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Abstract

In this paper, we develop an integer and fractional-order susceptible,
infectious, and recovery (SIR) epidemic model based on vital dynamics,
i.e., birth, death, immigration, and variable population size, including
infection and recovery rates. We investigate the stability analysis for the
fractional SIR model on the disease-free and endemic equilibrium points.
The existence and uniqueness conditions of solutions for a stable model
are also discussed. The residual power series (RPS) approach is used
to get the semi-analytical solutions of the proposed model in the form
of convergent fractional power series. The convergence analysis of the
RPS method is also discussed. Numerical results demonstrate the effect
of distinct fractional orders α ∈ (0, 1] on the population density. The
obtained results are exciting and may be beneficial for medical experts to
control the epidemic disease.
Keywords: SIR model, Caputo derivative, Fractional power series, and
Residual power series.

1 Introduction

Fractional calculus is a powerful tool for the mathematical modelling of physical
problems [1, 2, 3]. It has been applied in many research areas, such as science,
economics, engineering, etc. Additionally, fractional differential equations in
nonlinear dynamics have been studied by many researchers [4, 5, 6, 7]. In clas-
sical integer-order epidemic models, the disease spreads between compartments
of the model with an equal chance. The rates of contact and illness transmission
should be constant. A fractional derivative could replace a classical derivative
to learn more about the dynamics of the model [8, 9, 10].
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There is no long-lasting protection against several infectious illnesses. Some
infections recover, and some people become susceptible after an infection. The
SIR model studies this kind of illness. The schematic of the susceptible, in-
fectious, and recovery (SIR) model is shown in Fig. 1. Here, S(t), I(t), and
R(t) represent the number of susceptible individuals, the number of infectious
individuals, and the number of recovery individuals, respectively, at time t. λ
is the number of births per unit time. µ1, µ2, and µ3 are the numbers of im-
migration and deaths per unit of time for S, I, and R, respectively. r1 and r2
are the numbers of infectious people per infected person per unit of time and
the number of recovered people per unit of time, respectively. The considered
population size at time t is N(t) = S(t) + I(t) + R(t).

Figure 1: SIR Epidemic Model.

Researchers have successfully investigated several generalized variations of
the classical and fractional-order epidemic models. Hethcote and Driessche [11]
studied an susceptible-infectious-susceptible (SIS) epidemic model with vari-
able population size. Ackleh and Allen [12] and Zaman et al. [13] discussed the
SIR epidemic model with varying population sizes. El-Saka [14] addressed frac-
tional epidemic models like SIR and susceptible-infectious-recovery-susceptible
with varying population sizes. The SIR model with varying population sizes
and continuous recruitment was examined by Bakare et al. [15]. Hassouna et
al. [16] studied a fractional SIS epidemic model with varying population sizes.
Fractional-order SIR epidemiological models were examined by Tafhvaei et al.
[17]. Koziol et al. [18] discussed the influence of fractional order values on the
dynamic properties of the SIR model. The SIR, susceptible-exposive-infectious-
recovery, and susceptible-exposive-infective-asymptomatic-recovery models with
fractional orders were reviewed by Chen et al. [19]. Balzotti et al. [20] studied
the fractional SIS epidemic model with varying population sizes. Meena and
Kumar [21, 22] discussed the fractional SIR and SIS epidemic models with con-
stant population size. Sidi Ammi et al. [23] studied the diffusive SIR epidemic
model described by reaction-diffusion equations involving a fractional deriva-
tive. A fractional SIR epidemic model with treatment cure rate was discussed
by Sadki et al. [24].

The above-cited articles considered SIR models with constant population
sizes. To the best of the author’s knowledge, the study of the integer and
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fractional order SIR models, considering the model’s vital dynamics and variable
population size, is lacking in the literature. So, in this paper, we develop integer
and fractional order SIR epidemic models consisting of susceptible, infectious,
and recovery groups with birth, immigration, death, infection, and recovery
rates for variable population sizes. Moreover, parameters (i.e., λ, µ1, µ2, and µ3)
are added to discuss more insight into the model’s dynamics. These parameters
are directly associated with particular groups and also affect the population
sizes during the disease.

