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ABSTRACT 
The proposed study provides a comprehensive overview of the unique challenges faced by Flying Ad Hoc 
Networks (FANETs), which utilize Unmanned Aerial Vehicles (UAVs) as dynamic nodes in three-
dimensional space. The inherent high mobility of UAVs leads to rapidly changing network topologies, 
frequent link failures, and difficulties in maintaining reliable communication. Traditional routing 
protocols often struggle to adapt to these conditions, necessitating the exploration of advanced 
solutions. This survey emphasizes the potential of machine learning, particularly reinforcement learning, 
to optimize routing paths in such dynamic environments. By categorizing recent developments in 
reinforcement learning-based routing protocols for FANETs, the paper identifies areas for improvement 
and ongoing challenges, aiming to guide future research and innovation in enhancing aerial 
communication systems. Ultimately, the findings contribute to the advancement of intelligent routing 
solutions tailored to the complexities of FANETs, with implications for applications in disaster response, 
military operations, and environmental monitoring. 
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1. INTRODUCTION 
In today’s technologically advanced society, wireless ad hoc networks (WANETs) have become 
indispensable components of communication systems. Among these, Flying Ad Hoc Networks (FANETs) 
have emerged as a critical technology, particularly in applications requiring rapid deployment and high 
mobility, such as disaster response, military operations, and environmental monitoring.FANETs, 
characterized by the use of unmanned aerial vehicles (UAVs) as dynamic nodes, face significant 
challenges in maintaining reliable and efficient communication. These challenges include frequent link 
failures, high node mobility, and rapidly changing network topologies, which can severely impact the 
Quality of Service (QoS). Traditional routing algorithms often struggle to adapt to these conditions, 
necessitating the exploration of more advanced solutions.Machine learning (ML), and particularly 
reinforcement learning (RL), offers a promising approach to addressing the complexities of routing in 
FANETs. RL's ability to continuously learn and adapt to the network environment makes it well-suited 
for optimizing routing paths in such dynamic and unpredictable settings.While there has been significant 
progress in applying RL to routing in various types of ad hoc networks, the specific challenges of FANETs 
require tailored approaches that go beyond existing methodologies. Moreover, the integration of RL with 
emerging technologies such as software- defined networking (SDN) and blockchain has the potential to 
further enhance routing performance in FANETs.This paper provides a comprehensive survey of 
reinforcement learning-based routing protocols designed for FANETs. By categorizing recent 
developments, identifying potential areas for improvement, and highlighting ongoing challenges, this 
survey aims to guide future research and innovation in optimizing routing algorithms for FANETs, 
ultimately contributing to the advancement of intelligent aerial communication systems. 
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Figure 1. Flying Adhoc Network 

 
 

2. Routing Challenges in FANET 
2.1 High Mobility of UAVs and Dynamic Network Topology 
The integration of Unmanned Aerial Vehicles (UAVs) into Flying Ad Hoc Networks (FANETs) brings forth 
unique challenges due to their inherent high mobility. Unlike traditional ground- based networks, where 
node positions tend to remain relatively stable, UAVs operate in a three- dimensional space and can 
exhibit a wide range of speeds and altitudes. This results in a constantly shifting network topology, 
characterized by varying degrees of separation between nodes and the potential for rapid movement 
into and out of communication range. Consequently, the dynamic nature of UAV movement complicates 
the establishment and maintenance of stable communication links, which are crucial for effective data 
transmission and overall network reliability [1] . 
The unpredictable mobility patterns of UAVs exacerbate the inherent instability of FANETs, leading to 
frequent link breakages and disruptions in connectivity4. As UAVs navigate their operational 
environments, their rapid acceleration, deceleration, and change in flight trajectories can result in 
sudden disconnects or the formation of new links with neighboring nodes. Such fluctuations make it 
increasingly difficult to maintain reliable, long-term routes essential for data transmission between 
users. Existing routing protocols that depend on static node positioning are often ill-equipped to handle 
this level of dynamism, necessitating the development of adaptive routing mechanisms that can quickly 
respond to changing topologies [2]. 
The need for more sophisticated routing protocols becomes evident, as they must not only cope with the 
frequent re-establishment of links but also optimize data pathways based on real-time mobility patterns. 
Addressing these challenges requires innovative strategies that leverage machine learning, rapid 
topology discovery techniques, and real-time data dissemination methods. By allowing FANET to 
intelligently adapt to changing network conditions, such protocols can enhance the reliability and 
efficiency of communications in environments characterized by the inherent uncertainties of UAV 
operations. [3] Introducing a mobility model,such as the Random Waypoint Model, to simulate UAV 
movement can help predict topology changes. The model typically involves UAVs moving toward 
random destinations, pausing for a period, and then moving again, representing a typical UAV movement 
pattern in FANETs. 
 
