M-fractional integral inequalities

George A. Anastassiou Department of Mathematical Sciences University of Memphis Memphis, TN 38152, U.S.A. ganastss@memphis.edu

Abstract

Here we present M-fractional integral inequalities of Ostrowski and Polya types.

2010 AMS Mathematics Subject Classification : 26A33, 26D10, 26D15. Keywords and phrases: M-fractional derivative, Ostrowski inequality, Polya inequality.

1 Introduction

We are inspired by the following results:

Theorem 1 ([2], p. 498, [1], [5]) (Ostrowski inequality) Let $f \in C^1([a, b]), x \in [a, b].$ Then

$$
\left| \frac{1}{b-a} \int_{a}^{b} f(z) dz - f(x) \right| \le \left(\frac{(x-a)^{2} + (b-x)^{2}}{2(b-a)} \right) \|f'\|_{\infty}.
$$
 (1)

Inequality (1) is sharp. In particular the optimal function is

$$
f^*(z) := |z - x|^\alpha (b - a), \ \alpha > 1. \tag{2}
$$

Theorem 2 ([6], [7, p. 62], [8], [9, p. 83]) (Polya integral inequality)

Let $f(x)$ be differentiable and not identically a constant on [a, b] with $f(a) =$ $f(b) = 0$. Then there exists at least one point $\xi \in [a, b]$ such that

$$
|f'(\xi)| > \frac{4}{(b-a)^2} \int_a^b f(x) dx.
$$
 (3)

In this short work we present inequalities of types (1) and (3) involving the left and right fractional local general M-derivatives, see [3], [4].

2 Background

We need

Definition 3 ([4]) Let $f : [a,\infty) \to \mathbb{R}$ and $t > a$, $a \in \mathbb{R}$. For $0 < \alpha \leq 1$ we define the left local general M-derivative of order α of function f, denoted by $D_{M,a}^{\alpha,\beta}f(t)$, by

$$
D_{M,a}^{\alpha,\beta}f(t) := \lim_{\varepsilon \to 0} \frac{f\left(t \mathbb{E}_{\beta}\left(\varepsilon\left(t-a\right)^{-\alpha}\right)\right) - f\left(t\right)}{\varepsilon},\tag{4}
$$

 $\forall t > a, where \mathbb{E}_{\beta}(t) = \sum_{k=0}^{\infty}$ $\frac{t^k}{\Gamma(\beta k+1)}$, $\beta > 0$, is the Mittag-Leffler function with one parameter.

If $D_{M,a}^{\alpha,\beta}f(t)$ exists over (a,γ) , $\gamma \in \mathbb{R}$ and $\lim_{t \to a+} D_{M,a}^{\alpha,\beta}f(t)$ exists, then

$$
D_{M,a}^{\alpha,\beta}f(a) = \lim_{t \to a+} D_{M,a}^{\alpha,\beta}f(t).
$$
 (5)

Theorem 4 ([4]) If a function $f : [a,\infty) \to \mathbb{R}$ has the left local general Mderivative of order $\alpha \in (0,1], \beta > 0$, at $t_0 > a$, then f is continuous at t_0 .

We need

Theorem 5 ([4]) (Mean value theorem) Let $f : [\gamma, \delta] \to \mathbb{R}$ with $\gamma > a, 0 \notin$ $[\gamma, \delta]$, such that

(1) f is continuous on $[\gamma, \delta]$,

(2) there exists $D_{M,a}^{\alpha,\beta}f$ on (γ,δ) for some $\alpha \in (0,1]$. Then, there exists $c \in (\gamma, \delta)$ such that

$$
f(\delta) - f(\gamma) = \left(D_{M,a}^{\alpha,\beta} f(c) \right) \frac{\Gamma(\beta+1) (c-a)^{\alpha}}{c} (\delta - \gamma).
$$
 (6)

We need

Definition 6 ([3]) Let $f : (-\infty, b] \to \mathbb{R}$ and $t < b, b \in \mathbb{R}$. For $0 < \alpha \leq 1$ we define the right local general M-derivative of order α of function f, denoted as $_{M,b}^{\alpha,\beta}Df\left(t\right) ,\text{\ }b\overline{y}% =\int_{0}^{T}\left(\frac{1}{\left\vert \mathbf{d}\right\vert }\right) ^{B}\left(\mathbf{d}\right) \left\vert \mathbf{d}\right\vert ^{2}d\mathbf{d}x$

$$
\underset{M,b}{\alpha,\beta}Df(t) := -\lim_{\varepsilon \to 0} \frac{f\left(t \mathbb{E}_{\beta}\left(\varepsilon\left(b-t\right)^{-\alpha}\right)\right) - f\left(t\right)}{\varepsilon},\tag{7}
$$

 $\forall t < b.$

If ${}^{\alpha,\beta}_{M,b}Df(t)$ exists over (γ,b) , $\gamma \in \mathbb{R}$ and $\lim_{t \to b-}$ $_{\alpha,\beta}$ $_{M,b}$ $Df(t)$ exists, then

$$
{}_{M,b}^{\alpha,\beta}Df\left(b\right) = \lim_{t \to b^{-} M,b} {}_{D}f\left(t\right). \tag{8}
$$

Theorem 7 ([3]) If a function $f : (-\infty, b] \to \mathbb{R}$ has the right local general M-derivative of order $\alpha \in (0,1], \beta > 0$, at $t_0 < b$, then f is continuous at t_0 .

