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ABSTRACT 
In this paper, we have investigated the Bianchi type VI0  space-time in presence of perfect fluid 
distribution contained with one dimentional cosmic string within the context of f(R,T) gravity. The exact 
solutions to the non linear differential field equations have been obtained by considering the expansion 
scalar is proportional to the shear scalar , power law form of an average scale factor and the 

takabayashi string’s equation of state.The constructed model's kinematical and physical properties have 
been examined and graphically presented. Remarkably, the resulting model is similar to the latest obser-
vational data.  
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1. INTRODUCTION 
The universe is well believed to be undergoing a late-time cosmic acceleration, as shown by many high 
redshift supernovae observation [1-3] . This accelerated expansion is supposed to be caused by the fluid 
known as dark energy. Recent astronomical observations indicate that 70% of the universe consists of 
dark energy with negative pressure. Many theoretical and experimental developments have been made to 
investigate the mysterious facets of the cosmos. In recent years, a number of prominent researchers have 
dedicated their efforts to conceptually understanding these unknown characteristics of the universe by 
building several cosmological models based on gravity theories. Amongst these modified gravity theories 
like )(),(),,(),(),( QfGfTRfTfRf and many more are providing satisfactory solutions to cosmo-

logical problems. Recently, the ),( TRf  gravity was developed by Harko et al.[4] as a generalization of 

)(Rf  gravity. Together with a trace of the energy-momentum tensor T, the theory includes an arbitrary 

function of the Ricci scalar R. They have acquired both the test particle's equation of motion and the gravi-
tational field equation in metric formalism. The ),( TRf  gravity models could justify the late time cosmic 

accelerated enlargement of  the universe. Thakre et al. [5] studied behaviour of quark and strange quark 
matter for higher dimensional bianchi type-I universe in ),( TRf gravity. Analysis of marder’s space-time 

tsallis holographic dark energy cosmological model in ),( TRf  theory of gravity investigated by Ugale et 

al. [6] . Pawar et al. [7] have studied Kaluza–Klein string cosmological model in ),( TRf theory of 

gravity.String fluid cosmological models are now generating a lot of interest since they are thought to play 
an essential role in the universe's early evolution and late-time accelerated expansion. The strings are 
only one-dimensional hypothetical topological defects that arise during the phase transition from a tem-
perature in the early stages of evolution of the universe. Anisotropy in space-time is caused by strings, 
even if they are now undetectable. Many authors have recently conducted extensive research on string 
cosmological models of the cosmos because of the crucial role that strings play in explaining the evolution 
of the early stages of our universe. The universe is homogenous and anisotropic, and the isotropy process 
of these models can be explored throughout time, according to current observational data that supports 
Bianchi type cosmological models. Also, from a theoretical perspective, anisotropic universes are more 
general than isotropic model universes. Considering Bianchi type-II, -VI0, -VIII and –IX space-time, The 
letelier string cosmological model in different context to obtain the exact solutions of  the model studied 
by krori et al. [8]. Magnetized Bianchi type III string cosmological model for anti-stiff fluid in general 
relativity investigated by Chhajed et al. [9]. Magnetized string cosmology for perfect fluid distribution 
using Bianchi type III space-time explain by Bali & Pareek [10]. Katore et al. [11] inspected massive 
string-magnetized perfect fluid universe in the bimetric theory of gravitations. The accelerating, 

mailto:vmete5622@gmail.com


Journal of Computational Analysis and Applications                            VOL. 33, NO. 2, 2024 

 
 

                                                                2                                                             V.G.Mete et al 1-9 

expanding, and anisotropic cosmic model was developed utilising perfect fluid coupled string cosmology 
and the Bianchi-type I metric by Chirde et al. [12]. Sahoo and Mishra [13] studied cosmic acceleration 
may result not only due to geometric contribution to the matter but also depends on matter contents of 
the universe in ),( TRf gravity. The Bianchi-type I metric was used by Gaikwad et al. [14] to analyse the 

massive string magnetised barotropic perfect fluid cosmological model. Rani et al. [15] studied 
accelerating Bianchi type III perfect fluid string cosmological model within the context of ),( TRf grav-

ity. Pawar et al. [16] looked at the Perfect fluid and heat flow in ),( TRf  theory. Bali et al. [17] have in-

vestigated massive string magnetized barotropic perfect fluid cosmological model in general relativity 
using the Bianchi type I metric. Capozziello et al.[18] investigated (n + 1)-dimensional string-dilaton 
cosmology with an effective dilaton potential in the presence of perfect-fluid matter. Pawar and Dabre 
[19] studied bulk viscous string cosmological model with constant deceleration parameter in teleparallel 
gravity, By adopting a hybrid expansion law, Ram & Chandel [20] investigated the dynamics of a 
magnetised string universe. The string of cloud in presence of perfect fluid and decaying vacuum energy 
density  have been analyzed by Pradhan et al. [21]. Hatkar and Dudhe [22] studied bulk viscus dark fluid 
in research paper dark energy scenario in Metric )(Rf formalism. Mete & Dudhe [23] investigated 

