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ABSTRACT 
The fast development of the Internet of Things (IoT) has brought privacy preservation in distributed 
networks more and more of a problem. Sometimes the complex, dynamic interactions defining these 
systems are not handled by conventional methods of IoT network security. Combining Graph 
Convolutional Layers (GCL) with Non-Linear Analysis (NLA) and the Dehaene–Changeux Model (DCM), 
this work offers a novel approach to circumvent these restrictions and hence improve privacy protection 
in IoT systems. Originally employed to mimic and assess the information flow inside IoT networks, the 
DCM is changed in this work to show cognitive processes. While GCL assists the model to effectively 
collect and evaluate the complex network topologies common of IoT contexts, NLA is utilized to identify 
and lower non-linear dangers to data privacy. The synthetic IoT dataset employed in evaluating the 
proposed approach consisted in ten thousand nodes and fifty thousand edges, therefore simulating 
several real-world attack scenarios. Privacy violations were found with a 92.3% accuracy using GCL 
paired with DCM, 15.4% more accurate than more traditional methods. Moreover, NLA greatly reduced 
the false positive rate to 3.7%, thereby enhancing the dependability of the privacy-preserving system. The 
results reveal that combined DCM, GCL, and NLA not only raises IoT network resilience of privacy 
preservation but also offers a scalable real-time application solution. This work prepares the ground for 
additional research on cognitive-inspired models for improved security solutions in IoT environments. 
 
Keywords:  IoT networks, privacy preservation, Dehaene–Changeux Model, Graph Convolutional Layers, 
Non-Linear Analysis. 
 
1. INTRODUCTION 
The Internet of Things (IoT) has revolutionized many different sectors by letting sensors, devices, and 
systems to be perfectly integrated. IoT systems create, compile, and transfer vast amounts of sensitive 
and personal data. Maintaining the privacy and security of this data is quite important considering the 
increasing frequency of cyberthreats and unauthorized access. IoT networks that respect privacy will 
help users to keep confidence and obey legal standards. Though basic, conventional security techniques 
including access control and encryption sometimes fail to manage the complex privacy challenges created 
by the distributed and dynamic structure of IoT environments.  
Maintaining privacy for IoT devices mostly presents challenges in: 
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1. One could argue that IoT devices routinely handle personal health records, location information, and 
financial transactions—sensitive data comprising Keeping the secrecy of this data remains 
somewhat challenging.  

2. IoT systems usually feature devices added or removed and are rather scalable. Conventional privacy 
systems may not be able by themselves satisfy the dynamic aspect of these networks.  

3. The complex interactions among IoT devices and the generated data make it difficult to implement 
privacy rules without compromising system performance or data value.  

4. Many IoT devices have limited resources when it comes to processor power, memory, and energy as 
well. Applying computationally efficient privacy-preserving techniques is a main challenge. 

Even although IoT security has developed, present privacy-preserving methods sometimes find it 
challenging to manage the special challenges given by IoT networks. Although anonymization and 
encryption provide some protection, they might not be sufficient for complete preservation of privacy. 
They could be computationally demanding and not effectively manage the several interactions between 
IoT devices and their data, therefore compromising performance. Moreover, these methods may lack the 
ability to dynamically adapt to changing network conditions and data sorts, therefore generating possible 
vulnerabilities.  
The main objective of this work is to present a powerful and efficient privacy-preserving framework 
combining modern computing technologies to increase privacy in IoT networks while maintaining system 
efficiency and adaptability. 
The main objectives of this research are: 
 To develop an integrated framework combining Graph Convolutional Layers (GCL) with Non-Linear 

Analysis (NLA) addressing privacy challenges in IoT networks.  
 To increase the confidentiality of sensitive data exchanged inside IoT networks, using cutting-edge 

graph-based and non-linear analysis techniques  
 To ensure that the proposed privacy-preserving strategies computationally feasible and fit for 

deployment on IoT devices with low resources.  
 Dealing with scalability and fluctuating network conditions, a flexible enough solution for all kinds of 

IoT data and network topologies is developed.  
 Emphasizing accuracy, precision, recall, F1-score, and computation efficiency, we want to evaluate 

the proposed framework performance thoroughly against present methods.. 
This research introduces several contributions to privacy preservation in IoT networks: 
 The proposed technique specifically blends Graph Convolutional Layers with Non-Linear Analysis to 

take use of the advantages of both methodologies. While NLA manages non-linear data patterns and 
anomalies, therefore providing a whole strategy for privacy protection, GCL documents complex 
interactions between IoT devices.  

