)1.q
s— kLl M N (f17317A)a(f’7g')2P:|
VA 2 ' Z PRI dz
/Z>0| | Pe { ‘ (0, 2Wj)1,0

s_hEtl AN (F;,8)1,p }
= A > Hy ) | Z JrvII % dz. (41
/Z>0| | PQ { ‘(mj,mj)l,Q (41)

11
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Proof: We can write left hand side of (41) as

(5 — = Fas, AT Delroy +2059) THS, (B4 — 15 - 59)
1 aa Tr(BfE — v, — 205) Ty Tk + 855)
Tp(E -1 —318714)1_[ 1 Tk (10 +20;5) HJ 2 Th(EE — 5 = 3js)
H; ppr De(P5E =y — 205 5)H7 N1 L +i§j3)

o HM L (to; + 20; 5) H] 1 (k+1 fj —8;s)
=T S (42)
H]:M-i-l Ie (%5 — ;) H] N+1 Li(fj + s )

The right-hand side of (42) is the same as derived by Mathai (eq. 3.1, [7]).

Corollary 1: Let Z be a k x k real symmetric positive definite matrix. Then
by using the definition of incomplete H-function Fgév (Z). We have

A), (55, 8)2,p
ZWI\MJV |:Z’ (flv%la y\17:V7)2,
21" Trq (0, 2W;)1,0
A), (f; + w85, 8j)2.p
_MN |, (f1 + w§1, 81, A4), (F; 7,85)2, 4
re [ ‘ (w0 + w05, W;)1,q (43)
Proof: By using a similar matrix argument, we can obtain property (43) if we
substitute s + w = s; (w > 0) and ds = ds. This will give us the desired result.

Corollary 2: Let Z be a k x k real symmetric positive definite matrix. Then by
using the definition of incomplete H-function Fgév (Z). We have the following

result
MN | ,—1| (F1,81,4),(F;,5;)2
tra [Z (mj’wj)l,QJ ’ }
n

kL iy
— M {Z’ (i w;, ;) (44)

(5

Proof: This result is obtained by using equation (40), and applying the trans-
formation L = Z~' while noting that dZ = |L|~(**+DdL.

1,Q
— 1,81, A), (B —§;,85)2.p

Theorem 5: Let Z be a k x k real symmetric positive definite matrix with
eigenvalues \; > A > -+ > A\ > 0 and the incomplete H-functions 71}\345\7 (2)

and fgg (z) be a symmetric functions in the sense ﬁgév(Z) ﬁgév(lZl ) and

fgéN(Z) =Tpg (1ZU'), Il = I for all orthogonal matrices. If s is an arbitrary
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parameter then consider the integral equations:
577 _M,N (f1,81; 61+ A), (55, 55: Bi)2.ns (Fj, §5) N+1,P
|Z| Yeo |4 dz
750 (105, 205)1,0, (05, W5 05) 41,0
M N ,
e (B = §1 = Fus, AP T2, Tr(voy +2058) [T, o[Tr (B — 5 — §58))%
w TP
T a4 = vy = 2059)] [Ty 4y Tr (s + 59)

(45)
and

s—ktlm (F1,81: 61 = A), (75,853 Bj)2,n5» (Fj, §5)N+1,p
/Z>0|Z| FPQ [Z‘ (v, 05) 1,0, (05, W5 05) vr41,0Q z
T (B — 1 — F1s, A)P [T Ta(vy +20;8) T, [Cr (B — 5 — §s)]%
T ara Dk (5E = oy — 258)] TTZ v Da(fs + §59)

(46)
Proof: We can prove this Theorem by follow same steps as in Theorem 1.

Theorem 6: Let Z be a k x k real symmetric positive definite matrix with eigen-

values A\{ > Ay > --- > Ap > 0 and the incomplete I-functions (W)Ig[ g ( )

and (F)Igf_’gi,R( ) be a symmetric functions (W)IM gﬂR(z) (v >Ij¥g r(2)Z1)
and (F)Igfjgi r(z) =01 %é\: r(2)(Z1"), lI" = I for all orthogonal matrices. If
s is an arbitrary parameter then consider the integral equations:

/ 7= ) AN H (fla%laA)v(fj?gj)Q,Nv(fjiasji)N-O-l,Pi:|
250 PiQiR (005,20;)1, 01, (0055, Wi ) mr11,Q,

Ye(EE — 1 — F1s, A) Hj]\/i1rk(mj +20;5) Hg 2 DB =15 = §9)

- k+1 P; > (47)
Zz 1 [H] a1 Te(F37 — i — W;s) H];NH Ly (fji + S’jz‘s)]
and
/ |Z|S’M () pM,N [ ‘ (F1, 81, A), (], 85)2,nv (Fjis i) N+1, P, }
750 PiQi R (05, 205) 1,01, (055, W55) 41,0
e - - §is,4) [T}, Tr(vo, +20,8) [T, Te (B — ;= §59) (18)

Zz 1 {H] MA+1 (w —wj; —Wj;s) HJ ~na1 De(fji + gﬂs)}
Proof: We can prove this Theorem by follow same steps as in Theorem 1.

