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ABSTRACT  
A more flexible distribution: Alpha power transformation techniques provide great flexibility in the final 
distributions. The alpha power Weibull quantile exponential distribution, which may have an asymmetric 
or near-symmetric density, is shown via the innovative approach. The related failure rate function may 
take on a variety of asymmetric shapes, including falling, rising, L-shaped, near-symmetrical, and right-
skewed forms, which improve its tractability for different modeling purposes. There are many critical 
mathematical properties of the proposed distribution. The most excellent likelihood approach is used to 
estimate the unknown parameters of the proposed distribution.  
Furthermore, many numerical analyses were conducted to assess the accuracy of the estimate's 
correctness. The utility and flexibility of the suggested distribution are evaluated via an analysis of real-
world datasets. The alpha power Weibull quantile exponential distribution that has been suggested may 
perform better than popular distributions due to its remarkable flexibility. 
 
Keywords: alpha power transformation; moment; order statistics;quantile; 
 
1. INTRODUCTION   
Different There has been extensive use of statistical distributions to describe and forecast current trends 
in many fields, including engineering, mathematics, statistics, demography, biology, environmental 
sciences, and medicine. Still, in several fields, using these classical distributions is unacceptable because of 
the restrictions of fitting this data with Several current standard distributions. Some scholars have 
attempted to enhance the classical distributions to be more versatile when modeling data from different 
academic subjects. The literature has numerous modified distributions. A common goal in improving the 
goodness-of-fit of distributions is to develop novel generators for families of distributions. This 
technology is used to generate extensions of the current standard models. The authors of [1] have devised 
an all-encompassing procedure known as Alpha power transformation. This innovative and cutting-edge 
method has alone been created. Any distribution can benefit from the addition of skewness through its 
usage. A family's may be written as  

𝐹𝐴𝑃𝑇 𝑢 =  
𝛼𝑊(𝑢) − 1

𝛼 − 1
  , 𝑖𝑓𝛼 > 0,𝛼 ≠ 1

𝑊 𝑢       , 𝑖𝑓𝛼 = 1             

                                                                       (1) 

𝑓𝐴𝑃𝑇 𝑢 =  

𝑙𝑜𝑔𝛼

𝛼 − 1
 𝑓 𝑢 𝛼𝑊(𝑢) , 𝑖𝑓 𝛼 > 1,𝛼 ≠ 1                 

𝑓 𝑢                     , 𝑖𝑓𝛼 = 1                               

                                     (2) 

The PDF and CDF of the other continuous distribution are denoted by 𝐹(𝑥) and 𝑓(𝑥).  
If an RV X has shape and scale parameters denoted by a and b, respectively, and it obeys the Weibull 
distribution [2], 

𝑊 𝑥 = 1 − 𝑒− 
𝑥

𝑏
 
𝑎

     , 𝑥 ≥ 0                                                                                        3  
G is an exponential random variable with a CDF. The (WED), a member of the Weibull family [3], was 
developed, 𝐺 𝑥 = 1 − 𝑒−𝜆𝑥 , 𝑥 ≥  0, 𝜆 >  0.  

𝐿𝑒𝑡𝑢~𝑈 0,1  ,  
𝑢 = 𝐺 𝑋 ⟹ 𝑢 = 1 − 𝑒−𝜆𝑥 ⟹−𝜆𝑥 = 𝑙𝑛 1 − 𝑢  

𝑥 =
− ln 1 − 𝑢 

𝜆
 4  

Substituting it into equation (3),  

𝑊 𝑢 = 1 − 𝑒− 
−ln  1−𝑢 

𝜆𝑏
 
𝑎

                                                                                                (5) 
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This study introduces the alpha power Weibull-Quantile exponential distribution (APWQED). This 
foundation is built around a novel concept approach to distribution development, allowing for better 
flexibility in portraying accurate data in many domains. Integral to it are several APT methods  
 
2. The Alpha Power Weibull Quantile Exponential Distribution 
An RV with a four-parameter APWQED may be described in terms of its CDF in the following way. 