In the present study, we deal with the aforementioned integer and fractional-
order SIR epidemic models. The linearization procedure is used to discuss the
stability analysis of the fractional model with disease-free and endemic equilib-
rium points. The existence and uniqueness of the solutions for the stable model
are also examined. Semi-analytical solutions of the proposed model are obtained
in the form of a fast-convergent series with the help of the RPS method. The
absolute errors between the semi-analytical and numerical solutions using the
Runge-Kutta (RK) method for α = 1 are obtained to show the RPS method’s
effectiveness. The effect of the fractional order (α) on population densities is
also discussed. The numerical and graphical results show that this study can
benefit researchers, policy-makers, and medical experts understand the dynam-
ics of epidemic models.

The structure of the paper is as follows: After the introduction in Section 1,
some basic definitions of fractional calculus are listed in Section 2. A mathemat-
ical model is formulated in Section 3. The stability and existence of a uniformly
stable solution for the proposed model are discussed in Section 4 and Section 5,
respectively. Section 6 discusses the procedures of the RPS Method and the
solution of the model. Numerical results and graphs are discussed in Section 7,
and the outcomes of the study are concluded in Section 8.

2 Preliminaries

This section discusses the definitions and properties of fractional calculus. The
fractional derivative has a variety of fascinating definitions. Yet, given their ad-
vantage over issues with an initial value, we use the well-known Caputo deriva-
tives in the present study.

Definition 2.1 [25] The Caputo fractional derivative of order α of function
r(y) is defined as:

C
0 D

α
y r(y) =


1

Γ(q − α)

∫ y

0

r(q)(v)

(y − v)α+1−q
dv, if (q − 1) < α < q, q ∈ N,

dq

dyq
r(y), if α = q, q ∈ N.

Definition 2.2 [26, 27] The fractional power series (FPS) about y = y0 can be
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defined as

∞∑
j=0

lj(y − y0)jα = l0 + l1(y − y0)α + l2(y − y0)2α + . . . ;

(q− 1) < α ≤ q, q ∈ N, y ≥ y0. Where lj , j = 0, 1, 2, . . . are the coefficients of
the FPS.

Theorem 2.1 [26, 27] A FPS of the function r(y) about y = y0 can be defined
as

r(y) =
∞∑
j=0

lj(y − y0)jα, y0 ≤ y < (y0 + ρ).

It was found that if C
0 D

jα
y0
r(y), ∀j = 0, 1, 2, . . . are continuous on (y0, y0 + ρ),

then lj =
Dj

y0
r(y0)

Γ(1 + jα)
. Where ρ is the radius of convergence and C

0 D
jα
y0

=

C
0 D

α
y0

C
0 D

α
y0

. . .C0 D
α
y0

(j-times).

Property 2.1 [25] Let r(y) = yq, q ≥ 0,

C
0 D

α
y y

q =


Γ(q + 1)

Γ(q + 1 − α)
yq−α, if q ≥ ⌈α⌉,

0, if q < ⌈α⌉.

3 Mathematical Model

A mathematical model is vital in analyzing the physical, chemical, linguistic,
etc., systems. The SIR model is general and can be used for the mathemati-
cal study of any disease like influenza, measles, chicken pox, mumps, etc. The
assumption of a fractional-order SIR model in the epidemic has essential im-
plications for the time domain. The fractional order model gives a better way
to understand the physical behavior of the SIR epidemic model than the inte-
ger order model. Following are the assumptions to construct the SIR epidemic
model at time t.

3.1 Assumptions

1. The disease spreads in a particular region with a variable population size
N(t), i.e., S(t) + I(t) + R(t) = N(t).

2. r1S(t)I(t) is total newly infected people from susceptible at time t.

3. r2I(t) is the number of recovered infected persons at time t. The recovered
person has ongoing immunity.

4. The number of births per unit of time t in the susceptible compartment
is λN(t) at the rate λ.

4
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5. The number of deaths and immigration in susceptible, infectious, and
recovered compartments is µ1S(t), µ2I(t), and µ3R(t), respectively, with
rates of µ1, µ2, and µ3.

For integer order, the SIR model with vital dynamics can be formulated as

dS(t)

dt
= λN(t) − r1S(t)I(t) − µ1S(t),

dI(t)

dt
= r1S(t)I(t) − r2I(t) − µ2I(t),

dR(t)

dt
= r2I(t) − µ3R(t),

dS(t)

dt
+

dI(t)

dt
+

dR(t)

dt
=

dN(t)

dt
.