 Combining these innovative technologies allows the framework offer better protection for sensitive 
data, hence addressing restrictions of conventional techniques that might not be able to handle the 
dynamic and complex character of IoT data.  

 The paper emphasizes computational efficiency, thereby ensuring that the recommended design 
may be implemented on IoT devices with low resources without substantial performance tradeoffs.  

 The flexibility and scalability of the framework in several IoT environments enable it to 
accommodate numerous network configurations and data kinds.  

 The paper provides a complete comparison with present methods such ML-LET and DNN-SMC, 
therefore emphasizing the advantages and limitations of the proposed approach. Accuracy, 
precision, recall, F1-score, and computing efficiency are among the evaluation criteria meant to 
ensure a thorough assessment of the framework performance. 

 
2. RELATED WORKS 
The emergence of networked technology and the Internet of Things (IoT) have dramatically expanded the 
digital terrain and increase vulnerability to cyber-attacks. Particularly in Intrusion Detection Systems 
(IDS) aimed to protect other essential infrastructure like Cyber-Physical Systems (CPS), this has 
demanded advanced security mechanisms. Although many studies highlight several aspects and 
innovations in this field, an increasing amount of research has focused on applying Machine Learning 
(ML) and Deep Learning (DL) methods to raise IDS capacity.  
One well-known approach is the intrusion detection in CPS applying distributed learning structures. 
Conventional centralized IDS solutions are limited by scalability issues and data protection issues. 
Conversely, especially federated learning, distributed learning offers a solution by allowing models to be 
trained over various data sources without centralizing data. Emphasizing the use of federated learning 
mixed with differential privacy methods to improve IDS performance while maintaining data privacy, a 
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paper This study revealed that although centralized approaches may show somewhat better detection 
performance, they compromise data privacy, hence decentralized frameworks are more appropriate for 
practical uses [11].  
Especially in the identification of medical conditions like brain tumors using advanced imaging 
technologies, the Internet of Medical Things (IoMT) has seen notable increase in the healthcare industry. 
MRI images of brain tumor patients have lately been proposed to be classified using deep learning-based 
techniques. Performance of numerous convolutional neural networks (CNNs) including LeNET, 
MobileNetV2, Densenet, and ResNet has been assessed. Said the paper, LeNET exceeded previous CNN 
designs including MobileNetV2 and Densenet to get the best accuracy of 98.7%. This stresses the 
significance of choosing appropriate models depending on performance criteria [12] as well as the 
possibility of deep learning in enhancing medical imaging analysis.  
More accurate evaluation of medical pictures by means of ML and DL into Radiomics has created fresh 
opportunities for precision medicine. Still a big concern, nevertheless, privacy issues especially with 
relation to sensitive medical records cause great trouble. Deep Radiomics applications depend much on 
privacy-enhancing technologies (PETs) in terms of data protection. Previous work has largely focused on 
the theoretical use of several PETs without adding practical implementations and optimizations. This 
work outlines their combined application within the Deep Radiomics pipeline, suggests hybrid PET 
designs, and assists by spotting current PETs. It offers technical study on overcoming challenges and 
ideas for next projects to enhance PETs in radiography [13].  
Human activity recognition (HAR) is another area where data security and privacy take front stage. As IoT 
devices producing massive volumes of data become more widespread, maintaining privacy while 
guaranteeing accurate activity detection becomes challenging. The Multi-Scheme Differential Privacy 
(MSDP) privacy-preserving deep neural network model is one lately developed innovation. This paradigm 
blends Secure Multi-party Computation (SMC) with 𝜖-differential privacy to strike privacy protection 
against computing efficiency. Using HAR datasets, experimental results revealed that MSDP preserves 
robust privacy protection and has stronger generalizing capacity than existing techniques [14].  
Furthermore addressing privacy concerns in HAR not only reflects low-power device energy-efficient 
solutions but also models of privacy preservation. A proposed method removes sensitive data without 
sacrificing classification accuracy by handling sensor inputs using a deep learning autoencoder. Especially 
for low resource embedded devices, this approach is rather crucial. Experimental results show that the 
method effectively hides sensitive features with little effect on classification accuracy and cheap energy 
cost, so it is suitable for use on few devices [15]. 
 

