Multivariate Ostrowski-Sugeno Fuzzy inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present multivariate Ostrowski-Sugeno Fuzzy type inequalities. These are multivariate Ostrowski-like inequalities in the context of Sugeno fuzzy integral and its special properties. They give tight upper bounds to the deviation of a multivariate function from its Sugeno-fuzzy multivariate averages.

2010 Mathematics Subject Classification: Primary: 26D07, 26D10, 26D15, 41A44, Secondary: 26A24, 26D20, 28A25.

Keywords and phrases: Sugeno fuzzy integral, multivariate function fuzzy average, deviation from fuzzy multivariate mean, Fuzzy multivariate Ostrowski inequality.

1 Introduction

The famous Ostrowski ([4]) inequality motivates this work and has as follows:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(y) \, dy - f(x) \right| \le \left(\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right) \left(b-a\right) \|f'\|_{\infty},$$

where $f \in C^1([a,b])$, $x \in [a,b]$, and it is a sharp inequality.

Another motivation comes from author's [2], pp. 507-508, see also [1]:

Let
$$f \in C^1\left(\prod_{i=1}^k [a_i, b_i]\right)$$
, where $a_i < b_i$; $a_i, b_i \in \mathbb{R}$, $i = 1, ..., k$, and let

$$x_0 := (x_{01}, ..., x_{0k}) \in \prod_{i=1}^k [a_i, b_i]$$
 be fixed. Then

$$\left| \frac{1}{\prod\limits_{i=1}^{k} \left(b_{i}-a_{i}\right)} \int_{a_{1}}^{b_{1}} \dots \int_{a_{i}}^{b_{i}} \dots \int_{a_{k}}^{b_{k}} f\left(z_{1},...,z_{k}\right) dz_{1}...dz_{k} - f\left(x_{0}\right) \right| \leq$$

$$\sum_{i=1}^{k} \left(\frac{(x_{0i} - a_i)^2 + (b_i - x_{0i})^2}{2(b_i - a_i)} \right) \left\| \frac{\partial f}{\partial z_i} \right\|_{\infty}.$$

The last inequality is sharp, the optimal function is

$$f^*(z_1, ..., z_k) := \sum_{i=1}^k |z_i - x_{0i}|^{\alpha_i}, \ \alpha_i > 1.$$

Here first we give a survey about Sugeno fuzzy integral and its basic special properties. Then we derive a set of multivariate Ostrowski-like inequalities to all directions in the context of Sugeno integral whitin its basic important properties. We finish with an application to a special multivariate case.

2 Background

In this section, some definitions and basic important properties of the Sugeno integral which will be used in the next section are presented. Also a preparation for the main results Section 3 is given.

Definition 1 (Fuzzy measure [6, 8]) Let Σ be a σ -algebra of subsets of X, and let $\mu : \Sigma \to [0, +\infty]$ be a non-negative extended real-valued set function. We say that μ is a fuzzy measure iff:

- (1) $\mu(\varnothing) = 0$,
- (2) $E, F \in \Sigma : E \subseteq F \text{ imply } \mu(E) \leq \mu(F) \text{ (monotonicity)},$
- (3) $E_n \in \Sigma$ $(n \in \mathbb{N})$, $E_1 \subset E_2 \subset ...$, $imply \lim_{n \to \infty} \mu(E_n) = \mu(\bigcup_{n=1}^{\infty} E_n)$ (continuity from below);
- (4) $E_n \in \Sigma$ $(n \in \mathbb{N})$, $E_1 \supset E_2 \supset ...$, $\mu(E_1) < \infty$, $imply \lim_{n \to \infty} \mu(E_n) = \mu(\bigcap_{n=1}^{\infty} E_n)$ (continuity from above).

Let (X, Σ, μ) be a fuzzy measure space and f be a non-negative real-valued function on X. We denote by \mathcal{F}_+ the set of all non-negative real valued measurable functions, and by $L_{\alpha}f$ the set: $L_{\alpha}f := \{x \in X : f(x) \geq \alpha\}$, the α -level of f for $\alpha \geq 0$.