(1)

At t = 0, the initial conditions of the model (Eq. (1)) are given as

S(0) = S0, I(0) = I0, R(0) = R0, and N(0) = N0. (2)

By replacing the integer order derivative with the Caputo derivatives of order
α ∈ (0, 1] in model (Eq. (1)), we have the following model

C
0 D

α
t S(t) = λN(t) − r1S(t)I(t) − µ1S(t),

C
0 D

α
t I(t) = r1S(t)I(t) − r2I(t) − µ2I(t),

C
0 D

α
t R(t) = r2I(t) − µ3R(t),

C
0 D

α
t S(t) + C

0 D
α
t I(t) + C

0 D
α
t R(t) = C

0 D
α
t N(t).

 (3)

At t = 0, the initial conditions of the model (Eq. (3)) are

S(0) = S0, I(0) = I0, R(0) = R0, and N(0) = N0. (4)

Where parameters r1, r2, λ, µ1, µ2, and µ3 are the positive constants.

4 Stability Analysis of the Fractional SIR Epi-
demic Model

In this section, we discuss disease-free and endemic equilibrium points of the
model (Eq. (3)) as

C
0 D

α
t S(t) = 0, C

0 D
α
t I(t) = 0, C

0 D
α
t R(t) = 0.

4.1 Disease-free Equilibrium Point

The disease-free equilibrium point (i.e., I = 0) is (SEq, IEq, REq) = (0, 0, 0). We
find matrix

A =

λ− µ1 λ λ
0 −(r2 + µ2) 0
0 r2 −µ3


5
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and its eigenvalues are

λ1 = λ− µ1,

λ2 = −r2 − µ2,

λ3 = −µ3.

Hence, (SEq, IEq, REq) is local asymptotically stable if (λ− µ1) < 0.

4.2 Endemic Equilibrium Point

The endemic equilibrium point (SEq, IEq, REq) = (S⋆, I⋆, R⋆), which is charac-
terized by the existence of infected nodes, i.e., I ̸= 0 is given as

S⋆ =
r2 + µ2

r1
, I⋆ =

µ3(µ1 − λ)(r2 + µ2)

r1 [(λ− r2 − µ2) ∗ µ3 − λr2]
, R⋆ =

r2(µ1 − λ)(r2 + µ2)

r1 [(λ− r2 − µ2) ∗ µ3 − λr2]
.

We find matrix

A =


λ− µ1 −

µ3(r2 + µ2)(λ− µ1)

r2 + µ3(r2 + µ1 − λ)
λ− r2 − µ2 λ

µ3(r2 + µ2)(λ− µ1)

r2 + µ3(r2 + µ1 − λ)
0 0

0 r2 −µ3


and if real parts of its all eigenvalues of matrix A are negative, then (SEq, IEq, REq)
is local asymptotically stable.

5 Existence and Uniqueness of Stable Solution

Let y1(t) = S(t), y2(t) = I(t), and y3(t) = R(t), then

f1(y1(t), y2(t), y3(t)) = (λ− µ1)y1(t) − (λ + r1y1(t))y2(t) − λy3(t),

f2(y1(t), y2(t), y3(t)) = r1y1(t)y2(t) − (r2 + µ2)y2(t),

f3(y1(t), y2(t), y3(t)) = r2y2(t) − µ3y3(t).

Let D = {y1, y2, y3 ∈ R : |yi(t)| ≤ a, t ∈ [0, ρ]} and |fi(y1(t), y2(t), y3(t))| ≤ Mi,
i = 1, 2, 3. Each function f1, f2, and f3 is continuous with respect to the three
parameters y1, y2, and y3. Then on D we have∣∣∣∣ ∂

∂y1
f1(y1, y2, y3)

∣∣∣∣ ≤ k1,

∣∣∣∣ ∂

∂y2
f1(y1, y2, y3)

∣∣∣∣ ≤ k2,

∣∣∣∣ ∂

∂y3
f1(y1, y2, y3)

∣∣∣∣ ≤ k3,∣∣∣∣ ∂

∂y1
f2(y1, y2, y3)

∣∣∣∣ ≤ l1,

∣∣∣∣ ∂

∂y2
f2(y1, y2, y3)

∣∣∣∣ ≤ l2,

∣∣∣∣ ∂

∂y3
f2(y1, y2, y3)

∣∣∣∣ ≤ l3,∣∣∣∣ ∂

∂y1
f3(y1, y2, y3)

∣∣∣∣ ≤ m1,

∣∣∣∣ ∂

∂y2
f3(y1, y2, y3)