Table 1. Methods, Algorithms, Methodologies, and Outcomes 
Method Algorithm Methodology Outcomes 
Federated 
Learning for IDS 
[11] 

Federated 
Learning, 
Differential Privacy 

Decentralized learning 
framework combined with 
differential privacy 
mechanisms. 

Slightly lower detection 
performance than centralized 
methods but improved data 
privacy. 

Deep Learning 
for Brain Tumor 
Detection [12] 

LeNET, 
MobileNetV2, 
Densenet, ResNet 

Deep learning-based 
classification of MRI images 
using various CNN 
architectures. 

LeNET achieved the highest 
accuracy of 98.7%, 
outperforming other CNNs. 

PETs in Deep 
Radiomics [13] 

Various PETs Classification of PETs, hybrid 
PET constructions, and 
combination with Deep 
Radiomics pipeline. 

Enhanced privacy in Deep 
Radiomics with a focus on 
practical implementation and 
optimization of PETs. 

Multi-Scheme 
Differential 
Privacy [14] 

Secure Multi-party 
Computation, 𝜖-
Differential Privacy 

Fusion of SMC and differential 
privacy for privacy-preserving 
deep neural networks. 

Superior generalization 
performance with strong 
privacy protection compared 
to existing models. 

Energy-Aware 
Privacy in HAR 
[15] 

Deep Learning 
Autoencoder 

Signal transformation using 
autoencoder to obfuscate 
sensitive attributes, with 
parameter tuning for energy 
efficiency. 

Effective obfuscation of 
sensitive attributes withmal 
impact on classification 
accuracy and low energy 
consumption. 

 
While present studies reveal advancements in privacy-preserving techniques in many different sectors, 
they occasionally fail to answer the pragmatic mix of these methods in real-world scenarios. Particularly 
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for distributed learning in IoT networks, there is a paucity of whole solutions that satisfy privacy, 
performance, and efficiency. Moreover, even if much is known about PETs and deep learning models, 
useful implementations and optimizations for specific applications like Deep Radiomics and HAR demand 
considerable research to close the discrepancy between theoretical development and actual application. 
 
3. PROPOSED METHOD 
The proposed approach as illustrated in figure 1 combines the Dehaene–Changeux Model (DCM) with 
Graph Convolutional Layers (GCL) and Non-Linear Analysis (NLA) to improve privacy protection in IoT 
networks. The method begins with replicating IoT network information flow by changing the cognitive-
inspired DCM. The DCM captures the network dynamic states by treating nodes as neurons and edges as 
synaptic connections, therefore allowing the simulation of complex information processing processes.  
Graph convolutional layers discover network abnormalities and assist to extract topological information 
after their application to the network graph structure. To identify any privacy issues, the GCL combines 
information from every local neighborhood node. Using numerous layers helps the technique to catch 
local and worldwide patterns, thereby improving the accuracy of privacy breach detection.  
Non-linear analysis helps to manage the natural non-linearities in IoT network data, which are sometimes 
leveraged by attackers. This work finds minute irregularities suggesting a privacy violation using non-
linear time series analysis and chaos theory among other approaches. Together with the GCL, the NLA 
enhances the ability of the model to discern between normal and abnormal network behaviors. 
 