Definition 2 Let (X, Σ, μ) be a fuzzy measure space. If $f \in \mathcal{F}_+$ and $A \in \Sigma$, then the Sugeno integral (fuzzy integral) [7] of f on A with respect to the fuzzy measure μ is defined by

$$(S) \int_{A} f d\mu := \vee_{\alpha \ge 0} \left(\alpha \wedge \mu \left(A \cap L_{\alpha} f \right) \right), \tag{1}$$

where \vee and \wedge denote the sup and inf on $[0, \infty]$, respectively.

The basic properties of Sugeno integral follow:

Theorem 3 ([5, 8]) Let (X, Σ, μ) be a fuzzy measure space with $A, B \in \Sigma$ and $f, g \in \mathcal{F}_+$. Then

- 1) (S) $\int_{A} f d\mu \leq \mu(A)$;
- 2) (S) $\int_A k d\mu = k \wedge \mu(A)$ for a non-negative constant k;
- 3) if $f \leq g$ on A, then $(S) \int_A f d\mu \leq (S) \int_A g d\mu$;
- 4) if $A \subset B$, then $(S) \int_A f d\mu \leq (S) \int_B f d\mu$;
- 5) $\mu(A \cap L_{\alpha}f) \leq \alpha \Rightarrow (S) \int_{A} f d\mu \leq \alpha$;
- 6) if $\mu(A) < \infty$, then $\mu(A \cap L_{\alpha}f) \ge \alpha \Leftrightarrow (S) \int_{A} f d\mu \ge \alpha$; 7) when A = X, then $(S) \int_{A} f d\mu = \bigvee_{\alpha \ge 0} (\alpha \wedge \mu(L_{\alpha}f))$;
- 8) if $\alpha \leq \beta$, then $L_{\beta}f \subseteq L_{\alpha}f$; 9) (S) $\int_A f d\mu \geq 0$.

Theorem 4 ([8], p. 135) Here $f \in \mathcal{F}_+$, the class of all finite nonnegative measurable functions on (X, Σ, μ) . Then

- 1) if $\mu(A) = 0$, then (S) $\int_A f d\mu = 0$, for any $f \in \mathcal{F}_+$; 2) if (S) $\int_A f d\mu = 0$, then $\mu(A \cap \{x | f(x) > 0\}) = 0$;
- 3) (S) $\int_A f d\mu = (S) \int_X f \cdot \chi_A d\mu$, where χ_A is the characteristic function of

4) (S)
$$\int_A (f+a) d\mu \leq (S) \int_A f d\mu + (S) \int_A a d\mu$$
, for any constant $a \in [0, \infty)$.

Corollary 5 ([8], p. 136) Here $f, f_1, f_2 \in \mathcal{F}_+$. Then

- 1) (S) $\int_{A} (f_{1} \vee f_{2}) d\mu \geq (S) \int_{A} f_{1} d\mu \vee (S) \int_{A} f_{2} d\mu;$ 2) (S) $\int_{A} (f_{1} \wedge f_{2}) d\mu \leq (S) \int_{A} f_{1} d\mu \wedge (S) \int_{A} f_{2} d\mu;$ 3) (S) $\int_{A \cup B} f d\mu \geq (S) \int_{A} f d\mu \vee (S) \int_{B} f d\mu;$ 4) (S) $\int_{A \cap B} f d\mu \leq (S) \int_{A} f d\mu \wedge (S) \int_{B} f d\mu.$

In general we have

$$(S) \int_{A} (f_1 + f_2) d\mu \neq (S) \int_{A} f_1 d\mu + (S) \int_{A} f_2 d\mu,$$

and

$$(S)\int_{A}afd\mu\neq a\left(S\right) \int_{A}fd\mu,\text{ where }a\in\mathbb{R},$$

see [8], p. 137.

Lemma 6 ([8], p. 138) (S) $\int_A f d\mu = \infty$ iff $\mu(A \cap L_\alpha f) = \infty$ for any $\alpha \in$ $[0,\infty)$.

We need

Definition 7 ([3]) A fuzzy measure μ is subadditive iff $\mu(A \cup B) \leq \mu(A) + \mu(A)$ $\mu(B)$, for all $A, B \in \Sigma$.

We mention

Theorem 8 ([3]) If μ is subadditive, then

$$(S)\int_{X} (f+g) d\mu \le (S)\int_{X} f d\mu + (S)\int_{X} g d\mu, \tag{2}$$

for all measurable functions $f, g: X \to [0, \infty)$.