We also need

Theorem 8 ([3]) (Mean value theorem) Let $f : [\gamma, \delta] \to \mathbb{R}$ with $\delta < b$, $0 \notin$ $[\gamma, \delta]$, such that

(1) f is continuous on $[\gamma, \delta]$,

(2) there exists ${}^{\alpha,\beta}_{M,b}Df$ on (γ,δ) for some $\alpha \in (0,1]$.

Then, there exists $c \in (\gamma, \delta)$ such that

$$
f(\delta) - f(\gamma) = \left(-\frac{\alpha, \beta}{M, b} D f(c)\right) \left(\frac{\Gamma(\beta + 1) (b - c)^{\alpha}}{c}\right) (\delta - \gamma).
$$
 (9)

Fractional derivatives $D_{M,a}^{\alpha,\beta}$ and $_{M,b}^{\alpha,\beta}$ possess all basic properties of the ordinary derivatives and beyond, see [3], [4].

3 Main Results

We present the following M -fractional Ostrowski type inequality:

Theorem 9 Let $a < \gamma < \delta < b$, $0 \notin [\gamma, \delta], f : [a, b] \to \mathbb{R}$, which is continuous over $[\gamma, \delta]$. We assume that $D_{M,a}^{\alpha,\beta}, \alpha, \beta, D$ exist and are continuous over $[\gamma, x_0]$ and $[x_0, \delta]$, respectively, where $x_0 \in [\gamma, \delta]$, for some $\alpha \in (0, 1]$. Then

$$
\left| \frac{1}{\delta - \gamma} \int_{\gamma}^{\delta} f(x) dx - f(x_0) \right| \le \frac{\Gamma(\beta + 1)}{2(\delta - \gamma)}
$$

$$
\left[\left\| \frac{D_{M,a}^{\alpha,\beta} f(x)}{x} \right\|_{\infty, [\gamma, x_0]} (x_0 - a)^{\alpha} (x_0 - \gamma)^2 + \left\| \frac{\frac{\alpha,\beta}{M,b} Df(x)}{x} \right\|_{\infty, [x_0, \delta]} (b - x_0)^{\alpha} (\delta - x_0)^2 \right].
$$
\n(10)

Proof. Let $x \in [\gamma, x_0]$, the by Theorem 5, there exists $c_1 \in (x, x_0)$, such that \sim

$$
f(x_0) - f(x) = \left(\frac{D_{M,a}^{\alpha,\beta} f(c_1)}{c_1}\right) \Gamma\left(\beta + 1\right) \left(c_1 - a\right)^{\alpha} \left(x_0 - x\right). \tag{11}
$$

Thus

$$
|f(x) - f(x_0)| = \left| \frac{D_{M,a}^{\alpha,\beta} f(c_1)}{c_1} \right| \Gamma(\beta + 1) (c_1 - a)^{\alpha} |x - x_0| \le
$$

$$
\left\| \frac{D_{M,a}^{\alpha,\beta} f(x)}{x} \right\|_{\infty, [\gamma, x_0]} \Gamma(\beta + 1) (x_0 - a)^{\alpha} |x - x_0|,
$$
(12)

 $\forall \; x \in [\gamma, x_0] \,.$ Let now $x \in [x_0, \delta]$, then by Theorem 8, there exists $c_2 \in (x_0, x)$, such that

$$
f(x) - f(x_0) = -\left(\frac{\alpha \beta}{\mu b} D f(c_2)\right) \Gamma(\beta + 1) (b - c_2)^{\alpha} (x - x_0). \tag{13}
$$

Thus

$$
|f(x) - f(x_0)| = \left| \frac{\sum_{M,b}^{\alpha,\beta} Df(c_2)}{c_2} \right| \Gamma(\beta + 1) (b - x_0)^{\alpha} |x - x_0| \le
$$

$$
\left| \frac{\sum_{M,b}^{\alpha,\beta} Df(x)}{x} \right| \le \Gamma(\beta + 1) (b - x_0)^{\alpha} |x - x_0|,
$$
(14)

 $\forall x \in [x_0, \delta]$.

