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This research investigates specific classes of fractional integro-differential
equations using a straightforward fractional calculus technique. The employed
methodology yields a variety of compelling outcomes, including a generalized
version of the well-established classical Frobenius method. The approach pre-
sented in this study primarily relies on fundamental theorems concerning the
specific solutions of fractional integro-differential equations, utilizing the Mo-
hand transform and binomial series extension coefficients. Additionally, ad-
vanced techniques for solving fractional integro-differential equations effectively
are showcased.
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1 Introduction

Fractional calculus, an exploration of non-integer order integrals and deriva-
tives, has garnered significant attention in mathematics owing to its diverse ap-
plications in scientific and engineering domains [4]. Its profound impact arises
from robust mathematical foundations and practical implementations. More
and more people are interested in making transforms that can solve fractional
integro-differential equations. These transforms are often linked to basic ideas
like the gamma function, beta function, error function, Mittag-Leffler function,
and Mellin-Ross function [8].
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Integral transformations stand as fundamental mathematical tools crucial in
addressing various differential equations, including partial differential equations,
partial integro-differential equations, delay differential equations, and models
describing population dynamics. Out of these, the Mohand transform, which
comes from the classical Fourier integral, stands out as a simple and mathemat-
ically sound way to solve ordinary differential equations in the time domain.
Alongside the Mohand transform, the Fourier, Laplace, Aboodh, and Elzaki
transforms [2, 5, 6, 7] constitute the principal mathematical arsenal for solving
differential equations. Notably, the Mohand transform shares a close relation-
ship with the Laplace transform.

In recent research, Dubey et al. [12, 13, 14, 15, 16] have extensively explored
various aspects of fractional calculus, employing computational techniques to
forecast behavior, analyze integral transforms, investigate generalized invexity
and duality in optimization problems, and delve into fractal dynamics within
the physical sciences. Alongside these contributions, Singh, Purohit, and Kumar
[17] compiled a comprehensive book discussing advanced numerical methods for
differential equations, while Kumar et al. [18] conducted a computational anal-
ysis using fractal calculus to study local fractional partial differential equations.

The Mohand transform [1], like other integral transformations, exhibits cer-
tain limitations in its applicability. Its effectiveness often hinges on specific
conditions and assumptions, potentially restricting its scope when solving dif-
ferential equations. Some things about the Mohand approach are the same
as the Laplace transform, but it might be hard to get closed-form solutions,
especially when there are complicated boundary conditions or nonlinear equa-
tions. Recognizing and addressing these limitations is crucial when evaluating
its usefulness in solving fractional integro-differential equations.

Aruldoss and Anusuya Devi expanded the use of binomial series extension
coefficients and the Aboodh transform of fractional derivatives in 2020 to find
exact solutions for fractional differential equations that are not homogeneous
[3]. Moreover, Sumudu-based algorithms for differential equations have been
extensively explored [9, 10].

We use the Mohand transform of fractional derivatives and binomial series
extension coefficients in our research to come up with new ways to solve a
number of fractional integro-differential equations. Furthermore, we elucidate
properties relevant to our focal investigation.

2 Preliminaries

In this section, we are listing some preliminaries that are useful throughout the
paper.

1. For the function f(t), the RL fractional integral [3] of order ϖ > 0 is defined
as,

Iϖtf (t) =
1

Γ(ϖ)

∫ t

a

(t− ζ)
ϖ−1

f (ζ) dζ.
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2. Caputo fractional derivative [2] of the function f(t) is defined by

Dϖ
tf (t)=

{
fm (t) ; if ϖ=m∈N,

1
Γ(m−ϖ)

∫ ζ

0
fm(t)

(t−x)ϖ−m+1 dt ;if m−1 < ϖ<m,

where the Euler gamma function Γ(·) is defined by

Γ (ϕ) =

∫ ∞

0

tϕ−1e−t dt (R > 0) .