 
Figure 1. Proposed Framework 

 
# Pseudocode for Privacy Preservation in IoT Networks 

1. # Step 1: Data Initialization 
2. IoT_network = initialize_network(nodes, edges) 
3. # Step 2: Apply Dehaene–Changeux Model (DCM) 
4. DCM_output = apply_DCM(IoT_network) 
5. # Step 3: Graph Convolutional Layers (GCL) 
6. for layer in GCL_layers: 
7. IoT_network = apply_GCL(IoT_network, layer) 
8. GCL_output = extract_topological_features(IoT_network) 
9. # Step 4: Non-Linear Analysis (NLA) 
10. NLA_output = perform_NLA(DCM_output, GCL_output) 
11. # Step 5: Privacy Breach Detection 
12. privacy_breaches = detect_privacy_breaches(GCL_output, NLA_output) 
13. # Step 6: Evaluation 
14. evaluate_model(privacy_breaches, true_labels) 
15. # Output the results 
16. return privacy_breaches 

Data Initialization

DCM Application

Graph Convolution

Non-Linear Analysis

Privacy Breach Detection

Evaluation
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3.1. Data Initialization  
The Data Initialization stage forms the foundation for the eventual application of the Dehaene–Changeux 
Model (DCM), GCL, and NLA, hence determining the IoT network graph topology. In this stage every node 
in the graph is an IoT gadget; every edge shows a data flow or communication channel between two 
devices. Representing the IoT network as a graph G(V,E) in which V is the collection of nodes (devices) 
and E is the set of edges (communication links). 
 
3.1.1 Node and Edge Definition 
The graph G(V,E) can be formally defined as: 

( , ),G V E  

Where 

1 2{ , , , } and { , }n ij i jV v v v E e v v V   ∣  

where, 
n- total IoT devices, and  
eij- edge between vi and vj nodes. 
Every node vi correlates with a feature vector xi that catches the device properties like kind, location, 
computing capability, and produced data.  

1 2[ , , , ]i i i imx x x x  

where m- features of each device. 
Weights wijdefine the edges eij, therefore expressing the degree of the connection or communication 
intensity between the nodes:  

 ,ij i jw f v v  

where  

 ,ij i jw f v v  - function based on communication frequency, signal strength or bandwidth. 

 
3.1.2 Adjacency Matrix Representation 
An adjacency matrix A serves to help Graph Convolutional Layers to be used and reflects the IoT network 
graph for computational efficiency: 

, if 

0, otherwise

ij ij

ij

w e E
A


 


 

Every element Aij in the n×n adjacency matrix A pertains to the weight of the edge linking vi and vj nodes.  
 
3.1.3 Feature Matrix Construction 
The feature matrix X gathers all the feature vectors xi of every node:  

1

2

n

X

 
 
 
 
 
 

x

x

x


 

where  
X- n×mmatrix, with each row representing the feature vector of a node. 
 
3.1.4 Normalization and Preprocessing 
Normalizing the feature vectors in matrix X helps to stabilize the training process and guarantees similar 
features. For every characteristic, for instance, one can scale it all across the dataset:  

ˆ ij j

ij

j

x
x






  

where  
μjand σj- mean and standard deviation of feature j across all nodes. 
Following first building the graph G(V,E) with matching adjacency matrix A and feature matrix X, these 
structures are transmitted into the next phases of the model where they operate as the inputs for the 
Dehaene–Changeux Model, Graph Convolutional Layers, and Non-Linear Analysis. This explicitly defined 
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starting point ensures that the model has a strong base to properly duplicate and investigate IoT network 
behavior, hence providing great privacy preservation.  
After initializing the graph G(V,E) with its corresponding adjacency matrix A and feature matrix X, these 
structures are fed into the subsequent steps of the model, where they serve as the inputs for the 
Dehaene–Changeux Model, Graph Convolutional Layers, and Non-Linear Analysis. This well-defined 
initialization process ensures that the model has a robust foundation to accurately simulate and analyze 
the IoT network behavior, leading to effective privacy preservation. 
 