2.2 Communication Limitations Due to Rapid Movement 
The rapid movement of UAVs in FANETs poses significant challenges for communication, primarily due 
to Doppler shifts, signal fading, and interference. The Doppler effect, caused by the relative velocity 
between the UAVs and the ground stations, can result in frequency shifts that degrade signal quality. 
Additionally, as UAVs move rapidly, they encounter varying environmental conditions, leading to signal 
fading and increased interference. 
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These communication limitations can cause packet loss, delays, and reduced throughput, impacting the 
overall performance of the network. As a result, routing protocols in FANETs must account for these 
factors, ensuring that routes are selected not only based on the shortest path but also on the quality of 
communication links. This requires incorporating real-time link quality assessment and prediction into 
routing decisions. 
 
2.3 Energy Constraints of UAVs 
Energy constraints are a critical concern in FANETs, as UAVs are typically powered by batteries with 
limited capacity. The energy consumed by a UAV includes not only the power required for flight but also 
the energy needed for communication, data processing, and other onboard activities. Efficient energy 
management is crucial for prolonging the operational time of UAVs, particularly in missions where long-
duration flight or extended network coverage is required. Routing protocols in FANETs must be 
designed with energy efficiency in mind. This can be achieved by minimizing the energy consumption 
associated with communication, such as by reducing the transmission power, optimizing the routing 
path to avoid unnecessary retransmissions, and selecting routes that balance energy usage among UAVs. 
Energy-aware routing metrics can be incorporated into routing decisions to ensure that the network 
remains operational for as long as possible. [4].  
 
2.4 Need for Adaptive Protocols 
Given the dynamic and challenging environment of FANETs, there is a pressing need for adaptive routing 
protocols that can respond gracefully to changes in network topology, communication quality, and 
energy availability. Adaptive protocols are designed to be flexible, allowing them to adjust their behavior 
based on real-time network conditions.These protocols can leverage various techniques, such as 
machine learning and reinforcement learning, to predict changes in the network and proactively adjust 
routes. For example, a reinforcement learning-based protocol might learn the optimal routing strategies 
over time by interacting with the network environment, selecting routes that maximize network 
performance while minimizing energy consumption.Despite advances in adaptive routing, there are still 
gaps in developing fully autonomous protocols that can handle the extreme variability in FANETs. 
 
3. Reinforcement Learning and Applications of Reinforcement Learning in Routing 
Reinforcement Learning (RL) is an advanced area of machine learning that focuses on how agents 
interact with their environment to achieve specific goals through trial and error. Agents are designed to 
take actions in specific states within an environment with the objective of maximizing cumulative 
rewards over time. This process involves key components: the agent, the environment, states, actions, 
rewards, policies, and value functions. The agent learns a policy, which is a mapping from states to 
actions that guides its decision-making process. [5]A fundamental principle underlying RL is the 
exploration-exploitation trade-off. This balance requires the agent to explore new actions that might 
lead to better rewards while exploiting known actions that yield high rewards1. Its adaptability and 
iterative learning capabilities make RL particularly useful in complex and dynamic environments, 
including those characterized by unpredictable changes, such as wireless communication networks. 
 
