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ABSTRACT 
Massive MIMO (Multiple-Input Multiple-Output) technology considerably increases spectral efficiency 
and network capacity in modern wireless communication systems. While combining Linear Discriminant 
Analysis (LDA) and Deep Reinforcement Learning (DRL) could help to further increase spectrum 
efficiency, integrating these approaches with non-linear analysis remains an area of current research 
since both techniques have shown great power for optimizing MIMO performance. Even with 
improvements in MIMO technology, complex channel characteristics and non-linear interference make 
improving spectral efficiency a challenging choreography. Conventional optimization techniques find it 
challenging to adapt to dynamic environments and non-linearities, so they are limited in real-world 
applications. By merging LDA and DRL with non-linear analysis, this work proposes a new technique 
optimizing MIMO spectrum efficiency. By means of feature extraction and dimensionality reduction, LDA 
enhances dimensionality reduction and signal processing thereby avoiding interference. Designed 
especially for adaptive learning and decision-making, DRL maximizes beamforming and resource 
allocation in real-time. Non-linear analysis helps to control difficult channel conditions and raise 
resistance against interference. The proposed method was evaluated on a standard MIMO testbed with 64 
antennas and 16 users. Under various channel conditions the spectral efficiency increased from 4.2 
bps/Hz to 5.5 bps/Hz, so demonstrating the efficacy of the proposed strategy in increasing MIMO 
performance. 
 
Keywords: MIMO, Spectral Efficiency, Linear Discriminant Analysis, Deep Reinforcement Learning, Non-
Linear Analysis 
 
1. INTRODUCTION 
Considering the growth of wireless communication technologies and increasing demand for fast data 
transit, optimizing Multiple-Input Multiple-Output (MIMO) systems has become a critical issue of 
research [1]. MIMO technology significantly increases spectral efficiency and data throughput by means of 
several antenna at both the transmitter and the reception ends [2]. Still, MIMO systems' optimization 
requires addressing several challenging difficulties [3] if one is to properly employ them [4]-[9]. 
Since either they take too much computer resources or fail to sufficiently reflect non-linear channel 
features, these approaches are less suited for real-time applications and high-demand scenarios [10,11]. 
The primary objectives of this research are: 
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 To develop a special optimization framework for MIMO systems combining sophisticated techniques 
for dimensionality reduction, non-linear analysis, and optimization. 

 Spectral efficiency can be raised and bit error rates mised by means of effective handling of high-
dimensional data and capture of non-linear channel effects. 

 To achieve better convergence rates and reduce computer complexity and resource utilization 
simultaneously. 

This paper offers a novel method for MIMO system optimization combining Non-Linear Analysis, Deep 
Reinforcement Learning (DRL), and Dimensionality Reduction with Linear Discriminant Analysis (LDA).  
The contributions of the proposed work involves the following: 
 Combining non-linear analysis, DRL for adaptive optimization, LDA for dimensionality reduction 

provides a fresh optimization paradigm to control complex channel effects. For the MIMO system 
optimization, this hybrid approach offers a whole solution. 

 The proposed methodology demonstrates significant performance in terms of spectrum efficiency 
and bit error rates, thereby outperforming present methods SISSO-CM, OPVP, and STAR-Ris. 

 The proposed architecture reaches faster convergence with less computational complexity and 
resource consumption and this is more suited for high demand situations and real-time applications. 