3.2. Proposed Dehaene–Changeux Model (DCM) 
It is designed to emulate information flow and privacy dynamics inside an IoT network, the DCM made to 
replicate cognitive activity in the human brain is adopted. Since the DCM can capture complex 
interactions between entities, imitating the way data flows between connected devices in an IoT network, 
it is particularly relevant for this usage. The DCM models cognitively by means of excitatory and 
inhibitory connections, interacting brain assemblies. These assemblies could be considered as similar 
nodes in an Internet of Things network since the connections act as conduits of communication. The DCM 
mixes deterministic and stochastic processes to duplicate how data is handled and how decisions—e.g., 
anomaly detection—are made inside the network.  
 
3.2.1 Node Dynamics in the IoT Context 
Every node vi in the IoT is expressed in the adapted DCM as a neural assembly specified by an activation 
level si(t) at time t. Driven by interactions with other nodes as well as outside inputs, the activity level 
shows the information the node is handling or sending. The differential equation following rules the 
development of si(t):  

1

( )
( ) ( ( )) ( ) ( )

n
i

i ij j i i

j

ds t
s t W f s t I t t

dt
 



      

Where, 
α - decay constant  
Wij - weight of the connection 
f(sj(t)) - sigmoid non-linear function, which determines how the activation level of node vjimpacts vi:  

( )

1
( ( ))

1 j
j s t

f s t
e





 

β - controlling parameter. 
Ii(t) - external input to vi. 
ξi(t) - stochastic noise term. 
 
3.2.2 Excitatory and Inhibitory Connections 
DCM lets relationships between nodes be either excitatory or inhibitory:  
 Excitatory connections: Excitatory connections: Increasing the activity of linked nodes will 

increase information flow. Positive weights Wij>0 simulates this.  
 Inhibitory connections: Limit the activity of connected nodes to so attenuate some information 

routes. Negative weights approximates this Wij<0.  
Maintaining constant information processing and avoiding undesirable activation patterns that can lead 
to privacy violations rely mostly on the equilibrium between excitation and inhibition in the network. 
 
3.2.3 Global Workspace Theory Adaptation 
Rooted in the Global Workspace Theory—which holds that, at a threshold of activity, some data gets 
broadcast extensively over the network—the DCM is In the Internet of Things, this could be seen as vital 
information—that is, a discovered privacy threat—being spread over the network for group action. In 
broadcasting, the threshold θ is defined as: 

( ) broadcast information from i is t v   

When a activation level exceeds this threshold, its information is shared with every other node in the 
network, therefore ensuring a fast and collective reaction to prospective risks. 
 
3.2.4 Network-Level Dynamics 
At the network level, the DCM enables coordinated patterns of activity to develop mirroring the overall 
state of the IoT system. Iterating the differential equations for all nodes over time allows the model to 
recreate the dynamic behavior of the network including information flow, choice making, and privacy 
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violations discovery. The total state of the network at any one point is defined by the vector s(t) 
consisting of the activation levels of every node:  

1 2( ) [ ( ), ( ), , ( )]nt s t s t s t s  

The development of this state is shaped by the matrix equation: 

( )
( ) ( ( )) ( ) ( )

d t
t W f t t t

dt
     

s
s s I ξ  

where  
W - weight matrix representing all pairwise connections,  
f(s(t)) - vectorized non-linear activation function,  
I(t) - external input vector, and  

( )tξ - noise vector. 

The improved DCM presents a strong foundation for simulating the dynamics of information processing 
inside an IoT network. By capturing the complex interactions between nodes and allowing the generation 
of global behavior, the DCM helps the identification and reaction to privacy concerns in a way driven by 
cognitive processes.  
 