3.1. Mobile Ad Hoc Networks (MANETs) 
In MANETs, nodes are characterized by their ability to move freely and change their interconnections, 
posing significant challenges for routing protocols. Reinforcement Learning (RL) has been integrated 
into routing algorithms to enhance decision-making and resource allocation in these dynamic 
environments. Studies have demonstrated that RL-based approaches can effectively learn and adapt to 
changing network topologies, resulting in improved path selection and reduced packet loss. 
 
3.2. Vehicular Ad Hoc Networks (VANETs) 
RL has been extensively applied in VANETs, where vehicles engage in dynamic communication to ensure 
traffic safety and efficiency. RL algorithms optimize routing decisions by predicting traffic conditions, 
managing congestion, and adjusting routes in real-time based on vehicle movement. Research indicates 
that RL enhances routing efficiency and improves traffic management, contributing to safer and more 
efficient transportation systems. 
 
3.3. Flying Ad Hoc Networks (FANETs) 
The integration of Unmanned Aerial Vehicles (UAVs) into FANETs introduces additional complexities, 
such as high mobility and constantly shifting network topologies. RL algorithms are employed to swiftly 
adapt to these changes, ensuring reliable and efficient data transmission. Research has shown that RL 
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plays a critical role in overcoming routing challenges in FANETs, allowing UAVs to dynamically learn 
optimal routing paths while considering variables like altitude and speed fluctuations.The classification 
of Reinforcement Learning (RL)-based routing protocols based on thedata dissemination process reveals 
four primary categories: unicast, multicast, broadcast,and geocast.   Each of these routing techniques has 
distinct characteristics, advantages, and disadvantages which influence their suitability for specific 
applications within FlyingAd Hoc Networks (FANETs). A comparative table is provided to summarize the 
main features and challenges of each method. 
 

Table 1 . Routing Methods 

Routing 
Method 

Description Strengths Weaknesses 

Unicast-based Point-to-po in communication with 
onesource and one destination. 
Requires precise localization(GPS). 

Direct communication 
and simplicity. 

High communication over head, 
delays, and band width 
consumption; poor performance 
in dynamic topologies. 

Multicas 
t-based 

Dissemination of data packets 
to a defined group of UAVs. Requires 
membership in multicast groups. 

Efficient use of 
bandwidth and energy 
for group 
communication. 

Needs constant reconstruction 
of routing trees; challenges 
in dynamic topologies. 

Broadca 
st-based 

Flooding messages throughout 
The entire network. 

Simple implementation 
And does not require 
spatial information. 

High bandwidth use, potential 
for network congestion, and 
redundancy issues. 

Geocast- 
based 

Sending data to all UAVs 
within a specified geographic 
area. Geographic areas are 
part of the packets. 

Focused communication 
to specific 
regions. 

Relies on positioning systems; 
requires knowledge of 
geographical locations9. 

 
Table 2. Related Works 

Author(s) Protocol Reward Influencing Factors Evaluation Metrics 
Ji et al. RHR Control packet types Packet Delivery Ratio (PDR), 

Round-Trip Time (RTT), 
Overhead (OH) 

Li et al. QGrid Message delivery to the target 
grid 

PDR, Hop Count (HC), Delay, 
Number of Forwarding 
Nodes, Threshold (TH) 

Wu et al. DTNP Direct connection status or HC, 
elapsed time since last connection 

Delay, PDR 

Zhang et al. RSAR HC, Link Reliability (LR), 
Bandwidth (BW) 