Bianchi type I cosmological model with perfect fluid in modified )(Tf  gravity. Again, in the context of 

perfect fluids and/or string fluids, the significant work conducted by several distinguished researchers 
[24-28] 
In the present work , we are interested in studying Bianchi type VI0 space-time to construct the 
takabayashi string cosmological model for perfect fluid distribution within the context of  ),( TRf  grav-

ity. The paper is organized as follows: Sec. 2, the basic concepts of ),( TRf gravity are introduced. In Sec. 

3, we have obtained the corresponding field equations by considering Bianchi type-VI0 space-time. In Sec. 
4, we discover the non-linear field equations together with solutions and calculated the different physical 
and kinematical quantities to study the cosmological implications and presented them graphically. Lastly, 
in Sec. 5, we have concluded the investigations. 
 
2. BRIEF REVIEW OF ),( TRf  GRAVITY 

The ),( TRf  gravity theory is the modification or generalization of Einstein's General Theory of 

Relativity, which has been proposed by Harko et al. [4]. The action for the modified ),( TRf gravity is 

  4 41
, d ,

16
mS g f R T x g L d x


                                                                                                      (1) 

where ),( TRf is an arbitrary function of the Ricci scalar R, the trace T of the stress-energy tensor of the 

matter i jT and mL is the matter Lagrangian density. The stress-energy tensor i jT  for matter is defined as 

( )2
,m

ij i j

g L
T

g g






 


                                                                                                                                 (2) 

and its trace given by i j
i j i jT g T . 

By assuming that the Lagrangian density mL of matter depends only on the metric tensor 

components ijg rather than its derivative, so equation (2) leads to 

( )
2 .m

ij i j m ij

L
T g L

g


 


                                                                                                                                       (3) 

By varying the action S in equation (1) with respect to the metric tensor components ijg , the field 

equations of  ),( TRf  gravity theory are obtained as 

          
1

, R , g , g 8 T , T , ,
2

R ij i j R i j i j i j T i j T i jf R T f R T f R T f R T f R T                               (4) 

with ,lm lm
ij i j

T
g

g





 
    

 
which follows from the relation  ,

lm
lm

ij i ji j

g T
T

g




 
   

 
and  i

i , 

 
( , )

, ,R

f R T
f R T

R





 

 ,
,T

f R T
f R T

T





, and i are the covariant derivatives. The contraction of 

equation (4) yields 
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            , 3 , 2 , 8 , , ,R R T Tf R T R f R T f R T f R T T f R T                                                          (5) 

with .i j
i jg   Eliminating  ,Rf R T from equations (4) and (5) we get, 

    1 2

1 1
, R g , g ,

3 6
R ij i j i jf R T R f R T F F

 
    

 
                                                                                           (6) 

where       1

1
8 , g ,

3
T ij i jF f R T T T

 
   

 
     2

1
, , g , .

3
T ij T ij i j RF f R T f R T f R T        

From equation (2) we have 
 

2
1 1

2 .
2 2

i j i j m
ij lm m ij lmlm lm ij lm

T g L
g g L g T

g g g g

 

 

  
        

                                                                                   (7) 

Using the relation 
i j

i j lmlm
g g

g


 





  with ,  i jlm lm

T

g


 




  is obtained as 

2

2 2 .lm m
ij i j i j m ij lm

L
T g L g

g g


    

 
                                                                                                               (8) 

We now consider the matter as perfect fluid and thus the stress-energy tensor of the matter Lagrangian is 
given by 

( p)u ,ij i j ijT u pg                                                                                                                                      (9) 

where  and p are the respective energy density and pressure,  1,0,0,0iu  are the co-moving 

coordinates for four velocities satisfying the conditions 1i
iu u  , and 0.i

j iu u  Using (8) we have 

obtained the expression for the variation of  stress energy of perfect fluid as 
2 .ij ij ijT pg                                                                                                                                                 (10) 

In this paper, we consider the cosmological consequences of the model proposed by Harko et al., as 

 ( , ) 2 ,f R T R f T                                                                                                                                          (11) 

where  f T is an arbitrary function of the trace of the stress-energy tensor of matter. 

Combining equations (10) and (11), the field equation (4) of ( , )f R T gravity leads to 

     
1

8 2 2 .
2

i j i j i j i j i jR Rg T f T T pf T f T g                                                                                         (12) 

where the overhead prime denotes the differentiation with respect to the argument. 
 