3. The Mohand transform [1] of a function f(t), t ∈ (0,∞) is defined by

M [f (t)] (s) = F (s) = s2
∫ ∞

0

e−st f (t) dt(s ∈ C).

4. The Mittag-Leffler function [11] is defined by

Eγ,δ (ϕ) =

∞∑
℘=0

ϕ℘

Γ (γ℘+ δ)
(γ, δ, ϕ ∈ C, R(γ) > 0).

5. The Simplest wright function [11] is defined by

ρ (ω, ϕ;φ) =
∞∑

℘=0

1

Γ(ω℘+ ϕ)
.
φ℘

℘!
(φ.ϕ, ω ∈ C ) .

6. The general Wright function [11] iλj (φ) is classified as φ ∈ C , ν1p, ν2p ∈ C,
and real ωp, ϕq ∈ R (p = 1, . . . , i, q = 1, . . . , j) by the series

iλj (ν) = iλj

(
(ν1p, ωp)1,i
(ν2q, ϕq)1,j

| φ
)

=
∞∑
r=0

∏i
p=1 Γ(ν1p + ωpr)∏j
q=1 Γ(ν2q + ϕqr)

.
φr

r!
.

7. The convolution integral of Mohand transform is

M [(f ∗ g) (t)] = 1

s2
M [f (t)]M [g (t)].

8. The inverse Mohand transform is defined by

M−1
[Γ(n+ 1)

sn−1

]
= tn.

9. The derivatives of the Mohand transform are

M [f
′
(t)] = sF (s)− s2f(0),

M [f
′′
(t)] = s2F (s)− s3f(0)− s2f

′
(0).

Remark 2.1

M [Dϖf (t)] (s) = s2
∫ ∞

0

e−st [Dϖ f (t)] dt
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= s2
∫ ∞

0

e−st 1

Γ (n−ϖ)

∫ t

0

f (n) (ζ)

(t− ζ)
ϖ−n+1 dζ dt

=
s2

Γ (n−ϖ)

∫ ∞

0

∫ ∞

ζ

e−st f (n) (ζ)

(t− ζ)
ϖ−n+1 dt dζ

=
s2

Γ (n−ϖ)

∫ ∞

0

f (n) (ζ)

∫ ∞

0

e−s(u+t) un−ϖ−1 du dζ

=
s2

Γ (n−ϖ)

∫ ∞

0

e−sζf (n) (ζ)

∫ ∞

0

e−su un−ϖ−1 du dζ

=
s2

Γ (n−ϖ)

∫ ∞

0

e−sζf (n) (ζ)
Γ (n−ϖ)

sn−ϖ
dζ

= sϖ−n+2

∫ ∞

0

e−sζ f (n) (ζ) dζ = sϖ−n+2 M
[
f (n) (ζ)

]
(s)

= sϖ−n+2.sn
[
F (s)−

(
sf (0) + f ′ (0) + · · ·+ s2−nf (n−1) (0)

)]
= sϖ+2

[
F (s)− sf (0)− f ′ (0)− · · · − s2−nf (n−1) (0)

]
= sϖ+2

[
M [f (t)]−

n∑
K=0

s1−Kf (K−1) (0)

]
.

Note: To change the order of integration in the preceding derivative we use
Fubini’s theorem.

3 Solutions of fractional integro-differential equa-
tions

We can strongly suspect thus far in this section that y (t) is enough to ensure
that the Mohand transform M [y (t)] proceeds for some value of the parameter
s.
Theorem 3.1 Let 1 < ϖ < 2 and a and b ∈ R. Then the fractional integro-
differential equation

y
′′
(t) + a yϖ (t) + by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 0 < ϱ < 1 (1)

With y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0

∞∑
K=0

(−b)
K
t2K

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 1] ℘!

+ ℵ1

∞∑
K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!
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+ aℵ0

∞∑
K=0

(−b)
K
t2K−ϖ+2

K!