Moreover, if (2) holds for all measurable functions $f, g: X \to [0, \infty)$ and $\mu(X) < \infty$, then μ is subadditive.

Notice here in (1) we have that $\alpha \in [0, \infty)$.

We have

Corollary 9 If μ is aubadditive, $n \in \mathbb{N}$, and $f: X \to [0, \infty)$ is a measurable function, then

$$(S) \int_{X} nf d\mu \le n(S) \int_{X} f d\mu, \tag{3}$$

in particular it holds

$$(S) \int_{A} nf d\mu \le n(S) \int_{A} f d\mu, \tag{4}$$

for any $A \in \Sigma$.

Proof. By (2).

A very important property of Sugeno integral follows.

Theorem 10 If μ is subadditive measure, and $f: X \to [0, \infty)$ is a measurable function, and c > 0, then

$$(S) \int_{A} cf d\mu \le (c+1)(S) \int_{A} f d\mu, \tag{5}$$

for any $A \in \Sigma$.

Proof. Let the ceiling $[c] = m \in \mathbb{N}$, then by Theorem 3 (3) and (4) we get

$$(S) \int_{A} cf d\mu \leq (S) \int_{A} mf d\mu \leq m(S) \int_{A} f d\mu \leq (c+1)(S) \int_{A} f d\mu,$$

proving (5).

From now on in this article we work on the fuzzy measure space (Q, \mathcal{B}, μ) , where $Q \subset \mathbb{R}^k$, $k \geq 1$ is a convex compact subset, \mathcal{B} is the Borel σ -algebra on Q, and μ is a finite fuzzy measure on \mathcal{B} . Typically we take it to be subadditive.

The functions f we deal with here are continuous from Q into \mathbb{R}_+ .

We make

Remark 11 Let $f \in C(Q, \mathbb{R}_+)$, and μ is a subadditive fuzzy measure such that $\mu(Q) > 0$, $x \in Q$. We will estimate

$$E(x) := \left| (S) \int_{Q} f(t) d\mu(t) - \mu(Q) \wedge f(x) \right|$$

$$(6)$$

(by Theorem 3 (2))

$$=\left|\left(S\right)\int_{Q}f\left(t\right)d\mu\left(t\right)-\left(S\right)\int_{Q}f\left(x\right)d\mu\left(t\right)\right|.$$

We notice that

$$f(t) = f(t) - f(x) + f(x) \le |f(t) - f(x)| + f(x),$$

then (by Theorem 3 (3) and Theorem 4 (4))

$$(S) \int_{Q} f(t) d\mu(t) \le (S) \int_{Q} |f(t) - f(x)| d\mu(t) + (S) \int_{Q} f(x) d\mu(t), \qquad (7)$$

that is

$$(S) \int_{Q} f(t) d\mu(t) - (S) \int_{Q} f(x) d\mu(t) \le (S) \int_{Q} |f(t) - f(x)| d\mu(t).$$
 (8)

Similarly, we have

$$f(x) = f(x) - f(t) + f(t) \le |f(t) - f(x)| + f(t),$$

then (by Theorem 3 (3) and Theorem 8)

$$(S) \int_{Q} f(x) d\mu(t) \leq (S) \int_{Q} |f(t) - f(x)| d\mu(t) + (S) \int_{Q} f(t) d\mu(t),$$

that is

$$(S) \int_{Q} f(x) d\mu(t) - (S) \int_{Q} f(t) d\mu(t) \le (S) \int_{Q} |f(t) - f(x)| d\mu(t).$$
 (9)

By (8) and (9) we derive that

$$\left| (S) \int_{Q} f(t) d\mu(t) - (S) \int_{Q} f(x) d\mu(t) \right| \leq (S) \int_{Q} \left| f(t) - f(x) \right| d\mu(t). \quad (10)$$

Consequently it holds

$$E(x) \stackrel{(by (6), (10))}{\leq} (S) \int_{Q} |f(t) - f(x)| d\mu(t), \qquad (11)$$

where $t = (t_1, ..., t_k), x = (x_1, ..., x_k)$.

We will use (11).