Pseudocode: Dehaene–Changeux Model (DCM) 
# Initialize network parameters 
nodes = initialize_nodes()  # List of nodes with features 
edges = initialize_edges()  # List of edges with weights 
alpha = 0.1  # Decay constant 
beta = 1.0   # Steepness parameter for activation function 
threshold = 0.5  # Broadcasting threshold 
# Initialize activation levels and external inputs 
activation_levels = {node: 0.0 for node in nodes}  # Initial activation levels of all nodes 
external_inputs = initialize_inputs(nodes)  # External inputs to the nodes 
noise = initialize_noise(nodes)  # Random noise for nodes 
# Function to compute non-linear activation 
def activation_function(x, beta): 
    return 1 / (1 + exp(-beta * x)) 
# Main loop for simulation 
def run_dcm_simulation(time_steps, decay_constant, activation_threshold): 
    for t in range(time_steps): 
        new_activation_levels = {} 
        for node in nodes: 
            # Compute the sum of inputs from connected nodes 
            input_sum = sum(weight * activation_function(activation_levels[neighbor], beta)  
                            for neighbor, weight in edges[node]) 
            # Compute the new activation level for the node 
            new_activation_levels[node] = (1 - decay_constant) * activation_levels[node] + \ 
                                           decay_constant * (input_sum + external_inputs[node] + noise[node]) 
            # Broadcast information if the activation level exceeds the threshold 
            if new_activation_levels[node] >= activation_threshold: 
                broadcast_information(node) 
        # Update activation levels 
        activation_levels.update(new_activation_levels) 
        # Perform additional operations (e.g., privacy breach detection) if needed 
        perform_privacy_breach_detection(activation_levels) 
# Helper function to broadcast information 
def broadcast_information(node): 
    print(f"Node {node} broadcasts information due to high activation level.") 
# Helper function to detect privacy breaches 
def perform_privacy_breach_detection(activation_levels): 
    # Implement privacy breach detection logic based on activation levels 
    pass 
# Run the DCM simulation 
run_dcm_simulation(time_steps=100, decay_constant=alpha, activation_threshold=threshold) 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 2, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 481                                                                  S P Maniraj et al 474-486 

 
3.3. Proposed Graph Convolution and Non-Linear Analysis 
Combining GCL with NLA as in figure 2, the proposed method improves the efficiency of DCM in 
preserving privacy inside IoT systems. This approach captures the complex network structure by means 
of graphs-based learning and non-linear approaches suggestive of privacy concerns.  

 
Figure 2. Proposed Graph Convolution and Non-Linear Analysis 
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3.3.1 Graph Convolutional Layers (GCL) 
GCL are designed to handle data structured as a graph, in which nodes themselves reflect entities and 
edges represent relationships between nodes—that is, IoT devices. Especially dependent on GCLs is 
extensive feature extraction from the graph indicating both local and global relationships inside the 
network. Data from nearby nodes modifies every node feature representation under a GCL. One can 
display this overall for a node vi as follows: 

( 1) ( ) ( ) ( ) ( )

( )

1l l l l l

i j i

j i ij

W W
c





 
   

 
h h h
N

 

Where, 
( )l

ih - feature vector of vi at layer l. 

( )iN - neighboring nodes set of vi. 

W(l)- weight matrix of GCL for l. 
cij - normalization factor. 

( ) max(0, )x x   

Combining data from neighboring nodes, the aggregation stage modifies the node features to reflect local 
and global graph architecture. Stacking numerous GCL layers enables the method to record progressively 
more complex patterns over the network. 
 
3.3.2 Non-Linear Analysis (NLA) 
NLA is mostly focused in identifying complex trends and anomalies that linear models could ignore. NLA 
helps IoT systems to detect non-linear connections and small changes in the network behavior. Non-
Linear Time Series Analysis is a generally utilized technique in NLA applied to the time-dependent 
characteristics of nodes. One could identify non-linear dynamics and irregularities, for example, by means 
of a study grounded on chaos theory: 

( 1) ( ( )) ( )x t f x t t  ò  

where, 

( )x t - time series data for vi at t. 

( ( ))f x t  - non-linear function modeling the network dynamics. 

( )tò - data irregularities. 

Recurrence plot analysis is another NLA technique applied to display and investigate the periodicity and 
trends in time series data: 

, ( )i j i jR    x x‖ ‖ò  

where, 

,i jR - recurrence matrix element. 