𝐹 𝑢 =

 
 
 

 
 
𝛼1−𝑒

− 
−𝑙𝑛(1−𝑢

𝜆𝑏
 
𝑎

− 1

𝛼 − 1
      ,𝛼 > 0,𝛼 ≠ 1                 

1 − 𝑒− 
−ln(1−𝑢

𝜆𝑏
 
𝑎

       ,𝛼 = 1                             

                                              (6) 

Where 𝛼, 𝜆, 𝑎, 𝑏 > 0 𝑎𝑛𝑑 0 < 𝑢 > 1, The corresponding 𝑃𝐷𝐹 is given as  

𝑓 𝑢 =

 
 
 

 
 𝑙𝑜𝑔𝛼

𝛼 − 1

𝑎  
−𝑙𝑛(1−𝑢

𝜆𝑏
 
𝑎−1

𝑒− 
−𝑙𝑛 (1−𝑢 )

𝜆𝑏
 
𝑎

𝜆𝑏 1 − 𝑢 
𝛼1−𝑒

− 
−ln(1−𝑢

𝜆𝑏
 
𝑎

, 𝑖𝑓 𝛼 > 0,𝛼 ≠ 1

𝑎  
−ln(1−𝑢

𝜆𝑏
 
𝑎−1

𝑒− 
−ln(1−𝑢 )

𝜆𝑏
 
𝑎

𝜆𝑏 1 − 𝑢 
                                     , 𝑖𝑓 𝛼 = 1              

               (7)  

The survival function, 𝑆(𝑥). 

𝑆 𝑢 =

 
 
 

 
 𝛼

𝛼 − 1
 1 − 𝛼−𝑒

− 
− 𝑙𝑛  1−𝑢 

𝜆𝑏
 
𝑎

 , 𝑖𝑓  𝛼 > 0,𝛼 ≠ 1

𝑒− 
−ln(1−𝑢 )

𝜆𝑏
 
𝑎

                      , 𝑖𝑓  𝛼 = 1

                                                  (8)   

The expression for the APWQED is the hazard rate function, h(x), as follows. 

ℎ 𝑢 =

 
  
 

  
 
𝑙𝑜𝑔𝛼  𝑎

 
−ln(1−𝑢)

𝜆𝑏
 
𝑎−1

𝜆𝑏(1 − 𝑢)
𝑒− 

−𝑙𝑛 (1−𝑢

𝜆𝑏
 
𝑎

 
𝛼−𝑒

− 
−𝑙𝑛(1−𝑢 )

𝜆𝑏
 
𝑎

1 − 𝛼−𝑒
− 

− ln  1−𝑢 
𝜆𝑏

 
𝑎  , 𝑖𝑓𝛼 > 0,𝛼 ≠ 1

𝑎
 
−𝑙𝑛(1−𝑢)

𝜆𝑏
 
𝑎−1

𝜆𝑏(1 − 𝑢)
                                                                      , 𝑖𝑓𝛼 = 1             

      (9) 

2.1. The APWQED is Special Cases 
1. At, the APWQED becomes the WQED. 𝛼 =  1. 
2. At, the APWQED decreases to the WD. 𝛼 =  𝜆 =  1. 
3. At, the Quantile Exponential distribution is what the APWQED reduces to. 
α = b = a = 1. 

 

 
Figure 1.  shows APWQED PDF plots for a few chosen values. 𝛼, 𝜆, 𝑏, 𝑎. 

 

 
Figure 2. shows APWQED PDF plots for a few chosen values. 𝛼, 𝜆, 𝑏, 𝑎. 
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Figure 1 illustrates several alternative APWQED density configurations. It includes symmetric, almost 
symmetric, inverted J-shaped morphologies and is skewed left and right. Figure 2 demonstrates how 
various uneven shapes are included in the APWQED hazard rate. These results demonstrate how highly 
adaptive the APWQED is. 
 
2.2. Expansion for the PDF 
Using the series representation, the APWQED PDF has a straightforward extension that is given as follows. 