3 Main Results

We make

Remark 12 Here
$$Q := \prod_{i=1}^{k} [a_i, b_i]$$
, where $a_i < b_i$; $a_i, b_i \in \mathbb{R}$, $i = 1, ..., k$; $x = (x_1, ..., x_k) \in \prod_{i=1}^{k} [a_i, b_i]$ is fixed, and $f \in C^1 \left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+\right)$. Consider $g_t(r) := f(x + r(t - x))$, $r \ge 0$. Note that $g_t(0) = f(x)$, $g_t(1) = f(t)$. Thus

$$f(t) - f(x) = g_t(1) - g_t(0) = g'_t(\xi)(1 - 0) = g'_t(\xi),$$
 (12)

where $\xi \in (0,1)$.

I.e.

$$f(t) - f(x) = \sum_{i=1}^{k} (t_i - x_i) \frac{\partial f}{\partial t_i} (x + \xi(t - x)).$$
 (13)

Hence

$$|f(t) - f(x)| \le \sum_{i=1}^{k} |t_i - x_i| \left| \frac{\partial f}{\partial t_i} \left(x + \xi \left(t - x \right) \right) \right|$$

$$\le \sum_{i=1}^{k} |t_i - x_i| \left\| \frac{\partial f}{\partial t_i} \right\|_{\infty}.$$
(14)

By (11) we get

$$\left| (S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} f(t) d\mu(t) - \mu \left(\prod_{i=1}^{k} [a_{i}, b_{i}] \right) \wedge f(x) \right| \leq$$

$$\left(S \right) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} |f(t) - f(x)| d\mu(t) \stackrel{(14)}{\leq}$$

$$\left(S \right) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} \left(\sum_{i=1}^{k} |t_{i} - x_{i}| \left\| \frac{\partial f}{\partial t_{i}} \right\|_{\infty} \right) d\mu(t) \stackrel{(2)}{\leq}$$

$$\sum_{i=1}^{k} (S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} |t_{i} - x_{i}| \left\| \frac{\partial f}{\partial t_{i}} \right\|_{\infty} d\mu(t) \stackrel{(5)}{\leq}$$

$$\sum_{i=1}^{k} \left(\left\| \frac{\partial f}{\partial t_{i}} \right\|_{\infty} + 1 \right) \left((S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} |t_{i} - x_{i}| d\mu(t) \right).$$

$$(15)$$

Here μ is a fuzzy subadditive measure with $\mu\left(\prod_{i=1}^{k} [a_i, b_i]\right) > 0$.

Therefore we get

$$\left| \frac{1}{\mu\left(\prod_{i=1}^{k} [a_{i}, b_{i}]\right)}(S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} f(t) d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu\left(\prod_{i=1}^{k} [a_{i}, b_{i}]\right)}\right) \right|^{(15)} \leq (16)$$

$$\sum_{i=1}^{k} \left(\frac{\left\|\frac{\partial f}{\partial t_{i}}\right\|_{\infty} + 1}{\mu\left(\prod_{i=1}^{k} [a_{i}, b_{i}]\right)}\right) \left((S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} |t_{i} - x_{i}| d\mu(t)\right).$$

$$Notice \ here \left(1 \wedge \frac{f(x)}{\mu\left(\prod_{i=1}^{k} [a_{i}, b_{i}]\right)}\right) \leq 1, \ and$$

$$\frac{1}{\mu\left(\prod_{i=1}^{k} [a_{i}, b_{i}]\right)}(S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} f(t) d\mu(t) \stackrel{(by \ Thm. \ 3}{\leq} (1))}$$

$$where (S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} f(t) d\mu(t) \geq 0.$$

$$If \ f : \prod_{i=1}^{k} [a_{i}, b_{i}] \rightarrow \mathbb{R}_{+} \ is \ a \ Lipschitz \ function \ of \ order \ 0 < \alpha \leq 1, \ i.e.$$

$$|f(x) - f(y)| \leq K \|x - y\|_{l_{1}}^{\alpha}, \ \forall \ x, y \in \prod_{i=1}^{k} [a_{i}, b_{i}], \ K > 0, \ where \ \|x - y\|_{l_{1}} :=$$

$$\sum_{i=1}^{k} |x_{i} - y_{i}|, \ denoted \ by \ f \in Lip_{\alpha, K}\left(\prod_{i=1}^{k} [a_{i}, b_{i}], \mathbb{R}_{+}\right), \ then \ by \ (11) \ we \ get$$

$$\left|(S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} f(t) d\mu(t) - \mu\left(\prod_{i=1}^{k} [a_{i}, b_{i}]\right) \wedge f(x)\right| \leq (S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} K \|t - x\|_{l_{1}}^{\alpha} d\mu(t).$$