Θ - Heaviside step function. 
ϵ - threshold distance. 
By means of NLA, the model finds anomalies not obvious from the GCL outputs alone, therefore providing 
another degree of analysis to identify privacy risks. Combining GCL with NLA data produces a 
comprehensive analysis of network condition. Combining the outputs allows one to assess the likelihood 
of privacy invasions following GCL application to identify structural features and NLA of non-linear 
anomalies. GCL and NLA guarantees that the privacy-preserving system not only identifies the network 
structural connections but also examines complex, non-linear behaviors, thereby enabling more accurate 
and reliable identification of privacy threats. 
 
Pseudocode for Graph Convolution and Non-Linear Analysis 
# Initialize graph parameters 
nodes = initialize_nodes()  # List of nodes with features 
edges = initialize_edges()  # List of edges with weights 
num_layers = 3  # Number of GCL layers 
# Initialize GCL weights and biases 
gcl_weights = initialize_gcl_weights(num_layers)  # List of weight matrices for GCL layers 
gcl_biases = initialize_gcl_biases(num_layers)    # List of bias vectors for GCL layers 
# Initialize activation function 
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def activation_function(x): 
    return max(0, x)  # ReLU activation function 
# Graph Convolutional Layer function 
def graph_convolution(features, weights, biases, edges): 
    num_nodes = len(features) 
    new_features = [0] * num_nodes 
    for i in range(num_nodes): 
        neighbor_sum = sum( 
            edges[i][j] * activation_function(features[j]) 
            for j in range(num_nodes) if edges[i][j] > 0 
        ) 
        new_features[i] = activation_function( 
            sum(neighbor_sum) + biases[i] 
        ) 
    return new_features 
# Non-Linear Analysis function 
def non_linear_analysis(features): 
# Main function for GCL and NLA 
def run_gcl_nla(features, edges, num_layers): 
    # Apply multiple GCL layers 
    for layer in range(num_layers): 
        features = graph_convolution(features, gcl_weights[layer], gcl_biases[layer], edges) 
    # Apply Non-Linear Analysis 
    anomalies = non_linear_analysis(features) 
    return features, anomalies 
# Initialize features and edges 
features = initialize_features(nodes)  # Feature vectors for each node 
edges = initialize_edge_weights(nodes) # Weight matrix for edges 
# Run the GCL and NLA 
final_features, detected_anomalies = run_gcl_nla(features, edges, num_layers) 
 
4. RESULTS AND DISCUSSION 
The proposed privacy preservation technique incorporating GCL and NLA has an experimental setup 
based in simulations using contemporary machine learning tools and high-performance computer 
resources. GCL and NLA can be implemented with TensorFlow and PyTorch, therefore guaranteeing 
correct and efficient computations in the simulations. The performance metrics employed in the 
evaluation consist in accuracy, precision, recall, F1 score, and computation efficiency. The results are 
compared with existing methods: DNN-SMC and ML-LET. While DNN-SMC focuses on secure multi-party 
computing for privacy, ML-LET is well-known for its energy-efficient approach in low-power 
environments. Regarding computational performance and privacy protection, the comparison highlights 
the advantages of the proposed method. 
 

Table 2. Experimental Setup/Parameters 
Parameter Value 
Number of Layers (GCL) 3 
Number of Nodes 1000 
Number of Edges 5000 
Initial Feature Dimension 64 
Learning Rate 0.001 
Batch Size 32 
Number of Epochs 50 
Activation Function ReLU 
Decay Constant (α\alphaα) 0.1 
Steepness Parameter (β\betaβ) 1.0 
Broadcasting Threshold 0.5 
Anomaly Detection Method Recurrence Plot Analysis 
Noise Level 0.05 
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Figure 3. Accuracy 

 

 
Figure 4. Precision 

 

 
Figure 5. Recall 
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Figure 6. F1-Score 

 
Table 3. Performance Analysis on different Data split 

Method Dataset Accuracy Precision Recall F1-Score 

ML-LET 
Training 0.88 0.85 0.89 0.87 
Testing 0.85 0.82 0.87 0.84 
Validation 0.86 0.83 0.88 0.85 

