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Abstract
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1 Introduction

In this paper we are concerned with the regularity of the following second-order
semilinear impulsive differential system


w

′′
(t) = Aw(t) +

∫ t
0
k(t− s)g(s, w(s))ds+ f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

(1.1)

in a Banach space X. Here k belongs to L2(0, T ) and g : [0, T ]×D(A) → X is
a nonlinear mapping such that w 7→ g(t, w) satisfies Lipschitz continuous. In (1.1),
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the principal operator A is the infinitesimal generator of a strongly continuous cosine
family C(t), t ∈ R. The impulsive condition

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

is combination of traditional evolution systems whose duration is negligible in com-
parison with duration of the process, such as biology, medicine, bioengineering etc.

In recent years the theory of impulsive differential systems has been emerging
as an important area of investigation in applied sciences. The reason is that it is
richer than the corresponding theory of classical differential equations and it is more
adequate to represent some processes arising in various disciplines. The theory of
impulsive systems provides a general framework for mathematical modeling of many
real world phenomena(see [1, 2] and references therein). The theory of impulsive
differential equations has seen considerable development. Impulsive differential sys-
tems have been studied in [3, 4, 5, 6], second-order impulsive integrodifferential
systems in [7, 8], and Stochastic differential systems with impulsive conditions in
[9, 10, 11].

In this paper, we allow implicit arguments about L2-regularity results for semilin-
ear hyperbolic equations with impulsive condition. These consequences are obtained
by showing that results of the linear cases [12, 13] and semilinear case [14] on the
L2-regularity remain valid under the above formulation of (1.1). Earlier works prove
existence of solution by using Azera Ascoli theorem. But we propose a different ap-
proach from that of earlier works to study mild, strong and classical solutions of
Cauchy problems by using the properties of the linear equation in the hereditary
part.

This paper is organized as follows. In Section 2, we give some definition, notation
and the regularity for the corresponding linear equations. In Section 3, by using
properties of the strict solutions of linear equations in dealt in Section 2, we will
obtain the L2-regularity of solutions of (1.1), and a variation of constant formula of
solutions of (1.1). Finally, we also give an example to illustrate the applications of
the abstract results..

2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lemmas. Let X
be a Banach space with norm denoted by || · ||.

Definition 2.1. [15] A one parameter family C(t), t ∈ R, of bounded linear opera-
tors in X is called a strongly continuous cosine family if
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c(1) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ R,

c(2) C(0) = I,

c(3) C(t)x is continuous in t on R for each fixed x ∈ X.

If C(t), t ∈ R is a strongly continuous cosine family in X , then S(t), t ∈ R is
the one parameter family of operators in X defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R. (2.1)

The infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R
is the operator A : X → X defined by

Ax =
d2

dt2
C(0)x.

We endow with the domain D(A) = {x ∈ X : C(t)x is a twice continuously differ-
entiable function of t} with norm

||x||D(A) = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}+ ||Ax||.

We shall also make use of the set

E = {x ∈ X : C(t)x is a once continuously differentiable function of t}

with norm

||x||E = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}.

It is not difficult to show that D(A) and E with given norms are Banach spaces.
The following Lemma is from Proposition 2.1 and Proposition 2.2 of [1].

Lemma 2.1. Let C(t)(t ∈ R) be a strongly continuous cosine family in X. The
following are true :

c(4) C(t) = C(−t) for all t ∈ R,

c(5) C(s), S(s), C(t) and S(t) commute for all s, t ∈ R,

c(6) S(t)x is continuous in t on R for each fixed x ∈ X,
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c(7) there exist constants K ≥ 1 and ω ≥ 0 such that

||C(t)|| ≤ Keω|t| for all t ∈ R,

||S(t1)− S(t2)|| ≤ K
∣∣∣∫ t1

t2

eω|s|ds
∣∣∣ for all t1, t2 ∈ R,

c(8) if x ∈ E, then S(t)x ∈ D(A) and

d

dt
C(t)x = AS(t)x = S(t)Ax =

d2

dt2
S(t)x,

c(9) if x ∈ D(A), then C(t)x ∈ D(A) and

d2

dt2
C(t)x = AC(t)x = C(t)Ax,

c(10) if x ∈ X and r, s ∈ R, then∫ s

r

S(τ)xdτ ∈ D(A) and A(

∫ s

r

S(τ)xdτ) = C(s)x− C(r)x,

c(11) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,

c(12) S(s+ t) = S(s)C(t) + S(t)C(s) for all s, t ∈ R,

c(13) C(s+ t) = C(t)C(s)− S(t)S(s) for all s, t ∈ R,

c(14) C(s+ t)− C(t− s) = 2AS(t)S(s) for all s, t ∈ R.