We have proved

$$\left| \frac{1}{\mu\left(\prod_{i=1}^{k} \left[a_{i}, b_{i}\right]\right)}\left(S\right) \int_{\prod_{i=1}^{k} \left[a_{i}, b_{i}\right]}^{k} f\left(t\right) d\mu\left(t\right) - \left(1 \wedge \frac{f\left(x\right)}{\mu\left(\prod_{i=1}^{k} \left[a_{i}, b_{i}\right]\right)}\right) \right| \leq (18)$$

$$\frac{(K+1)}{\mu\left(\prod_{i=1}^{k} [a_{i}, b_{i}]\right)} (S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} \|t - x\|_{l_{1}}^{\alpha} d\mu (t).$$

We have established the following multivariate Ostrowski-Sugeno inequalities.

Theorem 13 Here μ is a fuzzy subadditive measure with $\mu\left(\prod_{i=1}^{k} [a_i, b_i]\right) > 0$, $x \in \prod_{i=1}^{k} [a_i, b_i]$.

1) Let
$$f \in C^1\left(\prod_{i=1}^k [a_i, b_i], \mathbb{R}_+\right)$$
, then

$$\left| \frac{1}{\mu \left(\prod_{i=1}^{k} \left[a_i, b_i \right] \right)} \left(S \right) \int_{\prod_{i=1}^{k} \left[a_i, b_i \right]}^{k} f\left(t \right) d\mu\left(t \right) - \left(1 \wedge \frac{f\left(x \right)}{\mu \left(\prod_{i=1}^{k} \left[a_i, b_i \right] \right)} \right) \right| \le (19)$$

$$\sum_{i=1}^{k} \left(\frac{\left\| \frac{\partial f}{\partial t_i} \right\|_{\infty} + 1}{\mu \left(\prod_{i=1}^{k} \left[a_i, b_i \right] \right)} \right) \left((S) \int_{\prod_{i=1}^{k} \left[a_i, b_i \right]}^{k} \left| t_i - x_i \right| d\mu \left(t \right) \right).$$

2) Let
$$f \in Lip_{\alpha,K}\left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+\right), 0 < \alpha \leq 1$$
, then

$$\left| \frac{1}{\mu\left(\prod_{i=1}^{k} \left[a_{i}, b_{i}\right]\right)} \left(S\right) \int_{\prod_{i=1}^{k} \left[a_{i}, b_{i}\right]}^{k} f\left(t\right) d\mu\left(t\right) - \left(1 \wedge \frac{f\left(x\right)}{\mu\left(\prod_{i=1}^{k} \left[a_{i}, b_{i}\right]\right)}\right) \right| \leq (20)$$

$$\frac{\left(K+1\right)}{\left(\frac{k}{k}\right)} \left(S\right) \int_{k}^{k} \left\|t-x\right\|_{l_{1}}^{\alpha} d\mu\left(t\right).$$

$$\frac{(K+1)}{\mu\left(\prod_{i=1}^{k} [a_i, b_i]\right)} (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} \|t - x\|_{l_1}^{\alpha} d\mu(t).$$

We make

Remark 14 Let Q be a compact and convex subset of \mathbb{R}^k , $k \geq 1$. Let $f \in (C(Q, \mathbb{R}_+) \cap C^{n+1}(Q))$, $n \in \mathbb{N}$ and $x \in Q$ is fixed such that all partial derivatives $f_{\alpha} := \frac{\partial^{\alpha} f}{\partial t^{\alpha}}$, where $\alpha = (\alpha_1, ..., \alpha_k)$, $\alpha_i \in \mathbb{Z}^+$, i = 1, ..., k, $|\alpha| = \sum_{i=1}^{\kappa} \alpha_i = j$, j = 1, ..., n fulfill $f_{\alpha}(x) = 0$.