We can formulate two additional theorems for the decomposition formula of
the incomplete H-functions and the incomplete I-functions, similar to what we
did in Theorems 2 and 4.
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4 Particular Cases

This section delves into the analysis of specific cases that arise from our main
findings. When considering a matrix argument Z (which is a real symmetric
positive definite matrix of size k x k), we can identify the following particular
cases:

1. When §; = 20; = 1, it is possible to demonstrate that the M-transform
of incomplete H-functions, which have a matrix argument defined in (40),
satisfy the M-transform of incomplete Meijer () G-function (see [25]) with
a matrix argument given by:

/ |Z‘57%FAPK{5V |:Z (flv.lalA)v(fj’]-)Q,P :| az
Z>0 (5, )10

:/ 2~ S OGN [Z‘ (1. A), (7)2.p } .
Z>0 ’ (w;)1.Q

_Dkl-fi-54) 12 Tr(w; + ) [T32, Tw(1 — f; — 5)
H?:JVI+1 [p(l—w; —s) H;D:NH Li(fj +5) .

2. When M =1, N = P, and we replace @ with @)+ 1, we can obtain incom-
plete H-functions with matrix arguments (39) and (40) by appropriately
choosing parameters. Specifically, we can set Z = —Z and §; — (1—§;) for
j=1,...,P,and w; — (1 —w;) for j =1,...,Q. With these choices, the
incomplete H-functions can be transformed into incomplete Fox-Wright
functions with matrix arguments pr(V)(Z) and pz/JQ(F)(Z), as follows:

s_ktl 1 p (l_flaslyA)a(l_fj’gj)QP :|
71572 ~m -7 ’ dz
/Z>O| \ ’YP7Q+1[ ‘ (0,1), (1 — 10;,20,)1,0

(49)

= 3_% (GD) (flaglvA)a(f'ag')ZP :l
/Z>O|Z| PYQ [Z’ (mj,ﬁﬂj)LQJ ’ z
o H?:l Cr(rog) (i —s,A4) Hf:z I'e(f; — )
=0 Tuir) X %, Tums — 9 Li(s), (50)

and

/ 2SR L [_Z’(1—f1,sl,A>,<1—fj7sj)z,P}dZ
Z>0

PQ+1 (Ovl)a(l _mj7mj)1,Q
_ s—htl ) (f1,81, A), (5, 8)2,p }
</Z>0|Z| P’(/}Q |:Z‘ (mjamj)l,Q o
Q ) _ P _
_ Hj;l L'k (o) « Li(f1 SQaA) Hj=2 Lk (f; S)Fk(s). (51)
[Li=1 Tk (F5) [[2: Tr(oj — s)

In this context, the M-transform of incomplete Fox-Wright functions with
matrix argument (50) and (51) represent particular cases of the M-transform
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of generalized incomplete hypergeometric functions (35) and (36), respec-
tively (see [15]).

3. When A = 0, it is possible to demonstrate that the M-transform of in-
complete H-functions with matrix argument defined in (40) satisfies the
M-transform of H-functions with matrix argument given in (6).

4. When A = 0 and §; = 20; = 1, it is possible to demonstrate that the
M-transform of incomplete H-functions with matrix argument defined in
(40) satisfies the M-transform of G-functions with matrix argument given
in [5].

5. When A = 0, it is possible to demonstrate that the M-transform of gener-
alized incomplete hypergeometric functions with matrix argument defined
in (36) satisfies the M-transform of hypergeometric functions with matrix
argument given in (5).

5 Conclusions

This study aims to establish the definition of special functions with a matrix
argument of a symmetric matrix of size k x k, which involves k(k+1)/2 variables.
To achieve this, we utilized a generalized matrix transform technique to derive
the definition of the special function of the matrix argument. Using Jacobians
of transformations and substituting specific values into the derived definition,
we can obtain various outcomes based on our findings.
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