𝛼−𝑧 =  
 −𝑙𝑜𝑔𝛼 𝑛

𝑛!
(𝑧)𝑛                                                                                                (10)      

∞

𝑛=0

 

Therefore, expanding 𝛼−𝑒
− 

−ln(1−𝑢
𝜆𝑏

 
𝑎

In (7) using (10), we have              

𝑓(𝑢) =
𝛼

𝛼 − 1

𝑎  
−𝑙𝑛(1−𝑢

𝜆𝑏
 
𝑎−1

𝜆𝑏(1 − 𝑢)
 

(−𝑙𝑜𝑔)𝑛+1

𝑛!
 𝑒−

 𝑛+1  
−ln(1−𝑢

𝜆𝑏
 
𝑎

 

∞

𝑛=0

             (11) 

 
3. The APWQED's properties  
This section provides the following basic statistical features of the APWQED 
 
3.1. Quantile Function  
One may derive the path quantile function (0 <  𝑝 <  1) of the APWQED as 

𝑢𝑝 = 1 − 𝑒
−𝜆𝑏 −𝑙𝑛 1− 

𝑙𝑛   𝛼−1 𝑝+1 

𝑙𝑛𝛼
  

1
𝑎

                                                                           (12) 

Consequently, the median of the APWQED may be derived as follows when 𝑝 =  0.5 is set: 

𝑢0.5 = 1 − 𝑒
−𝜆𝑏 − ln 1− 

𝑙𝑛   𝛼−1 0.5+1 

𝑙𝑛𝛼
  

1
𝑎

 13  
 
3.2. Moments  
If 𝑈~ APWQED(𝛼, 𝜆,𝑢, 𝑎), Subsequently, the rth instant of u may be acquired. 

𝜇𝑟 = 𝐸 𝑈𝑟 =  𝑢𝑟𝑓 𝑢 

∞

0

𝑑𝑢 =  
(−𝑙𝑜𝑔)𝑛+1

𝑛!

𝑎𝛼

𝛼 − 1
 𝑢𝑟

 
−𝑙𝑛(1−𝑢

𝜆𝑏
 
𝑎−1

𝜆𝑏(1 − 𝑢)
 𝑒−

 𝑛+1  
−𝑙𝑛 (1−𝑢

𝜆𝑏
 
𝑎

 𝑑𝑢 

∞

0

∞

𝑛=0

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑦 =
− ln 1−𝑢 

𝜆𝑏
⟹ 𝑢 = 1 − 𝑒−𝜆𝑏𝑦  ,   𝑑𝑢 = 𝜆𝑏𝑒−𝜆𝑏𝑦 𝑑𝑦, the 𝑟𝑡ℎ moment of the APWQED can be 

expressed as  

𝜇𝑟 = 𝐸 𝑈𝑟 =    
(−𝑙𝑜𝑔)𝑛+1 𝑟

𝑖
 (−1)𝑖+𝑘(𝑛 + 1)𝑘𝑎𝛼

𝑛!  𝛼 − 1 𝑘!

Γ(𝑎𝑘 + 𝑎)

(𝜆𝑏𝑖)𝑎𝑘+𝑎

∞

𝑘=0

𝑟

𝑖=0

∞

𝑛=0

                (14) 

Consequently, it is simple to represent the mean of the APWQED as 

𝜇 = 𝐸 𝑈 =   
(−𝑙𝑜𝑔)𝑛+1(−1)𝑘(𝑛 + 1)𝑘𝑎𝛼

𝑛!  𝛼 − 1 𝑘!

∞

𝑘=0

∞

𝑛=0

𝛤(𝑎𝑘 + 𝑎)

(𝜆𝑏𝑖)𝑎𝑘+𝑎
                                   (15) 

Additionally, (18) 𝑎𝑛𝑑 (19), the variance for the APWQED can be given by 
𝜎2 = 𝐸 𝑈2 − 𝜇2 

=    
2(−𝑙𝑜𝑔𝛼)𝑛+1(−1)𝑖+𝑘(𝑛 + 1)𝑘𝑎𝛼

𝑛!  𝛼 − 1 𝑘! 𝑖! (2 − 𝑖)!