By [2], p. 513, we get that

$$|f(t) - f(x)| \le \frac{\left[\left(\sum_{i=1}^{k} |t_i - x_i| \left\|\frac{\partial}{\partial t_i}\right\|_{\infty}\right)^{n+1} f\right]}{(n+1)!}, \quad \forall \ t \in Q.$$
 (21)

Call

$$D_{n+1}(f) := \max_{\alpha : |\alpha| = n+1} \|f_{\alpha}\|_{\infty}.$$
 (22)

For example, when k = 2 and n = 1, we get that

$$\left[\left(\sum_{i=1}^{2} |t_i - x_i| \left\| \frac{\partial}{\partial t_i} \right\|_{\infty} \right)^2 f \right] =$$

$$(t_1 - x_1)^2 \left\| \frac{\partial^2 f}{\partial t_1^2} \right\|_{\infty} + 2 |t_1 - x_1| |t_2 - x_2| \left\| \frac{\partial^2 f}{\partial t_1 \partial t_2} \right\|_{\infty} + (t_2 - x_2)^2 \left\| \frac{\partial^2 f}{\partial t_2^2} \right\|_{\infty},$$
(23)

and

$$D_2(f) = \max_{\alpha: |\alpha| = 2} \|f_{\alpha}\|_{\infty}. \tag{24}$$

Clearly, it holds

$$\left[\left(\sum_{i=1}^{2} |t_i - x_i| \left\| \frac{\partial}{\partial t_i} \right\|_{\infty} \right)^2 f \right] \le D_2(f) (|t_1 - x_1| + |t_2 - x_2|)^2.$$
 (25)

Consequently, we derive that

$$\left[\left(\sum_{i=1}^{k} |t_i - x_i| \left\| \frac{\partial}{\partial t_i} \right\|_{\infty} \right)^{n+1} f \right] \le D_{n+1} \left(f \right) \left\| t - x \right\|_{l_1}^{n+1}, \quad \forall \ t \in Q.$$
 (26)

By (11) we get

$$\left| (S) \int_{Q} f(t) d\mu(t) - \mu(Q) \wedge f(x) \right| \leq$$

$$(S) \int_{Q} |f(t) - f(x)| d\mu(t) \stackrel{(21)}{\leq}$$

$$(27)$$

$$(S) \int_{Q} \frac{\left[\left(\sum_{i=1}^{k} |t_{i} - x_{i}| \left\| \frac{\partial}{\partial t_{i}} \right\|_{\infty} \right)^{n+1} f \right]}{(n+1)!} d\mu \left(t \right) \overset{(26)}{\leq}$$

$$(S) \int_{Q} \frac{D_{n+1}(f) \|t - x\|_{l_{1}}^{n+1}}{(n+1)!} d\mu(t) \stackrel{(5)}{\leq}$$
 (28)

$$\left(\frac{D_{n+1}(f)}{(n+1)!} + 1\right)(S) \int_{Q} \|t - x\|_{l_{1}}^{n+1} d\mu(t).$$

Here μ is a fuzzy subadditive measure with $\mu(Q) > 0$.

By (27) and (28) we obtain

$$\left|\frac{1}{\mu\left(Q\right)}\left(S\right)\int_{Q}f\left(t\right)d\mu\left(t\right)-\left(1\wedge\frac{f\left(x\right)}{\mu\left(Q\right)}\right)\right|\leq$$

$$\frac{\left(\frac{D_{n+1}(f)}{(n+1)!}+1\right)}{\mu(Q)}(S)\int_{Q}\|t-x\|_{l_{1}}^{n+1}d\mu(t). \tag{29}$$

We have established the following multivariate Ostrowski-Sugeno general inequality:

Theorem 15 Let Q be a compact and convex subset of \mathbb{R}^k , $k \geq 1$. Let $f \in (C(Q, \mathbb{R}_+) \cap C^{n+1}(Q))$, $n \in \mathbb{N}$, $x \in Q$ be fixed: $f_{\alpha}(x) = 0$, all $\alpha : |\alpha| = j$, j = 1, ..., n. Here μ is a fuzzy subadditive measure with $\mu(Q) > 0$. Then

$$\left| \frac{1}{\mu(Q)} (S) \int_{Q} f(t) d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu(Q)} \right) \right| \leq \frac{\left(\frac{D_{n+1}(f)}{(n+1)!} + 1 \right)}{\mu(Q)} (S) \int_{Q} \|t - x\|_{l_{1}}^{n+1} d\mu(t).$$
(30)