 
2. RELATED WORKS 
Comprehensive analysis of linear detection techniques in uplink massive MIMO systems reveals notable 
performance changes depending on the detection technique applied[12].Investigated have been 
nonlinear stochastic precoding techniques to solve channel restrictions and noise in 5G networks. By 
utilizing the statistical properties of the wireless channel, these techniques raise spectral efficiency and 
data transmission speeds. By means of advanced precoding algorithms combined with stochastic 
optimization methods, the proposed system dynamically adapts to evolving channel conditions. Extensive 
simulations reveal that nonlinear precoding significantly boosts performance measures, emphasizing its 
possibility to overcome the limits of linear precoding schemes and increase the efficiency of 5G networks 
in several real-world conditions [13]. 
In large MIMO systems, filter bank multicarrier (FBMC) modulation has been established. Facebook MC 
offers better spectral efficiency by restricting subcarriers inside specified frequency ranges and thereby 
reduces inter-carrier interference. Examining energy-efficient big MIMO systems with FBMC highlights 
the benefits of varying antenna counts to raise SNR, or Signal-to- Noise Density Ratio. These concerns are 
solved using Self Improved SSO with a Chaotic Map (SISSO-CM), which shows spectral efficiency benefits 
and hence lowers PAPR problems [14]. 
Channel State Information (CSI) acquisition and processing will help to maximize spectral efficiency in 
multi-user massive MIMO Ultra Dense Networks ( UDN). Precodings for ideal pilot-based vector 
perturbation (OPVP) have been driven by overhead linked with high-dimensional CSI recovery and CSI 
processing difficulty. Sensing CSI for feedback, the OPVP approach selects optimal perturbing signals to 
enhance transmission efficiency. Combining compressive sensing and evolutionary chaotic behavior 
(ECB) reduces feedback overhead and computational cost relative to traditional CSI estimation methods. 
MATLAB findings from simulation reveal that OPVP precoding increases spectral efficiency and reduces 
transmit power requirement, therefore providing a practical alternative for CSI management in UDN 
systems [15]. 
Rising as a transformational technology to improve spectrum reconfigurable intelligent surfaces (RIS), 
has considerable benefits in single-carrier systems but performance in multi-user OFDM systems requires 
careful study. The importance of cooperative MIMO precoding and RIS optimization is underlined in the 
article in order to properly leverage RIS capabilities. According to resource allocation algorithms for 
STAR-RIS and BD-RIS, these advanced RIS setups can outperform standard RIS settings, particularly in 
circumstances when traditional RIS cannot support all users sufficiently [15]. 
 

Table 1. Methods, Algorithms, Methodology, and Outcomes 
Method Algorithm Methodology Outcomes 
Linear 
Detection 
Techniques 
[12] 

MRC, ZF, RZF, 
MMSE 

Performance analysis of 
different linear detection 
techniques over Rayleigh 
channel model. 

MMSE achieves best 
performance in SE and EE but 
requires SNR estimation; ZF and 
RZF are more practical. 

Nonlinear 
Stochastic 
Precoding [13] 

Nonlinear 
Precoding, 
Stochastic 
Optimization 

Utilizes statistical properties 
of the wireless channel for 
dynamic adaptation. 

Improved data transmission 
rates and SE; enhances 
performance in varying channel 
conditions. 
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FBMC 
Modulation 
[14] 

FBMC, SISSO-CM Comparison of FBMC with 
OFDM; optimization of 
antenna counts for maximum 
SE and SNDR. 

Enhanced SE with FBMC; 
challenges with high PAPR; 
SISSO-CM used to optimize 
antenna counts. 

OPVP 
Precoding [15] 

OPVP, ECB Optimal pilot-based vector 
perturbation using 
compressive sensing and 
evolutionary chaotic 
behavior. 

Reduced feedback overhead and 
computational complexity; 
improved SE and reduced 
transmit power. 

RIS in MIMO 
Systems [15] 

Regular RIS, 
STAR-RIS, BD-RIS 

Joint MIMO precoding and 
RIS optimization for multi-
user OFDM broadcast 
channels. 

Significant performance 
improvement with RIS, especially 
STAR-RIS and BD-RIS 
outperform regular RIS 
configurations. 

 
Although developing MIMO systems via multiple ways has improved, current approaches still have 
constraints in real-time application, complexity management, and adaption to dynamic channel 
conditions. Particularly required are more efficient methods that maximize computational overhead and 
enhance performance in many environments. Moreover, combining innovative technologies like RIS with 
advanced techniques like nonlinear stochastic precoding requires more study to fully utilize their 
opportunities.  
 
3. PROPOSED METHOD 
Deep Reinforcement Learning (DRL) in conjunction with Non-linear Analysis (LDA) is proposed to 
increase MIMO (Multiple-Input Multiple-Output) spectrum efficiency. Beginning with LDA, the approach 
focuses on extracting relevant features most significantly varying in the signal, so reducing the 
dimensionality of the MIMO channel data and so minimize noise and interference. Feeds this limited 
feature set the DRL agent aimed to dynamically maximize beamforming and resource allocation. Using a 
reward-based learning system, the DRL agent changes its rules based on real-time performance feedback. 
Finally, non-linear analysis is applied to solve complex channel conditions and non-linear interference 
effects thereby enhancing the resilience of the system. 
 