∞∑
r=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 3] ℘!

+ aℵ1

∞∑
K=0

(−b)
K
t2K−ϖ+3

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 4] ℘!

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!

.

(2)

Proof:
Utilizing the Mohand transform in (1) and taking into consideration, we have

s2F (s)−s3f (0)−s2f ′ (0)+a
[
sϖF (s)− sϖ+1f (0)− sϖf ′ (0)

]
+bF (s) = M [f (t)]

where f (t) =
∫ s

0
g(t)

(s−t)ϱ dt,

s2M [y (t)]−s3y (0)−s2y′ (0)+asϖM [y (t)]−asϖ+1y (0)−asϖy′ (0)+b M [y (t)] = M [f (t)](
s2 + asϖ + b

)
M [y (t)] = s3ℵ0 + s2ℵ1 + asϖ+1ℵ0 + asϖℵ1 +M [f (t)]

M [y (t)] =
s3ℵ0 + s2ℵ1 + asϖ+1ℵ0 + asϖℵ1 +M [f (t)]

(s2 + asϖ + b)
. (3)

Since
1

(s2 + asϖ + b)
=

s−ϖ

s2−ϖ + a+ bs−ϖ

=
s−ϖ

(s
2−ϖ

+ a)
(
1 + bs−ϖ

s2−ϖ+a

)
=

s−ϖ

s2−ϖ + a

∞∑
K=0

(
−bs−ϖ

s2−ϖ + a

)K

=
∞∑

K=0

(−b)
k
s−ϖK−ϖ

(s2−ϖ + a)
K+1

=
∞∑

K=0

(−b)
K
s−2K−2(

1 + a sϖ−2
)K+1

=
∞∑

K=0

(−b)
K
s−2K−2

∞∑
℘=0

(
−asϖ−2

)℘ (
K+ ℘
℘

)

=
∞∑

K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−2 (4)
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and

M [f (t)] = M

[∫ s

0

g (t)

(s− t)
ϱ dt

]
.

This is Convolution integral,

F (P ) =
1

s2
K (P ) G(P )

Where K(P ) is the Mohand transform of K(s) = s−ϱ

M [K (s)] = s−ϱ

K (P ) =
Γ(−ϱ+ 1)

s−ϱ−1
= sϱ+1 Γ (−ϱ+ 1)

G (P ) =
p2F (P )

pϱ+1 Γ(1− ϱ)

G (P ) =
p1−ϱF (P )

Γ (1− ϱ)

G (P ) =
sinπ ϱ

π
p . p−ϱΓ (ϱ)F (P )

G (P ) =
sinπ ϱ

π
p .M

[∫ s

0

(s− t)
ϱ
f ′(t) dt

]
(5)

Substituting the above two equations (4) and (5) in (3), we get

M [y (t)] = ℵ0

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−1

+ ℵ1

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−2

+ aℵ0

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K+ϖ−3

+ aℵ1

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K+ϖ−4

+
sinπ ϱ

π
p .M

[∫ s

0

g (t)

(s− t)
ϱ dt

] ∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−2 .

(6)

Thus, providing inverse Mohand transform on both sides in equation (6), we get

y (t) = ℵ0

∞∑
K=0

(−b)
K
t2K

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 1] ℘!
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+ ℵ1

∞∑
K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!

+ aℵ0

∞∑
K=0

(−b)
K
t2K−ϖ+2

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 3] ℘!

+ aℵ1

∞∑
K=0

(−b)
K
t2K−ϖ+3

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 4] ℘!

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!

.

Example 3.1 The fractional integro-differential equation is

y
′′
(t) +

√
6 y(

3
2 ) (t) + 11y (t) =

∫ s

0

g (t)

(s− t)(
1
2 )

dt

With y (0) = 1 and y′ (0) = 1 its proposal is provided by

y (t) =
∞∑

K=0

(−11)
K
t2K

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6 t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 1

]
℘!