Corollary 16 All as in Theorem 15. Then

$$\left| \frac{1}{\mu(Q)} (S) \int_{Q} f(t) d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu(Q)} \right) \right| \leq \frac{\left(1 + \frac{1}{(n+1)!} \right)}{\mu(Q)} (S) \int_{Q} \left[\left(\sum_{i=1}^{k} |t_{i} - x_{i}| \left\| \frac{\partial}{\partial x_{i}} \right\|_{\infty} \right)^{n+1} f \right] d\mu(t).$$
(31)

Next we take again $Q := \prod_{i=1}^k [a_i, b_i]$, we set $a := (a_1, ..., a_k)$, $b := (b_1, ..., b_k)$, and $\frac{a+b}{2} = (\frac{a_1+b_1}{2}, ..., \frac{a_k+b_k}{2}) \in \prod_{i=1}^k [a_i, b_i]$.

Corollary 17 Let $f \in \left(C\left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+\right) \cap C^{n+1}\left(\prod_{i=1}^{k} [a_i, b_i]\right)\right)$, $n \in \mathbb{N}$, such that $f_{\alpha}\left(\frac{a+b}{2}\right) = 0$, all $\alpha : |\alpha| = j$, j = 1, ..., n. Here μ is a fuzzy subadditive measure with $\mu\left(\prod_{i=1}^{k} [a_i, b_i]\right) > 0$. Then

$$\left| \frac{1}{\mu \left(\prod_{i=1}^{k} [a_{i}, b_{i}] \right)} (S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]}^{k} f(t) d\mu(t) - \left(1 \wedge \frac{f\left(\frac{a+b}{2}\right)}{\mu \left(\prod_{i=1}^{k} [a_{i}, b_{i}] \right)} \right) \right| \leq \frac{\left(\frac{D_{n+1}(f)}{(n+1)!} + 1 \right)}{\mu \left(\prod_{i=1}^{k} [a_{i}, b_{i}] \right)} (S) \int_{\prod_{i=1}^{k} [a_{i}, b_{i}]} \left\| t - \frac{a+b}{2} \right\|_{l_{1}}^{n+1} d\mu(t). \tag{32}$$

Proof. By Theorem 15. ■ We make

Remark 18 By multinomial theorem we have that

$$||t - x||_{l_1}^{n+1} = \left(\sum_{i=1}^k |t_i - x_i|\right)^{n+1} = \sum_{r_1 + r_2 + \dots + r_k = n+1} {n+1 \choose r_1, r_2, \dots, r_k} |t_1 - x_1|^{r_1} |t_2 - x_2|^{r_2} \dots |t_k - x_k|^{r_k},$$
(33)

where

$$\binom{n+1}{r_1, r_2, \dots, r_k} = \frac{(n+1)!}{r_1! r_2! \dots r_k!}.$$
 (34)

By (27), (28) we get

$$\left| (S) \int_{Q} f(t) d\mu(t) - \mu(Q) \wedge f(x) \right| \leq$$

$$(S) \int_{Q} \frac{D_{n+1}(f)}{(n+1)!} \|t - x\|_{l_{1}}^{n+1} d\mu(t) \stackrel{(by (33), (34))}{=} (34)!$$

$$(S) \int_{Q} \left[\sum_{r_{1}+r_{2}+...+r_{k}=n+1} \left(\frac{D_{n+1}(f)}{r_{1}!r_{2}!...r_{k}!} \right) \left(\prod_{i=1}^{k} |t_{i} - x_{i}|^{r_{i}} \right) \right] d\mu(t) \stackrel{(2)}{\leq}$$

$$\sum_{r_{1}+r_{2}+...+r_{k}=n+1} (S) \int_{Q} \left(\frac{D_{n+1}(f)}{r_{1}!r_{2}!...r_{k}!} \right) \left(\prod_{i=1}^{k} |t_{i} - x_{i}|^{r_{i}} \right) d\mu(t) \stackrel{(5)}{\leq}$$

$$\sum_{r_{1}+r_{2}+...+r_{k}=n+1} \left(\frac{D_{n+1}(f)}{r_{1}!r_{2}!...r_{k}!} + 1 \right) (S) \int_{Q} \left(\prod_{i=1}^{k} |t_{i} - x_{i}|^{r_{i}} \right) d\mu(t) . \tag{35}$$

We have proved the following multivariate Ostrowski-Sugeno general inequality:

Theorem 19 Here all as in Theorem 15. Then

$$\left| \frac{1}{\mu(Q)} (S) \int_{Q} f(t) d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu(Q)} \right) \right| \leq \sum_{r_{1} + r_{2} + \dots + r_{k} = n+1} \left(\frac{\left(\frac{D_{n+1}(f)}{r_{1}! r_{2}! \dots r_{k}!} + 1 \right)}{\mu(Q)} \right) (S) \int_{Q} \left(\prod_{i=1}^{k} |t_{i} - x_{i}|^{r_{i}} \right) d\mu(t) . \tag{36}$$

We make

Remark 20 In case k = 2, n = 1, by (27), (28) we get

$$\left| (S) \int_{Q} f(t) d\mu(t) - \mu(Q) \wedge f(x) \right| \leq$$

$$(S) \int_{Q} \frac{D_{2}(f)}{2} \|t - x\|_{l_{1}}^{2} d\mu(t) =$$

$$(S) \int_{Q} \frac{D_{2}(f)}{2} \left[(t_{1} - x_{1})^{2} + 2|t_{1} - x_{1}||t_{2} - x_{2}| + (t_{2} - x_{2})^{2} \right] d\mu(t) \leq$$

$$(S) \int_{Q} \frac{D_{2}(f)}{2} (t_{1} - x_{1})^{2} d\mu(t) + (S) \int_{Q} D_{2}(f) |t_{1} - x_{1}||t_{2} - x_{2}| d\mu(t)$$

$$+ (S) \int_{Q} \frac{D_{2}(f)}{2} (t_{2} - x_{2})^{2} d\mu(t) \leq$$

$$\left(1 + \frac{D_{2}(f)}{2}\right) (S) \int_{Q} (t_{1} - x_{1})^{2} d\mu(t) + (1 + D_{2}(f)) (S) \int_{Q} |t_{1} - x_{1}||t_{2} - x_{2}| d\mu(t)$$

$$+ \left(1 + \frac{D_{2}(f)}{2}\right) (S) \int_{Q} (t_{2} - x_{2})^{2} d\mu(t) .$$

We have proved

Corollary 21 Let Q be a compact and convex subset of \mathbb{R}^2 . Let $f \in (C(Q, \mathbb{R}_+) \cap C^2(Q))$, $x = (x_1, x_2) \in Q$ be fixed: $\frac{\partial f}{\partial t_1}(x_1, x_2) = \frac{\partial f}{\partial t_2}(x_1, x_2) = 0$. Here μ is a fuzzy subadditive measure with $\mu(Q) > 0$. Then

$$\left| \frac{1}{\mu(Q)} (S) \int_{Q} f(t) d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu(Q)} \right) \right| \leq \frac{\left(1 + \frac{D_{2}(f)}{2} \right)}{\mu(Q)} (S) \int_{Q} (t_{1} - x_{1})^{2} d\mu(t) + \frac{\left(1 + D_{2}(f) \right)}{\mu(Q)} (S) \int_{Q} |t_{1} - x_{1}| |t_{2} - x_{2}| d\mu(t) + \frac{\left(1 + \frac{D_{2}(f)}{2} \right)}{\mu(Q)} (S) \int_{Q} (t_{2} - x_{2})^{2} d\mu(t).$$

$$(38)$$

References

- [1] G.A. Anastassiou, Multivariate Ostrowski type inequalities, Acta Math. Hungar., 76 (4) (1997), 267-278.
- [2] G.A. Anastassiou, *Quantitative Approximations*, Chapman & Hall / CRC, Boca Raton, New York, 2001.

- [3] M. Boczek, M. Kaluszka, On the Minkowaki-Hölder type inequalities for generalized Sugeno integrals with an application, Kybernetica, 52(3) (2016), 329-347.
- [4] A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
- [5] E. Pap, Null-Additive Set functions, Kluwer Academic, Dordrecht (1995).
- [6] D. Ralescu, G. Adams, *The fuzzy integral*, J. Math. Anal. Appl., 75 (1980), 562-570.
- [7] M. Sugeno, Theory of fuzzy integrals and its applications, PhD thesis, Tokyo Institute of Technology (1974).
- [8] Z. Wang, G.J. Klir, Fuzzy Measure Theory, Plenum, New York, 1992.

1138

Anastassiou 1126-1138