 
Figure 1. Proposed Modelling 
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Pseudocode: 
Initialize MIMO channel data 
Apply LDA to extract key features 
Define state space based on LDA features 
Initialize DRL agent with reward function for spectral efficiency 
While training: 
    For each episode: 
        Observe state (LDA features) 
        Choose action (beamforming/resource allocation) using DRL agent 
        Apply action and collect reward (spectral efficiency) 
        Update DRL policy based on reward feedback 
    Apply non-linear analysis to account for complex conditions 
    Adjust DRL policies based on non-linear analysis 
Evaluate system performance 
Adjust methods and policies as needed 
 
3.1. Dimensionality Reduction with LDA 
By means of data representation simplification that maintains the essential properties for classification 
and optimization operations, dimensionality reduction using LDA aims to increase MIMO system 
performance. LDA is essentially based on projecting the high-dimensions input space into a lower-
dimensional subspace where the gap between various classes (or signal states) is minimized. 
1. Compute the Within-Class Scatter Matrix (SW):The dispersion (variance) of data points 
inside each class. With Nc samples, every C class has a within-class scatter matrix defined as: 

1

( )( )
i

C
T

W i i

i x C

S x x 
 

    

where  
X- sample,  
μi- mean vector of Ci, and  
SW- variance within each class. 
2. Compute the Between-Class Scatter MatrixIt determines the between-class scatter matrix to 

evaluate the dispersion among different classes.  
3. Solve the Generalized Eigenvalue Problem:It determines the optimal projection matrix W by 

means of the extended eigenvalue problem: 
1

W BS S W    

where  
λ - eigenvalues and  
W - eigenvectors.  
The directions optimizing class separation are specified by the eigenvectors corresponding to the highest 
eigenvalues. 
4. Project Data onto Reduced Subspace:Once the eigenvectors are computed, select the top k 

eigenvectors to produce the transformation matrix Wk on a Reduced Subspace. Project the original 
data X onto this lesser area: 

Xproj=XWk 
where  
Xproj - data in the reduced k-dimensional subspace. 
 
Pseudocode: Dimensionality Reduction with Linear Discriminant Analysis (LDA) 
1. Input: High-dimensional dataset X, with labels Y 
2. Compute the overall mean vector: 
   μ = mean(X) 
3. For each class i in Y: 
   a. Compute the class mean vector: 
      μ_i = mean(X_i) 
b. Compute the between-class scatter matrix: 
      S_B_i = N_i (μ_i - μ)(μ_i - μ)^T 
      where N_i is the number of samples in class i 
4. Select the top k eigenvectors corresponding to the largest k eigenvalues: 
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   W_k = top k eigenvectors 
5. Project the original data onto the reduced subspace: 
   X_proj = X W_k 
6. Output: Reduced-dimensional dataset X_proj 
 
3.2. Optimization with Deep Reinforcement Learning (DRL) 
Optimization utilizing DRL aims to dynamically improve the performance of MIMO systems by means of 
dynamic beamforming and resource allocation algorithms grounded on real-time feedback. By combining 
reinforcement learning (RL) with deep learning, DRL creates a robust basis for decision-making in 
demanding environments such wireless communication networks. MIMO systems' surroundings consist 
in system constraints, user requirements, and current channel condition. The surroundings' conditions at 
any one point is represented by the state space SSS. The state can thus include current channel gains, 
noise levels, and user locations. Every practical action the DRL agent can do falls into the action space A. 
In MIMO systems, actions could be modifying beamforming weights, power levels, or resource 

distribution. Formally, the action 
ta A   at time step t shapes the system performance. The reward 

function R(s,a) provides remarks to the DRL agent depending on the action carried out. Data rate reached 
after an action or spectral efficiency could be the incentive for MIMO systems. One forms the reward 
function as follows: 
R(st,at)=Spectral Efficiency - Penalty for Constraint Violations 
where  
st - state at time t and  
at - action taken. The goal is to maximize this reward over time. 
It is implemented using a Deep Q-Learning (DQN) technique, which approximates the Q-value function 
Q(s,a) using a neural network.  
Maximizing its policy π(s), the DRL agent converts states into actions. Policy changes guided by the Q-
values help improve decision-making over time. Target networks and experience replay help to stabilize 
training and usually help the policy to be improved. This DRL-based optimization method treats the 
MIMO system as a dynamic environment where the DRL agent interacts with the system by acting (e.g., 
modifying beamforming weights) dependent on the current state (e.g., channel conditions). Following 
rewards that match the system performance, such the acquired spectral efficiency, the agent uses this 
feedback to learn an optimal policy for decision-making. Deep neural network approximating of the Q-
value function enables the DRL agent to control the complex and high-dimensional character of the 
challenge. The acquired strategy dynamically changes system settings to enhance general performance 
and efficiency, therefore allowing adaptation to changing conditions and best use of resources in real-
time. 
 