PDR, End-to-End Delay 
(E2ED), Average Route 
Length, OH 

Roh et al. Q-LBR Load of UAV relay node, Ground 
network congestion 

PDR, Network Utilization, 
Delay 

Wu et al. ARPRL Arrival of control packet from 
sender 

PDR, E2ED, HC, OH 

Wu et al. QTAR Link Quality (LQ), Link Expiration 
Time, Delay 

PDR, E2ED 

Li et al. ECTS Arrival of charging data at 
destination 

Communication Cost, 
Connection Probability, PDR, 
OH 

Luo et al. IV2XQ Packet forwarding to the 
destination 

PDR, E2ED, HC, OH 

Yang et al. HAEQR Current node’s membership in the 
one-hop neighbor set of the 
destination 

PDR, E2ED, HC 

BouzidSmida et LEQRV Link Lifetime (LQ), Distance to MOS, Peak Signal-to-Noise 
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al. Destination, Mean Opinion Score 
(MOS), Neighbor Count, Buffer 
Level 

Ratio, Structural Similarity, 
E2ED, Frame Loss 

Lolai et al. RRIN Vehicle speed difference, 
direction, queue data packets, 
signal fading, LR 

PDR, Packet Loss Ratio (PLR), 
Delay, TH 

Nahar et al. RL-SDVN Distance from destination vehicle Delay, TH 
Dai et al. QLASS Reputation gain, Node action 

payoff 
PDR, Reputation, Utility 

Jiang et al. QAGR Received Signal Strength (RSS), 
Transmission Distance, Collision 
Events 

PDR, E2ED, HC 

Wu et al. V2R-CBR Observed node’s one-hop 
neighbor status, HC, Payoff, LQ 

PDR, Number of Collided MAC 
Frames, E2ED, TH 

Zhang et al. FLHQRP Cluster’s adjacency to destination 
cluster, Traffic Density 

PDR, E2ED, HC, OH 

Chang et al. CEVCS Observed node’s one-hop 
neighbor status, HC, LQ 

PDR, TH 

Saravanan et al. DRLV Maximum link utilization under 
future strategy, Optimal link 
utilization 

PDR, E2ED, OH 

Ye et al. VMDRL Energy loss, Transmission Range 
(TR) 

Energy Cost (EC), Packet Loss 
Ratio (PLR), Transmission 
Time, Communication 
Interruption Probability 

Zhang et al. TDRL-RP Trust-related information PDR, TH 
Yang et al. VDDS HC, LQ TH, Number of Gateway 

Cluster Heads 
Nahar et al. SeScR Quality of available routes, Vehicle 

Speed, Location 
Cluster Stability, Lifetime, 
Alienation Time, Delay, TH, 
Computation Delay 

Zhang et al. SD-TDQL Trust value per vehicle, Reverse 
Delivery Ratio 

Packet Loss Ratio (PLR), 
Delay 

Zhang et al. T-DDRL Trust-related information TH, E2ED 
Zhang et al. blockSDV Threshold (TH) TH 
Bi et al. RLRC Current node’s neighbor status, 

HC, Link Utility, BW 
PDR, HC 

Jafarzadeh et al. RRPV Link Quality (LQ), Distance from 
Neighbor to Destination 

PDR, Delay, OH 

Li et al. QMPS Proportion of delay-sensitive 
messages, Probability of 
successful message reception 

E2ED, TH, PLR 

Arafat et al. QTAR Next-hop node type, E2ED, Node 
Velocity, EC 

PDR, E2ED, EC, Network 
Lifetime, OH 

Zheng et al. RLSRP Conditional success/failure 
probability of packet transmission 
to next-hop 

Success Rate, Average Route 
Lifetime, HC, PDR, TH, No 
Retransmissions, Delay 

Mowla et al. AFRL Detection of jamming Accuracy, Success Rate, HC, 
Iterations to Convergence, 
Cumulative Reward 

Sliwa et al. PARRoT Link Expiry Time, Changes in 
Neighbor Set of Forwarding Node 