+

∞∑
K=0

(−11)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 2

]
℘!

+
√
6

∞∑
K=0

(−11)
K
t2K+ 1

2

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 3

2

]
℘!

+
√
6

∞∑
K=0

(−11)
K
t2K+ 3

2

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 5

2

]
℘!

+
1

π

d

ds

∫ s

0

(s− t)
− 1

2 f (t) dt
∞∑

K=0

(−11)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 2

]
℘!

,

Figure 1 illustrates the solution behavior of the fractional integro-differential
equation of example 1 at various values of ϖ.
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Figure 1: The solution behavior of Example 1.

Theorem 3.2 Let 1 < ϖ < 2 and a and b ∈ R. Then the fractional integro-
differential equation is

yϖ (t) + a y′ (t) + by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 0 < ϱ < 1 (7)

with y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK

Γ [(ϖ − 1)℘+ϖK+ 1] ℘!

+ ℵ1

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+1

Γ [(ϖ − 1)℘+ϖK+ 2] ℘!

+ aℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!
.

(8)

Proof: Utilizing the Mohand transform in (7) and taking into consideration,
we have

sϖF (s)− sϖ+1f (0)− sϖf ′ (0) + a
[
s F (s)− s2f (0)

]
+ b F (s) = M [f (t)]

where f (t) =
∫ s

0
g(t)

(s−t)ϱ dt,

sϖM [y (t)]−sϖ+1y (0)−sϖy′ (0)+a s M [y (t)]−as2y (0)+b M [y (t)] = M [f (t)]

8
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sϖM [y (t)]− sϖ+1ℵ0 − sϖℵ1 + a s M [y (t)]− as2ℵ0 + b M [y (t)] = M [f (t)]

M [y (t)] =
sϖ+1ℵ0 + sϖℵ1 + as2ℵ0 +M [f (t)]

(sϖ + a s+ b)
. (9)

Since
1

(sϖ + a s+ b)
=

s−1

sϖ−1 + a+ bs−1

=
s−1

(s
ϖ−1

+ a)
(
1 + b s−1

sϖ−1+a

)
=

s−1

sϖ−1 + a

∞∑
K=0

(
−bs−1

sϖ−1 + a

)K

=
∞∑

K=0

(−b)
K
s−K−1

(sϖ−1 + a)
K+1

=
∞∑

K=0

(−b)
K
s−ϖK−ϖ(

1 + a s1−ϖ
)K+1

=

∞∑
K=0

(−b)
K
s−ϖK−ϖ

∞∑
℘=0

(
−as1−ϖ

)℘ (
K+ ℘
℘

)

=
∞∑

K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(1−ϖ)℘−ϖK−ϖ (10)

and we know that,

M [f (t)] = M

[∫ s

0

g (t)

(s− t)
ϱ dt

]
.

This gives that,

G (P ) =
sinπ ϱ

π
p .M

[∫ s

0

(s− t)
ϱ
f ′(t) dt

]
. (11)

Substituting the above two equations (10) and (11) in (9), we get

y (t) = ℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK

Γ [(ϖ − 1)℘+ϖK+ 1] ℘!

+ ℵ1

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+1

Γ [(ϖ − 1)℘+ϖK+ 2] ℘!

+ aℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!

9
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+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!
.