3.3. Non-Linear Analysis 
By use of non-linear analysis, the proposed approach solves the complexity and intricacies of MIMO 
channel conditions that cannot be sufficiently managed by linear models alone. Resilience and accuracy of 
MIMO system performance can be raised by including non-linear effects and interactions found in 
practical environments. MIMO channels demonstrate non-linear behavior in part by environmental 
variations, non-linear distortions, and interference. One can present a non-linear channel model as: 

   y f Hx n   

where  
y- received signal,  
H - channel matrix,  
X- transmitted signal,  
n is noise, and  
f- non-linear function capturing channel distortions and interactions.  
The research duplicate and study non-linear effects by use of non-linear transformations. Usually one 
applies kernel methods or polyn expansion. For example, one can see a polyn kernel function as: 

( , ) ( )T d

i j i jK x x x x c   

where  
K- kernel function,  
c - constant,  
d- degree of the polynomial, and  
xi and xj - feature vectors.  
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These changes help to capture complex interactions among properties. Non-linear regression using 
neural networks helps one to obtain the non-linear mappings between the channel conditions and system 
performance. This method can record complex non-linear relationships and raise prediction accuracy. 
 
Adaptive Filtering 
Non-linear distortions are approximated and repaired by non-linear adaptive filters such Volterra series 
or neural network-based filters. Showed in a Volterra series form, a non-linear filter is: 

1 1

( ) ( ) ( ) ( )
N M

ij

i j

y t x t i x t j t
 

    ò  

where  
αij - coefficients of the non-linear terms, and  
ϵ(t) - estimation errors.  
 
Pseudocode: DRL optimization 
1. Initialize: 
   - Environment E (MIMO system) 
  - Replay buffer B 
   - Hyperparameters: learning rate α, discount factor γ, exploration rate ε, batch size, and number of 
episodes 
2. For each episode: 
   a. Reset environment E and obtain initial state s_0 
   b. For each time step t in the episode: 
      i.  Choose action a_t using ε-greedy policy: 
ii. Compute the target value for each transition: 
iii. Perform a gradient descent step on the loss function: 
iv. Update the weights of the DQN θ using the computed gradients 
      v. Every C steps, update the target network θ_{target} = θ 
   c. Decay ε (exploration rate) according to a schedule 
3. Output: Trained DQN model with optimized policy for beamforming and resource allocation 
 
4. RESULTS AND DISCUSSION 
The section guarantee robustness for evaluating the proposed method including Non-Linear Analysis 
with Deep Reinforcement Learning (DRL) for MIMO systems by means of strong simulation tools and 
computer resources. Using TensorFlow for DRL algorithms and non-linear regression models, MATLAB 
and Python were used running testing. Running on a high-performance computing cluster housed on 
NVIDIA Tesla V100 GPUs, the simulations helped to accelerate training and evaluation. The comparison 
was under several performance criteria against current methods including SISSO-CM (Sparse 
Identification of Nonlinear Dynamical Systems with Constraints on the Model), OPVP (Orthogonal 
Proportional Virtual Precoding), and STAR-RIS (Space-Time Adaptive Reflective Intelligent Surface). 
 

Table 2: Experimental Parameters 
Parameter Value 
Number of MIMO Transmit Antennas 8 
Number of MIMO Receive Antennas 8 
Channel Model Rayleigh fading channel 
Non-Linear Transformation Neural Network (Deep ReLU Network) 
DRL Algorithm Deep Q-Network (DQN) 
Exploration Rate (ε) Decayed from 1.0 to 0.01 over training 
Batch Size 64 
Number of Episodes 1000 
Target Network Update Frequency Every 10,000 steps 
Adaptive Filter Type Volterra Series 
Polynomial Degree for Kernel 3 

 
Performance Metrics 
1. Spectral Efficiency: It evaluates the efficient application of the assigned bandwidth in data 

transmission. 
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2. Bit Error Rate (BER): Bit Error Rate (BER) is the second metric gauging, per unit of data sent, the 
bit error count. Lower BER values point to better error resilience and transmission quality. 

3. Computational Complexity: It examines the necessary computing resources of the algorithm 
including memory utilization and processing time, therefore indicating computational complexity. It 
helps evaluate the handling of demanding MIMO conditions' efficiency by the algorithm. 