3. METRIC AND FIELD EQUATIONS 
We consider Bianchi type-VI0 metric as 

2 2 2 2 2 2 2 2 2 2 ,x xds dt A dx B e dy C e dz                                                                                                     (13)                        

where the scale factors A, B, and C are functions of cosmic time t only. 
The energy-momentum tensor for string of clouds with perfect fluid distribution is given as  

( ) ,T p u u pg x x   
                                                                                                                           (14) 

in which u denotes a four-velocity vector and x  denotes a unit space-like vector of the cloud string 

satisfying the conditions, 



 xxuu 1 and 0

 xu , for   and  is the proper energy density of 

the particle, p is the isotropic pressure,   is the strings tension density. 

In a co-moving coordinate system, we have 

   10,0,0,1 ,   ,0,0,0 ,u x A                                                                                                                    (15) 

If the configuration of particle density is indicated by p  , then we assume 

.p                                                                                                                                                            (16) 

The energy condition leads to 0   and 0p  , leaving the sign of  unrestricted.  

We consider  the function )(Tf  given by Harko et al. [4] as 

( ) ,f T T                                                                                                                                                        (17) 
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where  is a constant. In the co-moving coordinate system, we obtained the field equations for Bianchi 

type-VI0 space-time in the framework of ( , )f R T  gravity as 

   
2

1
8 3 3 ,

B C BC
p p

B C BC A
           

  
                                                                                          (18) 

 
2

1
8 3 ,

A C AC
p p

A C AC A
         

   
                                                                                                      (19)     

 
2

1
8 3 ,

A B AB
p p

A B AB A
         

  
                                                                                                      (20) 

 
2

1
8 3 ,

AB BC AC
p

AB BC AC A
          

    
                                                                                             (21) 

0,
B C

B C
 


                                                                                                                                                         (22) 

where the overhead dot (.) denotes the derivative with respect to cosmic time t. Here we have five highly 
non-linear differential field equations with six unknowns, namely; , , , , ,A B C p   . 

We find some kinematical space-time quantities, as follows:  
The average scale factor a  and the spatial volume V are respectively defined as 

33 ,    .a ABC V a                                                                                                                                        (23) 

Also, the volumetric expansion rate of the universe is described by the generalized mean Hubble’s 
parameter H given by 

 
3

1 2 3
1

1 1
,

3 3
i

i
H H H H H


                                                                                                                       (24)                                    

in which ,1
A

H
A




,2
B

H
B




and 3
C

H
C




denotes the directional Hubble parameters. 

Using equations (23) and (24), we have obtained the expansion scalar  , mean anisotropy parameter  , 

shear scalar , and deceleration parameter q respectively as 

3 ,
A B C

H
A B C

    
 

                                                                                                                                         (25) 

2
3

1

1
,

3

i

i

H H

H



 
   

 
                                                                                                                                         (26) 

32 2 2

1

1
,

2
i

i
H 



 
  

 
                                                                                                                                     (27) 

2

1
1 .

aa d
q

dt Ha

 
      

 




                                                                                                                                  (28) 

 
4. SOLUTION OF  FIELD EQUATIONS 
From equation (22), we get  
B C                                                                                                                                                                (29) 

where is an integrating constant but without loss of generality we consider 1  .  
Now using equation (29) and subtracting equation (18) from equation (19), we obtain 

 
2

2 2

2
8 2 .

A B AB B

A B AB B A
       

   
                                                                                                             (30) 

Using equation (29) and subtracting equation (21) from equation (20), we obtain 

  
2

2
8 2 .

A B AB B
p

A B AB B
       

   
                                                                                                            (31) 

For the deterministic solutions, we consider the shear scalar  is proportional to the expansion scalar  

which lead to the following analytic relation 

,nA B                                                                                                                                                                (32) 

where n  is a constant. 

We consider the power law form of an average scale factor as  

0 ,ma a t                                                                                                                                                             (33) 



Journal of Computational Analysis and Applications                            VOL. 33, NO. 2, 2024 

 
 

                                                                5                                                             V.G.Mete et al 1-9 

where 0a and m  are an arbitrary constants. 

From equations (23), (29) and (32) we get the value of metric potential functions as 

   
3 3

2 2
0 0,   .

n
m mn nA a t B C a t                                                                                                                       (34) 

Using equation (34) in equation (13), we get 

     
6 6

2 2 2 2 2 2 22 2
0 0 ,

n
m m x xn nd s d t a t d x a t e d y e d z                                                                            (35)  

The spatial volume V, the mean Hubble's parameter H, the expansion scalar , the mean anisotropy pa-

rameter , the shear scalar ,  and the deceleration parameter q are obtained as 
3 3
0 ,mV a t                                                                                                                                                           (36) 

,
m

H
t

                                                                                                                                                              (37) 

3
,

m

t
                                                                                                                                                               (38) 

 

 

2

2

2 1
,

2

n

n


 


                                                                                                                                                   (39) 

 

 

22
2

22

3 1
,

2

m n

t n






                                                                                                                                            (40) 

1
1 .q

m
                                                                                                                                                           (41) 

The Ratio  

 

 

22

2 2

11
.