We have that

$$
\left| \frac{1}{\delta - \gamma} \int_{\gamma}^{\delta} f(x) dx - f(x_0) \right| = \frac{1}{\delta - \gamma} \left| \int_{\gamma}^{\delta} (f(x) - f(x_0)) dx \right| \le
$$

$$
\frac{1}{\delta - \gamma} \int_{\gamma}^{\delta} |f(x) - f(x_0)| dx = \tag{15}
$$

$$
\frac{1}{\delta - \gamma} \left[\int_{\gamma}^{x_0} |f(x) - f(x_0)| dx + \int_{x_0}^{\delta} |f(x) - f(x_0)| dx \right]^{(\text{by (12)}, (14))}
$$
\n
$$
\frac{1}{\delta - \gamma} \left[\left\| \frac{D_{M,a}^{\alpha,\beta} f(x)}{x} \right\|_{\infty, [\gamma, x_0]} \Gamma(\beta + 1) (x_0 - a)^{\alpha} \int_{\gamma}^{x_0} (x_0 - x) dx \right.
$$
\n
$$
+ \left\| \frac{\frac{\alpha,\beta}{M,b} Df(x)}{x} \right\|_{\infty, [x_0, \delta]} \Gamma(\beta + 1) (b - x_0)^{\alpha} \int_{x_0}^{\delta} (x - x_0) dx \right] =
$$
\n
$$
\frac{\Gamma(\beta + 1)}{2(\delta - \gamma)} \left[\left\| \frac{D_{M,a}^{\alpha,\beta} f(x)}{x} \right\|_{\infty, [\gamma, x_0]} (x_0 - a)^{\alpha} (x_0 - \gamma)^2 + (16) \left\| \frac{\frac{\alpha,\beta}{M,b} Df(x)}{x} \right\|_{\infty, [x_0, \delta]} (b - x_0)^{\alpha} (\delta - x_0)^2 \right].
$$

The theorem is proved. \blacksquare

Next we give two M -fractional Polya type inequalities:

Theorem 10 All as in Theorem 9 and $f(x_0) = 0$. Then

$$
\left| \int_{\gamma}^{\delta} f(x) dx \right| \leq \int_{\gamma}^{\delta} |f(x)| dx \leq \frac{\Gamma(\beta + 1)}{2}
$$

$$
\left[\left\| \frac{D_{M,a}^{\alpha,\beta} f(x)}{x} \right\|_{\infty, [\gamma, x_0]} (x_0 - a)^{\alpha} (x_0 - \gamma)^2 + \left\| \frac{\frac{\alpha,\beta}{M,b} Df(x)}{x} \right\|_{\infty, [x_0, \delta]} (b - x_0)^{\alpha} (\delta - x_0)^2 \right].
$$
\n(17)

Proof. Same as in the proof of Theorem 9, by setting $f(x_0) = 0$. **Corollary 11** (to Theorem 10, case of $x_0 = \frac{\gamma + \delta}{2}$) All as in Theorem 9 and $f\left(\frac{\gamma+\delta}{2}\right)$ $= 0.$ Then

$$
\int_{\gamma}^{\delta} |f(x)| dx \le \frac{\Gamma(\beta + 1)(\delta - \gamma)^2}{8}
$$

$$
\left[\left\| \frac{D_{M,a}^{\alpha,\beta} f(x)}{x} \right\|_{\infty,[\gamma,\frac{\gamma+\delta}{2}]} \left(\left(\frac{\gamma+\delta}{2} \right) - a \right)^{\alpha} + \left\| \frac{\frac{\alpha,\beta}{M,b} Df(x)}{x} \right\|_{\infty,[\frac{\gamma+\delta}{2},\delta]} \left(b - \left(\frac{\gamma+\delta}{2} \right) \right)^{\alpha} \right].
$$
\n(18)

Proof. Apply (17) for $x_0 = \frac{\gamma + \delta}{2}$.

References

- [1] G.A. Anastassiou, Ostrowski type inequalities, Proc. AMS 123, 3775-3781 (1995).
- [2] G.A. Anastassiou, Quantitative Approximations, Chapmann & Hall / CRC, Boca Raton, New York, 2001.
- [3] G. Anastassiou, About the right fractional local general M-derivative, Analele Univ. Oradea, Fasc. Mate., accepted for publication, 2019.
- [4] G. Anastassiou, On the left fractional local general M-derivative, submitted for publication, 2019.
- [5] A. Ostrowski, Über die Absolutabweichung einer differtentiebaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv. 10 (1938), 226-227.
- [6] G. Polya, Ein mittelwertsatz für Funktionen mehrerer Veränderlichen, Tohoku Math. J., 19 (1921), 1-3.
- [7] G. Polya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Volume I, Springer-Verlag, Berlin, 1925. (German)
- [8] G. Polya, G. Szegö, Problems and Theorems in Analysis, Volume I, Classics in Mathematics, Springer-Verlag, Berlin, 1972.
- [9] G. Polya, G. Szegö, Problems and Theorems in Analysis, Volume I, Chinese Edition, 1984.