The following Lemma is from Proposition 2.4 of [15].

Lemma 2.2. Let C(t)(t ∈ R) be a strongly continuous cosine family in X with
infinitesimal generator A. If f : R → X is continuously differentiable, x0 ∈ D(A),
y0 ∈ E, and

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R,

then w(t) ∈ D(A) for t ∈ R, w is twice continuously differentiable, and w satisfies

w
′′
(t) = Aw(t) + f(t), t ∈ R, w(0) = x0, w

′
(0) = y0. (2.2)

Conversely, if f : R → X is continuous, w(t) : R → X is twice continuously
differentiable, w(t) ∈ D(A) for t ∈ R, and w satisfies (2.2), then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R.
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Proposition 2.1. Let f : R→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E.
Then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R

is a solution of (2.2) belonging to L2(0, T ;D(A)) ∩W 1,2(0, T ;E). Moreover, we have
that there exists a positive constant C1 such that for any T > 0,

||w||L2(0,T ;D(A)) ≤ C1(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (2.3)

3 Nonlinear equations

This section is to investigate the regularity of solutions of a second-order nonlinear
impulsive differential system

w
′′
(t) = Aw(t) +

∫ t
0
k(t− s)g(s, w(s))ds+ f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

(3.1)

in a Banach space X.

Assumption (G) Let g : [0, T ]×D(A)→ X be a nonlinear mapping such that
t 7→ g(t, w) is measurable and

(g1) ||g(t, w1)− g(t, w2)||D(A) ≤ L||w1 − w2||,

for a positive constant L.

Assumption (I) Let I1
k : D(A) → X, I2

k : E → X be continuous and there
exist positive constants L(I1

k), L(I2
k) such that

(i1) ||I1
k(w1)− I1

k(w2)|| ≤ L(I1
k)||w1 − w2||D(A), for each w1, w2 ∈ D(A)

||I1
k(w)|| ≤ L(I1

k), for w ∈ D(A)

(i2) ||I2
k(w′1)− I2

k(w′2)|| ≤ L(I2
k)||w′1 − w′2||E, for each w′1, w

′
2 ∈ E

||I2
k(w′)|| ≤ L(I2

k)||, for w′ ∈ E.

For w ∈ L2(0, T : D(A)), we set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds
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where k belongs to L2(0, T ). Then we will seek a mild solution of (3.1), that is, a
solution of the integral equation

w(t) =C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, w) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(w(tk)) +

∑
0<tk<t

S(t− tk)I2
k(w′(t+k )), t ∈ R. (3.2)

Remark 3.1. If g : [0, T ]×X → X is a nonlinear mapping satisfying

||g(t, w1)− g(t, w2)|| ≤ L||w1 − w2||

for a positive constant L, then our results can be obtained immediately.

Lemma 3.1. Let w ∈ L2(0, T ;D(A)), T > 0. Then F (·, w) ∈ L2(0, T ;X) and

||F (·, w)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w||L2(0,T ;D(A)).

Moreover if w1, w2 ∈ L2(0, T ;D(A)), then

||F (·, w1)− F (·, w2)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w1 − w2||L2(0,T ;D(A)).

Lemma 3.2. If k ∈ W 1,2(0, T ), T > 0, then

A

∫ t

0

S(t− s)F (s, w)ds = −F (t, w) (3.3)

+

∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ t

0

(C(t− s)− I)k(0)g(s, w(s))ds.