∣∣∣∣ ≤ m2,

∣∣∣∣ ∂

∂y3
f3(y1, y2, y3)

∣∣∣∣ ≤ m3,

6

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

240 Meena et al 235-252



where ki, li, and mi, i = 1, 2, 3 are positive constants.
Consider the following initial value problem which represents the proposed
model (Eq. (3))

C
0 D

α
t y1(t) = f1(y1(t), y2(t), y3(t)), t > 0, and y1(0) = y10,

C
0 D

α
t y2(t) = f2(y1(t), y2(t), y3(t)), t > 0, and y2(0) = y20, (5)

C
0 D

α
t y3(t) = f3(y1(t), y2(t), y3(t)), t > 0, and y3(0) = y30.

Definition 5.1 By a solution of the system (Eq. (5)), we mean a column vector
(y1(t), y2(t), y3(t))τ , y1, y2, and y3 ∈ C[0, T ], T < ∞ where C[0, T ] is the class
of continuous functions defined on the interval [0, T ] and τ denote the transpose
of the matrix, and

F (Y (t)) = (f1(y1(t), y2(t), y3(t)), f2(y1(t), y2(t), y3(t)), f3(y1(t), y2(t), y3(t)))τ .

Now, applying Theorem 2.1 [28], we deduce that the considered system has a
unique solution. Also, this solution is uniformly Lyapunov stable by Theorem
3.2 [28].

6 Solution using RPS Method

6.1 RPS Methodology

In this section, we apply the RPS method [21, 29, 30, 31, 32, 33] to solve the
proposed model (Eq. (3)) using following steps

Step 1: The FPS for S(t), I(t), R(t), and N(t) about t = 0 can be written as

S(t) =
∞∑
j=0

ajt
jα

Γ(jα + 1)
, I(t) =

∞∑
j=0

bjt
jα

Γ(jα + 1)
,

R(t) =
∞∑
j=0

cjt
jα

Γ(jα + 1)
, N(t) =

∞∑
j=0

djt
jα

Γ(jα + 1)
,


0 ≤ t < ρ. (6)

The nth-truncated series of S(t), I(t), R(t), and N(t) denoted by Sn(t),
In(t), Rn(t), and Nn(t), respectively, are defined as

Sn(t) =
n∑

j=0

ajt
jα

Γ(jα + 1)
, In(t) =

n∑
j=0

bjt
jα

Γ(jα + 1)
,

Rn(t) =
n∑

j=0

cjt
jα

Γ(jα + 1)
, Nn(t) =

n∑
j=0

djt
jα

Γ(jα + 1)
,


0 ≤ t < ρ. (7)

For n = 0, from Eqs. (4) and (7), we obtain

S0(t) = a0 = S0(0) = S0, I0(t) = b0 = I0(0) = I0,

R0(t) = c0 = R0(0) = R0, N0(t) = d0 = N0(0) = N0.
(8)

7
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Now, from Eqs. (7) and (8) the nth-truncated series of Eq. (7) can be
defined as

Sn(t) = a0 +
n∑

j=1

ajt
jα

Γ(jα + 1)
, In(t) = b0 +

n∑
j=1

bjt
jα

Γ(jα + 1)
,

Rn(t) = c0 +
n∑

j=1

cjt
jα

Γ(jα + 1)
, Nn(t) = d0 +

n∑
j=1

djt
jα

Γ(jα + 1)
.

(9)

Step 2: Define the residual functions for model (Eq. (3)) as

ResS(t) = C
0 D

α
t S(t) − λN(t) + r1S(t)I(t) + µ1S(t),

ResI(t) = C
0 D

α
t I(t) − r1S(t)I(t) + (r2 + µ2)I(t),

ResR(t) = C
0 D

α
t R(t) − r2I(t) + µ3R(t),

ResN (t) = C
0 D

α
t N(t) − λN(t) + µ1S(t) + µ2I(t) + µ3R(t).

 (10)

Hence, the nth-residual functions of S(t), I(t), R(t), and N(t), respec-
tively, are

ResSn
(t) = C

0 D
α
t Sn(t) − λNn(t) + r1Sn(t)In(t) + µ1Sn(t),

ResIn(t) = C
0 D

α
t In(t) − r1Sn(t)In(t) + (r2 + µ2)In(t),

ResRn
(t) = C

0 D
α
t Rn(t) − r2In(t) + µ3Rn(t),

ResNn
(t) = C

0 D
α
t Nn(t) − λNn(t) + µ1Sn(t) + µ2In(t) + µ3Rn(t).


(11)

The residual function satisfies the properties, ResS(t) = ResI(t) = ResR(t) =
ResN (t) = 0, ∀t ≥ 0. Also,

lim
n→∞

ResSn
(t) = ResS(t), lim

n→∞
ResIn(t) = ResI(t),

lim
n→∞

ResRn
(t) = ResR(t), lim

n→∞
ResNn

(t) = ResN (t).