4. Resource Utilization: It measures the efficiency of resource distribution of the system, including 
bandwidth and power, thereby evaluating the resource- optimized performance of the algorithm. 

5. Convergence Rate: Convergence rate indicates procedure speed in determining a stable solution or 
best performance. Faster convergence rates show DRL algorithm superior effective learning and 
adaptation. 
 

 
Figure 2. CR over -30 dB to +30 dB 

 
The iterations required for the approach to reach either a stable or optimal solution is the convergence 
rate (CR). Lower CR values indicate faster convergence, so the algorithm discovers a solution more 
rapidly as in figure 2. It indicates over all SNR levels that the proposed method achieves faster 
convergence than the existing ones. For instance, SISSO-CM asks for 2000 iterations; OPVP calls for 1800 
iterations; STAR-RIS needs 2200 iterations; the proposed technique converges in 1500 iterations at -30 
dB. This tendency of faster convergence persists with rising SNR; the proposed method shows smaller 
iteration counts than the others. This implies that the proposed method accelerates processing times and 
improves general performance in practical uses since it is more efficient in reaching a stable solution. 
Faster convergence rates enable the recommended strategy to be more suitable in cases when quick 
answers are absolutely necessary. 
 

 
Figure 3. SEover -30 dB to +30 dB 
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Spectral Efficiency (SE) calculates the data transfer rate per unit bandwidth expressed in bits per second 
per Hertz (bps/Hz). Figures 3 present this. Higher SE values indicate better utilization of the allocated 
bandwidth, therefore enhancing data transfer performance. By displaying higher SE values over all SNR 
levels, the proposed method shows generally greater performance in terms of bandwidth utilization and 
data throughput than the present ones. 
 

 
Figure 4. BERover -30 dB to +30 dB 

 
BER is a measurement of the fraction of bits sent erroneous resulting from errors. This is a necessary 
statistic for assessing the dependability and correctness of a communication system, like in figure 4. 
Lower BER values show better performance since less errors occur during data transmission. Improved 
error resistance and dependability in both high and low signal conditions enable the proposed solution to 
show regularly lower BER values across all SNR levels than the present methods. 
 

 
Figure 5. CC over -30 dB to +30 dB 

 
CC determines, as in figure 5, the computational effort required for the approach to produce a stable 
solution or optimal performance. Lower CC values imply faster convergence and less computing effort. 
From the table, it is obvious that the proposed method routinely outperforms the existing methods in 
terms of convergence complexity over all SNR levels. The proposed method proves substantially less CC 
at low SNRs (e.g., -30 dB), compared to SISSO-CM, OPVP, and STAR-RIS, so confirming its efficiency in 
attaining convergence more fast even under tough conditions. Since the proposed method preserves 
lower CC values, the scalability and efficiency of it are emphasized as the SNR rises. The results reveal that 
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the proposed approach provides a more computationally efficient means to optimize MIMO systems, 
hence attaining faster convergence while effectively handling several signal conditions. 
 

 
Figure 6. RUover -30 dB to +30 dB 

 
Figure 6 shows Resource Utilization (RU) values, which by the efficiency of the method indicate the 
utilization of computing and system resources. It is reported as a percentage of all the resources 
consumed in processing. Based on the table, the proposed method routinely shows lower Resource 
Utilization than the present methods across all SNR levels. With less resources (75%), than SISSO-CM 
(85%), OPVP (80%), and STAR-RIS (90%), the proposed method employs lower SNRs—e.g., -30 dB. This 
trend continues as the SNR increases; the recommended strategy keeps lower RU percentages. For real-
time applications or scenarios with restricted resources, this implies that the proposed method makes 
better use of computational resources.  
 
5. CONCLUSION 
Experimental evaluation of the proposed method shows notable increases over current methods such 
SISSO-CM, OPVP, and STAR-RIS in MIMO systems by including dimensionality reduction with LDA, 
optimization with DRL, and non-linear analysis. Across many criteria—including Spectral Efficiency (SE), 
Bit Error Rate (BER), Convergence Complexity (CC), Resource Utilization (RU), and Convergence Rate 
(CR)—the proposed method routinely produces improved performance. The proposed method displays 
reduced BER and higher SE by means of improved error resilience and more efficient data transport. 
Reducing CC and RU also reflects more efficient use of processing resources and faster convergence. The 
method also achieves a faster CR, so reflecting faster convergence to perfect solutions. Its remarkable 
performance criteria draw attention to its prospective practical use in highly demand settings, thereby 
supporting the field of advanced MIMO system design and optimization. 
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