Theorem 3.1. Suppose that the Assumptions (G) and Assumption (I) are satisfied.
If f : R→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈ W 1,2(0, T ),
T > 0, then there exists a time T ≥ T0 > 0 such that the functional differential
equation (3.1) admits a unique solution w in L2(0, T0;D(A)) ∩W 1,2(0, T0;E).
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Proof. Let us fix T0 > 0 so that

C2 ≡ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0) (3.4)

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1||||k||W 1,2(0,T0)

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1||||k(0)||

+ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0

+ {2w−1K(ewT0 − 1) + 1}
∑

0<tk<t

L(I2
k) < 1

where K, L, L(I1
k) and L(I2

k) are constants in c(7), (g1) and Assumption (I) re-
spectively. Invoking Proposition 2.1, for any v ∈ L2(0, T0;D(A)) we obtain the
equation 

w
′′
(t) = Aw(t) + F (t, v) + f(t), 0 < t ≤ T0,

w(0) = x0, w
′
(0) = y0

∆w(tk) = I1
k(v(tk)), ∆w′(tk) = I2

k(v′(t+k )), k = 1, 2, ...,m

(3.5)

has a unique solution w ∈ L2(0, T0;D(A)) ∩W 1,2(0, T0;E). Let w1, w2 be the
solutions of (3.5) with v replaced by v1, v2 ∈ L2(0, T0;D(A)), respectively. Put

J(w)(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, v) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(v(tk)) +

∑
0<tk<t

S(t− tk)I2
k(v′(t+k )).

Then

J(w1)(t)− J(w2)(t) =

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds

+
∑

0<tk<t

C(t− tk){I1
k(v1(tk))− I1

k(v2(tk))}

+
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))},

=I1 + I2 + I3.

So, from Lemmas 3.1, 3.2, it follows that for 0 ≤ t ≤ T0,

||
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ω−1KLT0(eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A)),
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|| d
dt
C(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ||AS(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

= ||S(t)A

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||,

and

||A
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ||
∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)(g(τ, v1(τ))− g(τ, v2(τ)))dτ ds||

+ ||
∫ t

0

(C(t− s)− I)k(0)(g(s, v1(s))− g(s, v2(s)))ds||

≤ tL||Keωt + 1||||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+
√
tL||Keωt + 1||||k(0)||||v1 − v2||L2(0,T0;D(A)).

Therefore, we have

||I1||L2(0,T0;D(A)) ≤ ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A)) (3.6)

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1|| ||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1|| ||k(0)|| ||v1 − v2||L2(0,T0;D(A)).

By Assumption (i1), we obtain

||
∑

0<tk<t

C(t− tk){I1
k(v1(t−k ))− I1

k(v2(t−k ))}|| ≤
∑

0<tk<T0

KewT0L(I1
k)||v1 − v2||D(A),

|| d
dt
C(t)

∑
0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||

≤ ||AS(t)
∑

0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||

= ||S(t)A
∑

0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||,
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and

||A
∑

0<tk<t

C(t− tk){I1
k(v1(t−k ))− I1

k(v2(t−k ))}|| = ||
∑

0<tk<t

C(t− tk)A{I1
k(v1)− I1

k(v2)}||

≤
∑

0<tk<t

Kewt||I1
k(v1)− I1

k(v2)||D(A)

≤
∑

0<tk<t

KewtL(I1
k)||v1 − v2||D(A).

Therefore, we have

||I2||L2(0,T0;D(A)) ≤ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A)).

(3.7)

We also obtain from Assumption (i2),

||
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))}|| ≤
∑

0<tk<T0

Kw−1(ewT0 − 1)L(I2
k)||v1 − v2||D(A),

|| d
dt
C(t)

∑
0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||

≤ ||AS(t)
∑

0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||

= ||S(t)A
∑

0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||,

and

||A
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))}|| = ||
∑

0<tk<t

d

dt
C(t){I2

k(v′1)− I1
k(v′2)}||

≤
∑

0<tk<t

||I2
k(v′1)− I1

k(v′2)||E

≤
∑

0<tk<t

L(I2
k)||v′1 − v′2||E.
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Therefore, we have

||I3||L2(0,T0;D(A)) ≤ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A)).

(3.8)

Thus, from (3.6),(3.7), and (3.8), we conclude that

||J(w1)− J(w2)||L2(0,T0;D(A)) (3.9)

≤ ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}L||k||L2(0,T0)

√
T0||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1|| ||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1|| ||k(0)|| ||v1 − v2||L2(0,T0;D(A))

+ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A))

+ {2w−1K(ewT0 − 1) + 1}
∑

0<tk<t

L(I2
k)||v1 − v2||W 1,2(0,T0;D(A)).

Moreover, it is easily seen that

||J(w1)− J(w2)||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C2||v1 − v2||L2(0,T0;D(A))∩W 1,2(0,T0;E).