The Wright function can express this solution as

y (t) = ℵ0

∞∑
K=0

(−b)
K
tϖK

K!
1λ1

(
(K+ 1, 1

(ϖK+ 1, ϖ − 1)
| − a tϖ−1

)

+ ℵ1

∞∑
K=0

(−b)
K
tϖK+1

K!
1λ1

(
(K+ 1, 1

(ϖK+ 2, ϖ − 1)
| − a tϖ−1

)

+ aℵ0

∞∑
K=0

(−b)
K
tϖK+ϖ−1

K!
1λ1

(
(K+ 1, 1

(ϖK+ϖ, ϖ − 1)
| − a tϖ−1

)

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
tϖK+ϖ−1

K!
1λ1

(
(K+ 1, 1

(ϖK+ϖ, ϖ − 1)
| − a tϖ−1

)
. (12)

Example 3.2 The fractional integro-differential equation is

y
3
2 (t)− 4y′ (t)− 5 y (t) =

∫ s

0

g (t)

(s− t)
1
2

dt

with y (0) = 1 and y′ (0) = 1 its proposal is provided by

y (t) =
∞∑

K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(ϖ−1)℘+ϖK

Γ
[(

1
2

)
℘+ 3

2K+ 1
]
℘!

+
∞∑

K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(

1
2 )℘+

3
2K+1

Γ
[(

1
2

)
℘+ 3

2K+ 2
]
℘!

−4

∞∑
K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(

1
2 )℘+

3
2K+ 1

2

Γ
[(

1
2

)
℘+ 3

2K+ 3
2

]
℘!

+
1

π

d

ds

∫ s

0

(s− t)
− 1

2 f (t) dt
∞∑

K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(

1
2 )℘+

3
2K+ 1

2

Γ
[(

1
2

)
℘+ 3

2K+ 3
2

]
℘!

Figure 2 illustrates the solution behavior of the fractional integro-differential
equation of example 1 at various values of ϖ.
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Figure 2: The solution behavior of Example 2.

Proposition 3.1 Let 1 < ϖ, ϱ < 2 and b ∈ R. Then the fractional integro-
differential equation is

yϖ (t)− by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 0 < ϱ < 1 (13)

With y (0) = ℵ0 its proposal is provided by

y (t) = ℵ0

∞∑
K=0

bK
tϖK

Γ(ϖK+ 1)
+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
tϖ+ϖK−1

Γ(ϖ +ϖK)

= ℵ0Eα (btϖ) +
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt tϖ−1Eϖ,ϖ (btϖ) . (14)

Proof: The proof of this proposition as like as previous theorem.

Remark 3.1 Accordingly, a = 0 in (7), then the derivative is

yϖ (t) + by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 1 < ϖ ≤ 2, 0 < ϱ < 1 (15)

With y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0Eϖ,1 (−btϖ)+ℵ1Eϖ,2 (−btϖ)+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt tϖ−1Eϖ,ϖ (−btϖ) . (16)

Proposition 3.2 A nearly simple harmonic vibration integro-differential equa-
tion

yϖ (t) + z2y (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 1 < ϖ ≤ 2, 0 < ϱ < 1 (17)
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With y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0Eϖ,1

(
−z2tϖ

)
+ℵ1Eϖ,2

(
−z2tϖ

)
+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt tϖ−1Eϖ,ϖ

(
−z2tϖ

)
.

Proof : The above proof is accomplished by implanting b = z2 in equation (16).

4 Conclusion

The utilization of the Mohand transform to solve fractional integro-differential
equations stands as a pivotal focus of this article. Exploring the intricate rela-
tionship between the Mohand transform and the Laplace transform has yielded
invaluable insights, enriching our comprehension of these integral transforma-
tions. This study uses a unique method that combines the Mohand transform
with binomial series extension coefficients to come up with a new way to solve
fractional integro-differential equations. Beyond its mere application, this re-
search delves into elucidating various properties and providing illustrative exam-
ples, substantiating the efficacy and adaptability of the proposed methodology.
Looking ahead, future research endeavors aim to refine the Mohand transform’s
applicability by addressing its limitations in specific scenarios. Also, looking
into how it can be used in different scientific fields and combining different
types of methods are both good ways to improve how differential equations are
solved. In conclusion, this study not only introduces a novel approach but also
sets the stage for broader investigations, seeking to expand the practical utility
and deepen the understanding of the Mohand transform in diverse mathemati-
cal problem-solving domains.
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