PDR, E2ED 

Da Costa et al. Q-FANET Link to destination, Local 
Minimum 

E2ED, Jitter, PDR 

Liu et al. QMR Link to destination, Local 
Minimum, E2ED, EC 

E2ED, Packet Arrival Ratio, EC 

Khan et al. RL- Successful Packet Transmission EC, Number of Links 
Yang et al. QL-FLRP HC, Shortest Path Distance (SPDT) HC, Remaining Node Energy, 
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TR 
Liu et al. ARdeep Link to destination, Local 

Minimum, Distance, Energy of 
Neighbor 

PDR, E2ED 

Ayub et al. AI-Hello Transmission Range, Allowed 
Airspace, Number of UAVs, Speed 
Ranges 

EC, OH, PDR, TH, E2ED 

He et al. FLRL Optimality of Neighbor Node, Link 
Cost (LC) 

HC, LC 

 
 

 
Figure 2. RL based Routing Protocols 

 
4. Differentiation of FANET Routing Protocols: Influencing Factors, Metrics, and Evaluation 
4.1 Influencing Factors and Protocol Objectives 
The various routing protocols in FANETs are designed with specific influencing factors that address 
different aspects of network performance and routing efficiency. For instance, Ji et al. [9] proposed the 
RHR protocol, which focuses on the type of control packets transmitted through the network. This 
protocol evaluates performance using Packet Delivery Ratio (PDR), Round-Trip Time (RTT), and 
Overhead (OH), aiming to optimize the efficiency of control packet management. In contrast, Li et al. [10] 
introduced the QGrid protocol, which considers whether messages are successfully delivered to the 
destination grid. Key performance metrics for QGrid include PDR, Hop Count (HC), delay, and 
Throughput (TH). This approach highlights the protocol’s emphasis on ensuring effective message 
delivery and minimizing routing delays. Wu et al. [11] developed the DTNP protocol, which evaluates 
routing effectiveness based on the direct connection status and the elapsed time since the last 
connection. Metrics such as Delay and PDR are used to assess performance, reflecting the protocol’s 
focus on maintaining stable and timely connections. Zhang et al. [12]’s RSAR protocol considers Link 
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Reliability (LR), Bandwidth (BW), and Hop Count (HC) to enhance routing stability. It measures 
performance using PDR and End-to-End Delay (E2ED), showcasing an approach geared towards 
ensuring reliable and efficient data transmission. 
 
4.2 Network Load Management and Resource Optimization 
Several protocols address network load and resource constraints to optimize data transmission and 
minimize network congestion. Roh et al. [13] proposed the Q-LBR protocol, which considers UAV relay 
node load and ground network congestion. It evaluates PDR, network utilization, and delay, focusing on 
balancing network load and enhancing resource management. 
Wu et al. [14]’s ARPRL protocol assesses whether control packets arrive from the sender, using metrics 
such as PDR, E2ED, Hop Count (HC), and Overhead (OH). This protocol emphasizes managing network 
load by monitoring packet arrival and ensuring efficient routing. Li et al. [16] developed the ECTS 
protocol, which evaluates factors like communication cost and connectionprobability. Performance 
metrics include PDR, communication cost, and OH, reflecting a focus on optimizing resource usage and 
reducing communication expenses. 
 
4.3 Metrics for Evaluating Routing Performance 
The choice of performance metrics reveals the primary objectives and evaluation criteria for each 
protocol. Luo et al. [17]’s IV2XQ protocol focuses on packet forwarding success and node neighbor 
status, measuring PDR, E2ED, and HC. Yang et al. [18]’s HAEQR protocol considers whether the current 
node belongs to a set of one-hop neighbors of the destination, using metrics like PDR, E2ED, and HC to 
evaluate routing performance. BouzidSmida et al. [19]’s LEQRV protocol assesses factors such as link 
lifetime, link quality, and distance to the destination. It measures metrics like Mean Opinion Score 
(MOS), Peak Signal-to-Noise Ratio (PSNR), and Packet Loss Ratio (PLR), providing a comprehensive 
evaluation of link reliability and data transmission quality. Lolai et al. [20]’s RRIN protocol takes into 
account vehicle speed differences, vehicle direction, and the number of data packets in the queue. 
Performance is evaluated using PDR, PLR, delay, and TH, highlighting a focus on dynamic vehicle 
interactions and queue management. 
 