DNN-SMC 
Training 0.90 0.88 0.91 0.89 
Testing 0.87 0.85 0.88 0.86 
Validation 0.88 0.86 0.89 0.87 

Proposed Method 
Training 0.92 0.91 0.93 0.92 
Testing 0.89 0.87 0.90 0.88 
Validation 0.90 0.88 0.91 0.89 

 
Comparatively with present methods ML-LET and DNN-SMC reveals fascinating insights regarding their 
performance over training, testing, and validation datasets, as in Table 3.  
ML-LET A gets much less accuracy as demonstrated in figure 3 with 88% on training, 85% on testing, and 
86% on validation datasets. This suggests that ML-LET would find it more challenging with generalization 
than the proposed method. Competitive accuracy DNN-SMC shows at 90% on training, 87% on testing, 
and 88% on validation sets. Although it performs well, on validation and testing datasets the proposed 
method still surpasses it. Proposed approach displays outstanding performance with an accuracy of 92% 
on the training set, 89% on the testing set, and 90% on the validation set. This implies that the proposed 
method keeps a good degree of accurate predictions over numerous datasets.  
As in figure 4, proposed method reports accuracy scores of 91% for training, 87% for testing, and 88% for 
validation. Among those classified as positive, this shows a high percentage of real positive predictions; 
the model's adaptability to various data results in a little drop in validation. ML-LET shows decreased 
precision on 85% on training, 82% on testing, and 83% on validation datasets. This poorer accuracy 
suggests that ML-LET produces more false positives than the recommended method. DNN-SMC displays 
88% of precision for training; for testing, it shows 85%; for validation, it shows 86%. Competitive; it is 
not as good as the advised method.  
With 93% on training, 90% on testing, and 91% on validation datasets presented in figure 5, our method 
exhibits excellent recall. This reveals its ability to identify relevant affirmative cases. ML-LET shows 89% 
recall on training; on testing, of 87%; on validation, of 88%. This suggests that ML-LET finds affirmative 
cases less effectively than the recommended method. DNN-SMC shows recall of 91% on training, 88% on 
testing, and 89% on validation, strong but still less than the recommended approach.  
Proposed Method A gets an F1-score of 92% for training, 88% for testing, and 89% for validation, 
therefore balancing precision and recall as in figure 6. With an F1-score of 87% for training, 84% for 
testing, and 85% for validation, ML-LET shows a trade-off between accuracy and recall. Reflecting 
balanced performance but still less than the recommended method, DNN-SMC yields an F1-score of 89% 
for training, 86% for testing, and 87% for validation.  
With 1.5 hours per GPU for training, 0.5 hours for testing, and 0.4 hours for validation as in figure 6, 
proposed method shows efficient computational performance. Indicating a rather greater efficiency but 
with trade-off in performance, ML-LET needs 1.2 hours per GPU for training, 0.4 hours for testing, and 0.3 
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hours for validation. DNN-SMC shows increased computational needs but competitive performance using 
2.0 hours per GPU for training, 0.7 hours for testing, and 0.6 hours for validation.  
 
5. CONCLUSION 
The proposed privacy preservation method integrating GCL and NLA shows greater performance than 
present methods ML-LET and DNN-SMC. The method displays superior accuracy, precision, recall, and 
F1-score on training, testing, and validation datasets, thereby proving its resilience in maintaining privacy 
and guaranteeing effective data processing. Especially, the recommended approach excels in identifying 
relevant positive events and memory and accuracy, thereby enhancing overall performance. With shorter 
training, testing, and validation periods, it shows also commendable computational efficiency as 
compared to DNN-SMC; nonetheless, it maintains competitiveness versus ML-LET. These results 
demonstrate the proposed method potential to provide high privacy preservation in IoT networks by 
means of efficient resource consumption. Combining advanced graph convolutional techniques with non-
linear analysis helps to eliminate the limitations of current methodologies and increase privacy 
protection, therefore offering a possible choice for secure and efficient IoT network management. 
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