𝛤(𝑎𝑘 + 𝑎)

(𝜆𝑏𝑖)𝑎𝑘+𝑎

∞

𝑘=0

2

𝑖=0

∞

𝑛=0

 − 𝜇2                             (16) 

The rth moment about the mean𝜇𝑟A random variable U with pdf is called the Central moment, as stated 
by 

𝐸 𝑈 − 𝜇 𝑟 =     
(𝑙𝑜𝑔)𝑛+1 𝑟

𝑖
  𝑖

𝑗
 (−1)𝑛+1+𝑟−𝑖+𝑗+𝑘(𝑛 + 1)𝑘𝑎𝛼

𝑛!  𝛼 − 1 𝑘!

𝛤(𝑎𝑘 + 𝑎)

(𝜆𝑏𝑗)𝑎𝑘+𝑎

∞

𝑘=0

𝑖

𝑗=0

𝑟

𝑖=0

∞

𝑛=0

        (17) 

3.3. Characteristic functions and moment-generating functions: an easy way to express the (MGF) of 
APWQED is as   

𝑀𝑢 𝑡 = 𝐸 𝑒𝑡𝑢  =  𝑒𝑡𝑢𝑓 𝑢  𝑑𝑢

∞

0

 

Using the same steps for finding the moment function and using the binomial series, then the moment 
generating function and characteristic function of APWQED 
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𝑀𝑢 𝑡 =     
(−𝑙𝑜𝑔)𝑛+1 𝑟

𝑖
 (−1)𝑖+𝑘𝑡𝑟(𝑛 + 1)𝑘𝑎𝛼

𝑛!  𝛼 − 1 𝑘! 𝑟!

𝛤(𝑎𝑘 + 𝑎)

(𝜆𝑏𝑖)𝑎𝑘+𝑎
              (18)

∞

𝑘=0

𝑟

𝑖=0

∞

𝑟=0

∞

𝑛=0

 

Similarly,  

𝜙𝑢 𝑡 =     
(−𝑙𝑜𝑔)𝑛+1 𝑟

𝑖
 (−1)𝑖+𝑘(𝑡𝑖)𝑟(𝑛 + 1)𝑘𝑎𝛼

𝑛!  𝛼 − 1 𝑘! 𝑟!

𝛤(𝑎𝑘 + 𝑎)

(𝜆𝑏𝑖)𝑎𝑘+𝑎

∞

𝑘=0

𝑟

𝑖=0

∞

𝑟=0

∞

𝑛=0

         (19) 

 
3.4. Order Statistics  
Suppose a random sample 𝑈1 ,𝑈2 , . . . . . ,𝑈𝑛  from the APWQED and 𝑢𝑖:𝑛Give its order statistics. The order 
statistic's density is specified in 

𝑓𝑘 :𝑛 𝑢𝑖 =
𝑛!

(𝑘 − 1)! (𝑛 − 1)!
[𝐹(𝑢)]𝑘−1[1 − 𝐹 𝑢 ]𝑛−𝑘𝑓 𝑢                                              (20) 

=
𝑛!

 𝑘 − 1 !  𝑛 − 1 !
   

n − k

t
  

k − 1

t
  

𝛼

𝛼 − 1
 
𝑛−𝑘−𝑡

 
−α−e 

−ln(1−u

λb
 

a

𝛼 − 1
 

t

 
𝛼1−𝑒

− 
−𝑙𝑛(1−𝑢

𝜆𝑏
 
𝑎

1

𝛼 − 1
 

𝑘−1−𝑡

𝑘−1

𝑡=0

n−k

t=0

 

 
−1

𝛼 − 1
 
𝑡 𝑙𝑜𝑔𝛼

𝛼 − 1

𝑎  
−𝑙𝑛(1−𝑢

𝜆𝑏
 
𝑎−1

𝑒− 
−𝑙𝑛(1−𝑢 )

𝜆𝑏
 
𝑎

𝜆𝑏 1 − 𝑢 
𝛼1−𝑒

− 
−𝑙𝑛(1−𝑢

𝜆𝑏
 
𝑎

                                                 (21) 

 
4. Maximum Likelihood Estimates  
If𝑢1,𝑢,𝑢3, . . . . ,𝑢𝑛 It is a random sample. The vector of parameters 𝜃 =  (𝛼, 𝜆, 𝑏, 𝑎) may be found using the 
log-likelihood (ℓ) of size 𝑛 from the APWQED.  