From [29], we have

C
0 D

(j−1)α
t ResS(0) = C

0 D
(j−1)α
t ResSi(0),

C
0 D

(j−1)α
t ResI(0) = C

0 D
(j−1)α
t ResIi(0),

C
0 D

(j−1)α
t ResR(0) = C

0 D
(j−1)α
t ResRi

(0),

C
0 D

(j−1)α
t ResN (0) = C

0 D
(j−1)α
t ResNi

(0),


∀j = 1, . . . , n.

Step 3: To determine the coefficients aj , bj , cj , and dj for j = 1, 2, 3, . . . , n,
we substitute the nth-truncated series of S(t), I(t), R(t), and N(t) in

Eq. (11), and then use the Caputo fractional derivative operator D
(n−1)α
0

8
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on ResS(t), ResI(t), ResR(t), and ResN (t). It gives the equations

C
0 D

(n−1)α
t ResS(0) = C

0 D
(n−1)α
t ResSn(0) = 0,

C
0 D

(n−1)α
t ResI(0) = C

0 D
(n−1)α
t ResIn(0) = 0,

C
0 D

(n−1)α
t ResR(0) = C

0 D
(n−1)α
t ResRn

(0) = 0,

C
0 D

(n−1)α
t ResN (0) = C

0 D
(n−1)α
t ResNn

(0) = 0,


∀n = 1, 2, 3, . . . , . (12)

Step 4: Now, the values of aj , bj , cj , and dj for j = 1, 2, 3, . . . , n are obtained
using Eq. (12).

Step 5: The higher accuracy can be obtained by evaluating more coefficients
in Eq. (9).

6.2 Convergence Analysis

This section discusses the convergence analysis of semi-analytical solutions ob-
tained using the RPS method. Let us consider two FPS about z = z0

r(z) =
∞∑
j=0

li(z − z0)jα, rn(z) =
n∑

j=0

lj(z − z0)jα, z0 ≤ z < (z0 + ρ). (13)

Theorem 6.1 [27] If for 0 < P < 1, |rn+1(z)| ≤ P |rn(z)|, ∀n ∈ N and 0 <
z < ρ < 1, then the solution of an FPS converges to an exact solution.
Proof: We have

|r(z) − rn(z)| =

∣∣∣∣∣∣
∞∑

j=n+1

rj(z)

∣∣∣∣∣∣
≤

∞∑
j=n+1

|rj(z)|, ∀ 0 < z < ρ < 1.

≤ |j0|

∣∣∣∣∣∣
∞∑

j=n+1

P j

∣∣∣∣∣∣
=

Pn+1

(1 − P )
|j0| → 0 as n → ∞.

Theorem 6.2 [27] The FPS
∞∑
j=0

ljz
jα, z ≥ 0 has a radius of convergence ρ

1
α ,

if the classical power series expansion

∞∑
j=0

ljz
i, −∞ < z < ∞ has a radius of

convergence ρ.

9
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6.3 Solution

The parameters and initial conditions of the model (Eq. (3)) are taken as r1 =
0.002, r2 = 0.02, λ = 0.007, µ1 = 0.009, µ2 = 0.001, µ3 = 0.003, N0 = 100,
S0 = 75, I0 = 10, and R0 = 15.

For n = 1, from Eq. (7), we get

S1(t) = a0 +
a1t

α

Γ(α + 1)
, I1(t) = b0 +

b1t
α

Γ(α + 1)
,

R1(t) = c0 +
c1t

α

Γ(α + 1)
, N1(t) = d0 +

d1t
α

Γ(α + 1)
.

Using Step (3), 1st-residual functions of S(t), I(t), R(t), and N(t) are obtained
as

ResS1(t) = C
0 D

α
t S1(t) − 0.007N1(t) + 0.002S1(t)I1(t) + 0.009S1(t),

ResI1(t) = C
0 D

α
t I1(t) − 0.002S1(t)I1(t) + 0.021I1(t),

ResR1(t) = C
0 D

α
t R1(t) − 0.02I1(t) + 0.003R1(t),

ResN1(t) = C
0 D

α
t N1(t) − 0.007N1(t) + 0.009S1(t) + 0.001I1(t) + 0.003R1(t).