4.4 Simulation Environments and Evaluation Tools 
The choice of simulation environments and tools is crucial for accurately assessing the performance of 
routing protocols. Protocols such as RHR [9] and QGrid [10] are evaluated using ns3 and custom-made 
simulators, respectively. ns3 is known for its detailed network modeling capabilities, while custom 
simulators offer targeted evaluations based on specific protocol requirements. Protocols like Zhang et al. 
[25]’s FLHQRP and Chang et al. [26]’s CEVCS use ns2, which provides insights into cluster stability and 
node communication efficiency. Advanced simulators such as sumo and omnet++ are employed by 
protocols like IV2XQ [17] and SeScR [31], offering detailed evaluations in complex network scenarios. 
Other protocols, such as those developed by Liu et al. [42] and Khan et al. [43], use wsnet and matlab to 
assess performance based on factors like link quality and network lifetime. The diverse simulation tools 
used across these protocols reflect the need for adaptable evaluation environments to validate 
effectiveness under varying FANET conditions. 
 
4.5 Comparative Analysis and Impact on Routing Efficiency 
A comparative analysis of these protocols reveals their contributions to advancing routing efficiency in 
FANETs. The RHR protocol by Ji et al. [9] and QGrid by Li et al. [10] focus on optimizing control packet 
management and message delivery. Protocols like Q-LBR [13] and ARPRL [14] address network load and 
congestion management, demonstrating approaches to balancing resource utilization and enhancing 
data transmission efficiency. Protocols such as LEQRV [19] and RRIN [20] emphasize link quality and 
vehicle dynamics, contributing to a more nuanced understanding of routing performance in dynamic 
environments. The diverse set of metrics and simulation environments employed by these protocols 
illustrates the multifaceted nature of routing optimization in FANETs, highlighting ongoing efforts to 
address various network challenges and improve overall performance. 
 
CONCLUSION 
In this paper, we explored the intricate landscape of routing challenges in Flying Ad Hoc Networks 
(FANETs) and evaluated the role of Reinforcement Learning (RL) in addressing these issues. FANETs, 
characterized by their dynamic topologies and high mobility, pose significant challenges to traditional 
routing approaches, including issues related to network stability, communication quality, and energy 
efficiency. Reinforcement Learning offers a promising solution to these challenges by enabling protocols 
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to adaptively learn and optimize routing strategies based on real-time network conditions. Our survey 
categorized and examined various RL-based routing methods, highlighting their applications in Mobile 
Ad Hoc Networks (MANETs), Vehicular Ad Hoc Networks (VANETs), and FANETs. Each method presents 
unique strengths and limitations, reflecting the complexity of designing adaptive and efficient routing 
protocols in highly dynamic environments. The comparative analysis of different RL- based routing 
protocols revealed their diverse approaches to managing network load, optimizing resource usage, and 
improving overall routing performance. While protocols such as RHR, QGrid, LEQRV, and RRIN 
demonstrate significant advancements in addressing specific routing challenges, ongoing research is 
essential to refine these methods further. Future work in this field should focus on enhancing RL-based 
routing protocols to better handle extreme network dynamics and energy constraints inherent  to 
FANETs. Integrating RL with other emergingtechnologies, such as edge computing and advanced 
sensors, may also provide new avenues for improving routing efficiency and network reliability. In 
conclusion, the integration of Reinforcement Learning into FANET routing strategies represents a 
substantial advancement towards more resilient and adaptive communication systems. By continuously 
evolving and addressing the identified challenges, future research has the potential to significantly 
enhance the performance and applicability of FANETs in various real-world scenarios. 
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