ℓ 𝛼, 𝜆, 𝑏, 𝑎,𝑢 = 𝑛𝑙𝑛  
𝑙𝑛𝛼

(𝛼 − 1
 + 𝑛𝑙𝑛  

𝑎𝛼

𝜆𝑏
 +   𝑎 − 1 𝑙𝑛  

− 𝑙𝑛 1 − 𝑢𝑖 

𝜆𝑏
 − ln 1 − 𝑢𝑖 

𝑛

𝑖=1

𝑛

𝑖=1

−  
− 𝑙𝑛 1 − 𝑢𝑖 

𝜆𝑏
 

𝑎

− 𝑙𝑛𝛼 𝑒
 
− ln  1−𝑢𝑖 

𝜆𝑏
 
𝑎𝑛

𝑖=1

𝑛

𝑖=1

                                                    (22) 

The partial derivatives for each parameter in (32) 

𝜕ℓ

𝜕𝛼
=
𝑛  

𝛼−1

𝛼
− 𝑙𝑛𝛼 

 𝛼 − 1 𝑙𝑛𝛼
+
𝑛

𝛼
−

1

𝛼
 𝑒

− 
− 𝑙𝑛  1−𝑢𝑖 

𝜆𝑏
 
𝑎𝑛

𝑖=1

                                                                                           (23) 

𝜕ℓ

𝜕𝜆
= −

𝑛

𝜆
−

(𝑎 − 1)

𝜆
− 𝑎 

 
−ln(1−𝑢𝑖)

𝜆𝑏
 
𝑎−1

ln(1 − 𝑢𝑖)

𝜆2𝑏
 1 + 𝑙𝑛𝛼  𝑒

− 
−ln(1−𝑢𝑖)

𝜆𝑏
 
𝑎

                           (24)

𝑛

𝑖=1

 

𝜕ℓ

𝜕𝑏
= −

𝑛

𝑏
−

(𝑎 − 1)

𝑏
− 

𝑎  
−𝑙𝑛(1−𝑢𝑖

𝜆𝑏
 
𝑎−1

𝑙𝑛(1 − 𝑢𝑖)

𝑏2𝜆
 1 + 𝑙𝑛𝛼  𝑒− 

−𝑙𝑛(1−𝑢𝑖
𝜆𝑏

 
𝑎

  

𝑛

𝑖=1

                           (25) 

𝜕ℓ

𝜕𝑎
=
𝑛

𝑎
+  𝑙𝑛 

ln 1 − 𝑢𝑖 

𝜆𝑏
 − 𝑙𝑛  

− 𝑙𝑛 1 − 𝑢𝑖 

𝜆𝑏
  

− 𝑙𝑛 1 − 𝑢𝑖 

𝜆𝑏
 

𝑎𝑛

𝑖=1

 1 + 𝑙𝑛𝛼  𝑒
− 

− ln  1−𝑢𝑖 

𝜆𝑏
 
𝑎

  

𝑛

𝑖=1

(26) 

 
5. Applications  
Real medical data sets were employed to evaluate APWQED, and the distributions' fitting was compared 
to a few other well-known ones. 
Survival Time Data  
The original 85 patients' survival periods were included in the dataset From [4] who had prostate and 
gallbladder cancer. The results are shown as follows. 
0.04,0.3,0.31,0.56,0.94,1.07,1.12,1.25,1.28,1.28,1.3,1.43,1.48,1.51,1.51,1.57,1.62,1.62,1.65,1.65,1.76,1.81,1
.87,1.88,1.91,1.91,1.91,1.98,2.01,2.01,2.038,2.09,2.09,2.14,2.15,2.19,2.19,2.22,2.22,2.23,2.3,2.32,2.39,2.48,
2.61,2.63,2.63,2.65,2.66,2.69,2.82,2.89,2.9,2.93,2.96,2.96,3,3,3.1,3.11,3.12,3.17,3.34,3.38,3.44,3.47,3.48,3.
51,3.58,3.61,3.78,3.92,4.04,4.12,4.17,4.24,4.26,4.28,4.31,4.38,4.45,4.49,4.57,4.6,4.66. 
APWQED and three other distributions were compared.With the use of the density functions listed below 
1. Alpha power exponential (APE) distribution by [5] 