On substituting S1(t), I1(t), R1(t) and N1(t) into the previous expression and
equating ResS1

(0), ResI1(0), ResR1
(0), and ResN1

(0) to zero, the values of a1,
b1, c1, and d1 are obtained as

a1 = −0.1250, b1 = −0.0600, c1 = 0.1948, and d1 = 0.0098.

Hence, S1(t), I1(t), R1(t), and N1(t) can be written as

S1(t) = 75 − 0.1250tα

Γ(α + 1)
, I1(t) = 10 − 0.0600tα

Γ(α + 1)
,

R1(t) = 15 +
0.1948tα

Γ(α + 1)
, N1(t) = 100 +

0.0098tα

Γ(α + 1)
.

For n = 2, from Eq. (7), we get

S2(t) = 75 − 0.1250tα

Γ(α + 1)
+

a2t
2α

Γ(2α + 1)
, I2(t) = 10 − 0.0600tα

Γ(α + 1)
+

b2t
2α

Γ(2α + 1)
,

R2(t) = 15 +
0.1948tα

Γ(α + 1)
+

c2t
2α

Γ(2α + 1)
, N2(t) = 100 +

0.0098tα

Γ(α + 1)
+

d2t
2α

Γ(2α + 1)
.

Now, from Eqs. (11) and (12), we obtain

a2 = 0.0023, b2 = 0.0001, c2 = −0.0013, and d2 = 0.0012.

Thus, S2(t), I2(t), R2(t), and N2(t) can be written as

S2(t) = 75 − 0.1250tα

Γ(α + 1)
+

0.0023t2α

Γ(2α + 1)
, I2(t) = 10 − 0.0600tα

Γ(α + 1)
+

0.0001t2α

Γ(2α + 1)
,

R2(t) = 15 +
0.1948tα

Γ(α + 1)
− 0.0013t2α

Γ(2α + 1)
, N2(t) = 100 +

0.0098tα

Γ(α + 1)
+

0.0012t2α

Γ(2α + 1)
.
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The rest coefficients of Eq. (9) can be obtained using the following recurrence
relations

aj+1 = λdj − r1

j∑
r=0

arbj−rΓ(jα + 1)

Γ(rα + 1)Γ((j − r)α + 1)
− µ1aj ,

bj+1 = r1

j∑
r=0

arbj−rΓ(jα + 1)

Γ(rα + 1)Γ((j − r)α + 1)
− (r2 + µ2)bj ,

cj+1 = r2bj − µ3cj , dj+1 = λdj − µ1aj − µ2bj − µ3cj ,


∀j = 1, 2 . . . , n. (14)

7 Results and Discussion

To show the convergence of the method (From Eqs. (6), (7) and (13)), val-
ues of |S(t) − Sn(t)|, |I(t) − In(t)|, |R(t) − Rn(t)|, and |N(t) − Nn(t)| at
t = 0.99 with respect to n are plotted in Figs. 2a to 2d for different values
of α = 1.0, 0.99, 0.95, 0.9, and 0.85. It is observed that maximum absolute error
O(10−45) is obtained for n = 20. For n = 10, the maximum absolute errors
is O(10−20). In subsequent calculations, we use n = 10, as it gives sufficient
accuracy.
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Figure 2: Convergence analysis of the RPS approach at t = 0.99 for distinct
fractional orders α ∈ (0, 1].

For α = 1 and n = 10, the absolute errors between RK and RPS methods
in S(t), I(t), R(t), and N(t) are denoted by AbsS(t), AbsI(t), AbsR(t), and
AbsN (t), respectively, which are defined as

AbsS(t) = |S(t)RK − S(t)RPS |, AbsI(t) = |I(t)RK − I(t)RPS |,
AbsR(t) = |R(t)RK −R(t)RPS |, AbsN (t) = |N(t)RK −N(t)RPS |,

}
t ≥ 0.

(15)
For fractional order α = 1 and n = 10, comparison between the RK and

RPS solutions in S(t), I(t), R(t), and N(t) are shown in Table I. Further, the
absolute errors in S(t), I(t), R(t), and N(t) using the RPS and RK methods for
α = 1 are depicted in Figs. 3a to 3d. Here, maximum absolute errors in S(t),
I(t), R(t), and N(t) are O(10−13) for t ∈ (0, 1].