3 2

n

n

 


 
                                                                                                                                               (42)  

 

 
Figure 1. The variation of H & versus t  for m  = 1.5 

 
From equation (36), it is observed that the volume is an power function of cosmic time that is ultimately 
zero in the begining but as time increases the volume increases continously and diverges at infinite time 
indicating the expansion of universe. The parameters discussed in equations (37) & (38) i.e. Hubble’s 
parameter and expansion scalar whose graphical behaviour has been dipicted in Figure 1 has the 
infinitely large value in the begining but as time increases both the parameters drastically declines and 
dissapearse at infinite time. It indicates that the rate of expansion of the universe is high in the begining 
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but with time it slows down. We are well known with the fact that the deceleration parameter symbolizes 
the inflation for 0q  , deflation for 0q   and constant rate expansion for 0q  . The equation (41) 

demonstrates the value of the deceleration parameter whose graphical behaviour with m has been 
discussed in Figure 2, in which when 0 1m   we have observed the deflation phase, for 1m   constant 

rate evolution of universe while for the rest values of m  we observed the inflationary cosmic accelerating 

phase. Furthermore, the mean anisotropy parameter and the ratio in equation (42) shows that the 
discussed model doesn’t approach isotropy except for 1n  . 

 

 
Figure 2. The variation of q  versus m  

 
 
From equation (30), we have obtained the  tension density as 

     
  

6

2 2
0

2

3 3 1 1 2 2
.

8 2 2

n

m nm m n t n a t

n t


 


   


 

                                                                                            (43) 

 

 
Figure 3. The variation of   versus t  for  2.2,2,7.0,5.1 0  anm   
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A positive value of string tension density shows the existence of the universe's string phase, whereas a 
negative value of   suggests the disappearance of the universe's string phase, meaning that the universe 

is dominated by the cosmological constant [29]. Figure 3 presents the graphical representation of tension 
density versus time. From figure it is been observed that the tension density initially is a super-increasing 
function from negative to positive until 0.6, after which it immediately drops and gradually diminishes 
and vanishes. It demonstrates that the cosmos is first dominated by the cosmological constant for a short 
period of time before entering the string phase. 
Now we consider the Takabayashi equation of state for the string cloud model as 

 1 .                                                                                                                                                          (44) 

where is constant such that 0.   

Then the energy density is obtained as 

       

  

6

2 2
0

2

1 3 3 1 1 2 2

.
8 2 2

n

m nm m n t n a t

n t




 




 
     
  


 

                                                                                (45) 

 

 
Figure 4. The variation of   Vs. t  for 2.2,5.0,2,7.0,5.1 0  anm   

 
The graphical representation of energy density versus time has been demonstrated in Figure 4, in which 
it has been observed that the energy density rises immediately from negative to positive in the initial 
phase of evolution, but thereafter declines immediately, diminishes and vanishes. 
From equation (31) using equation (45) the pressure is obtained as 

            

  

6
22 2

0

2 2

2 2 1 3 2 1 3 1 6 1 2 2
.

8 2 2

n

m nt n a t m n n m m n n
p

n t

 

 


            


 

                            (46) 

Figure 5 shows the graphical representation of pressure versus time. It can be seen that pressure was 
positive for a brief period of time at first, but that it quickly decreased from positive to negative until it 
reached a certain extent, after which it rise in negative and disappeared. 
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Figure 5. The variation of p  versus t  for 2.2,5.0,2,7.0,5.1 0  anm   

 
5. CONCLUSIONS 
Along the paper, the Bianchi type-VI0  space-time in presence of string of clouds coupled with perfect fluid 
distributionhave been studied the context of ),( TRf  gravity. In order to derive exact solutions for the 

highly non-linear differential field equations, we have taken into consideration the fact that the shear 
scalar  is proportional to the expansion scalar , the power law form of an average scale factor and the 

Takabayashi equation of state for the string cloud model.  
The constructed model is free from an initial singularity and anisotropic except for 1n  . Furthermore, it 

is observed that the model is in decelerating phase for 0 1m  , for 1m   it is in constant rate evolution 

and having inflationary cosmic accelerating phase for the rest values of .m  

From the observations of tension density, the deriverd model is first dominated by the cosmological 
constant for a short period of time but then enters in string phase. Additionally it has been observed that 
the energy density rises immediately from negative to positive in the initial phase of evolution, but 
thereafter declines immediately, diminishes, and vanishes. However the pressure was positive for a brief 
period of time at first, but that it quickly decreased from positive to negative until it reached a certain 
extent, after which it rise in negative and disappeared. 
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