fAPE  x =  

logα

α− 1
λe−λxα1−e−λx

𝑖𝑓𝛼 ≠ 1,𝛼 > 0

λe−λx 𝑖𝑓𝛼 = 1 ≥ 0
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2. Alpha power inverse Weibull (APIW) distribution by [6]   

fAPIW  x =  

logα

α − 1
λβx−(β+1)e−λx−βαe−λx−β

𝑖𝑓𝛼 ≠ 1,𝛼 > 0

λβx−(β+1)e−λx−β𝑖𝑓𝛼 = 1 ≥ 0 

  

3. The Alpha Power Weibull Exponential Distribution (APWED) by [7] 

𝑓𝐴𝑃𝑊𝐸  𝑥 =

 
 
 

 
 𝑙𝑜𝑔𝛼

𝛼 − 1

𝛼𝜆

𝛾
 
𝜆𝑥

𝛾
 
𝑎−1

𝑒
− 

𝜆𝑥

𝛾
 
𝑎

𝛼1−𝑒
− 

𝜆𝑥
𝛾  

𝑎

      ,𝛼 > 0,𝛼 ≠ 1

𝛼𝜆

𝛾
 
𝜆𝑥

𝛾
 
𝑎−1

𝑒
− 

𝜆𝑥

𝛾
 
𝑎

                                     ,𝛼 = 1             

  

To determine if the proposed model was more valid than the other models, the GOOF-testing standards 
listed below were taken into account: The negative statistics include Kolmogorov-Smirnov (K–S), Hannan–
Quinn (HQIC), Cramer–von Mises (W), the information criterion of Akaike (AIC), and the corrected Akaike 
(CAIC) information criterion. It fits better when these numbers are lower. 
Table 1 Shows how well the APWQED performs compared to alternate distributions for the 
aforementioned real data sets. 
Table 2 Demonstrates that, compared to the other distributions, the APWQED had the lowest ratings (AIC, 
CAIC, HQIC, K-S, and W), demonstrating its effectiveness in fitting the actual data sets. 
 

Table 1. MLEs (SEs in parentheses) for survival time data. 
Distribution                                     Estimated Parameters  
  APWQE  2.0750           1.03750.90000.0519 

 𝛼 , 𝜆 , 𝑏 , 𝑎                   (0.0056)        (0.0014)         (0.0100)          (3.5156e-06) 

APE                        34.1428         0.7691             

 𝜶 ,𝝀                        (13.3994)    (0.0592)          

   APWE                     25.6685         2.6851            4.9713              1.5886 

 𝜶 ,𝝀 ,𝒃 ,𝒂                  (40.1965)     (199.6717)      (369.7458)        (0.3246) 

   APIW                      3.9152            0.1948           1.239                    

 𝛼 , 𝜆 ,𝛽 , 𝑎                    (1.2192)          (0.0235)        (0.0695)                  

 
Table 2. GOF criteria for survival time data. 

Distribution       AIC            CAIC                HQIC            K-S                W            −ℓ(𝜃 ) 
  APWQE       228.1090     228.6090   232.0235      0.14651    0.21151     110.0545 

    APE           281.9912     282.1375    283.9562      0.1603      0.6024      138.9956 

   APWE         267.4350    267.9350    271.3650      0.0652      0.0478       129.7175 

   APIW         354.8962     355.1925    357.8437       0.2619     1.2682       174.4481 

 
6. CONCLUSIONS  
This work introduces A unique methodology for constructing distributions that provide an excellent level 
of adaptability for representing real-world data in several fields. The methodology integrates widely used 
Advanced Persistent Threat (APT) methods. The latest distribution, APWQED, has been revealed. Using 
this technique, the proposed distribution's hazard rate and density functions provide appealing structures 
for incorporating various data patterns. The APWQE's fundamental statistical characteristics included 
moments, quantile, median, mean residual life, order statistics, and maximum likelihood estimators 
(MLEs). The new distribution's practicality was shown by successfully fitting a real dataset. Overall, the 
APWQED model demonstrated superior performance to other well-established rival models. 
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