Table I and Figs. 3a to 3d show that the RPS method gives accurate and
reliable results for a minimal computational coefficients.
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Figure 3: Absolute error of S(t), I(t), R(t), and N(t) using RK and RPS
methods, respectively, for α = 1 and n = 10.

Table I: The values of S(t), I(t), R(t), and N(t) using RK and RPS methods
for α = 1 (upto 3 decimal places).

RK method RPS method
t S(t) I(t) R(t) N(t) S(t) I(t) R(t) N(t)

0 75.0 10.0 15.0 100.0 75.0 10.0 15.0 100.0
0.1 74.988 9.994 15.019 100.001 74.988 9.994 15.019 100.001
0.2 74.975 9.988 15.039 100.002 74.975 9.988 15.039 100.002
0.3 74.963 9.982 15.058 100.003 74.963 9.982 15.058 100.003
0.4 74.950 9.976 15.078 100.004 74.950 9.976 15.078 100.004
0.5 74.938 9.970 15.097 100.005 74.938 9.970 15.097 100.005
0.6 74.925 9.964 15.117 100.006 74.925 9.964 15.117 100.006
0.7 74.913 9.958 15.136 100.007 74.913 9.958 15.136 100.007
0.8 74.901 9.952 15.155 100.008 74.901 9.952 15.155 100.008
0.9 74.888 9.946 15.175 100.009 74.888 9.946 15.175 100.009
1.0 74.876 9.940 15.194 100.010 74.876 9.940 15.194 100.010
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Table II: The values of S(t), I(t), R(t), and N(t) via RPS method (upto 3
decimal places).

RPS (α = 0.80) RPS (α = 0.70)
t S(t) I(t) R(t) N(t) S(t) I(t) R(t) N(t)
0 75.0 10.0 15.0 100.0 75.0 10.0 15.0 100.0

0.1 74.979 9.990 15.033 100.001 74.973 9.987 15.043 100.002
0.2 74.963 9.982 15.058 100.003 74.956 9.979 15.069 100.004
0.3 74.949 9.975 15.080 100.004 74.941 9.972 15.092 100.005
0.4 74.936 9.969 15.100 100.005 74.928 9.965 15.112 100.006
0.5 74.923 9.963 15.120 100.006 74.916 9.959 15.132 100.007
0.6 74.912 9.957 15.138 100.007 74.905 9.954 15.149 100.008
0.7 74.900 9.952 15.157 100.008 74.894 9.949 15.166 100.009
0.8 74.889 9.946 15.174 100.009 74.884 9.944 15.182 100.010
0.9 74.878 9.941 15.191 100.010 74.874 9.939 15.198 100.011
1.0 74.867 9.936 15.208 100.011 74.864 9.934 15.213 100.012
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Figure 4: The semi-analytical solutions of S(t), I(t), R(t), N(t) for distinct
fractional orders α ∈ (0, 1] and n = 10.

The RPS solution of S(t), I(t), R(t), and N(t) for α = 0.80 and 0.70 are
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listed in Table II. The behavior of S(t), I(t), R(t), and N(t) for distinct frac-
tional order α ∈ (0, 1] is depicted in Figs. 4a to 4d, respectively. These figures
show that the number of susceptible and infected individuals decreases with a
decrease in α. At the same time, an increase in the recovered and total popu-
lation is observed with a decrease in α.

8 Conclusion

In this paper, we have developed the SIR model (Eq. (3)) with vital dynamics
and variable population sizes for integer and fractional orders. Further, we have
discussed the existence and uniqueness of the solutions for the stable model.
After that, the semi-analytical solutions for the proposed model are obtained
by the RPS approach. For α = 1, we have compared the results obtained by
RPS and the RK methods. The convergence analysis of the RPS technique
is also discussed. It is also observed that with the decline in fractional order
(α), the numbers of susceptible and infected decrease, while the numbers of
recovered personnel and the total population increase. Numerical simulation
and graphs show that the fractional SIR epidemic model with vital dynamics and
variable population size gives a better understanding and produces outstanding
results than an integer SIR epidemic model without vital dynamics and varying
population size. The results indicate that the RPS technique can be used as an
alternative method for solving linear and nonlinear differential equations of any
arbitrary order. This study may be helpful for medical experts in controlling
the infection during the disease.
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