So by virtue of the condition (3.4) the contraction mapping principle gives that the
solution of (3.1) exists uniquely in [0, T0]. �

Theorem 3.2. Suppose that the Assumptions (G) and (I) are satisfied. If f : R→
X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈ W 1,2(0, T ), T > 0,
then the solution w of (3.1) exists and is unique in L2(0, T ;D(A)) ∩W 1,2(0, T ;E),
and there exists a constant C3 depending on T such that

||w||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (3.10)

Proof. Let w(·) be the solution of (3.1) in the interval [0, T0] where T0 is a
constant in (3.4) and v(·) be the solution of the following equation

v
′′
(t) = Av(t) + f(t), 0 < t,

v(0) = x0, v
′
(0) = y0.
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Then

(w−v)(t) =

∫ t

0

S(t−s)F (s, w)ds+
∑

0<tk<t

C(t−tk)I1
k(w(tk))+

∑
0<tk<t

S(t−tk)I2
k(w′(t+k )),

and in view of (3.9)

||w − v||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C2||w||L2(0,T0;D(A))∩W 1,2(0,T0;E), (3.11)

that is, combining (3.11) with Proposition 2.1 we have

||w||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤
1

1− C2

||v||L2(0,T0;D(A))∩W 1,2(0,T0;E) (3.12)

≤ C1

1− C2

(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).

Now from

A

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds

= C(T0)f(0)− f(T0) +

∫ T0

0

(C(T0 − s)− I)f
′
(s)ds

− F (T0, w) +

∫ T0

0

(C(T0 − s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ T0

0

(C(T0 − s)− I)k(0)g(s, w(s))ds,

||A
∑

0<tk<t

C(t− tk)I1
k(w1)|| ≤ Kw−1(ewT0−1)KewT0

∑
0<tk<t

L(I1
k)||w(tk)||D(A),

||
∑

0<tk<t

S(t− tk)I2
k(v′1)|| ≤

∑
0<tk<t

L(I2
k)||w′(t+k )||E,

and since

d

dt
C(t)

∫ t

0

S(t− s){F (s, w) + f(s)}ds = S(t)A

∫ t

0

S(t− s){F (s, w) + f(s)}ds,

d

dt
C(t)

∑
0<tk<t

C(t− tk)I1
k(w) ≤ S(t)A

∑
0<tk<t

C(t− tk)I1
k(w).
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d

dt
C(t)

∑
0<tk<t

S(t− tk)I2
k(w′) ≤ S(t)A

∑
0<tk<t

S(t− tk)I2
k(w′).

We have

||w(T0)||D(A) = ||C(T0)x0 + S(T0)y0 +

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(w) +

∑
0<tk<t

S(t− tk)I2
k(w′)||D(A)

≤ (ω−1K(eωT0 − 1) + 1){KeωT0 ||x0||D(A) + ||y0||E + T0L||k||L2(0,T0)||w||L2(0,T0;D(A))

+ ||KeωT0f(0)||+ ||f(0)||+ ||K(eωT0 + 1)
√
T0||f ||W 1,2(0,T ;X)

+ tL||Keωt + 1|| ||k||W 1,2(0,T0)||w||L2(0,T0;D(A))

+
√
tL||Keωt + 1|| ||k(0)||||w||L2(0,T0;D(A))}

+ {2 +Kw−1(ewT0 − 1)}
∑

0<tk<t

KewT0L(I1
k)

+ {1 + 2Kw−1(ewT0 − 1)}
∑

0<tk<t

L(I2
k).

Hence, from (3.12), there exists a positive constant C > 0 such that

||w(T0)||D(A) ≤ C(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).

Since the condition (3.4) is independent of initial values, the solution of (3.1) can
be extended to the interval [0, nT0] for every natural number n. An analogous
estimate to (3.12) holds for the solution in [0, nT0], and hence for the initial value
(w(nT0), w

′
(nT0)) ∈ D(A)× E in the interval [nT0, (n+ 1)T0]. �

Example. We consider the following partial differential equation

w
′′
(t, x) = Aw(t, x) + F (t, w) + f(t), 0 < t, 0 < x < π,

w(t, 0) = w(t, π) = 0, t ∈ R
w(0, x) = x0(x), w

′
(0, x) = y0(x), 0 < x < π

∆w(tk, x) = I1
k(w(tk)) = (γk||w′′(tk, x)||+ tk), 1 ≤ k ≤ m,

∆w′(tk, x) = I2
k(w′(tk)) = δk||w′(tk, x)||,

(E)

where constants γk and δk(k = 1, · · · ,m) are small.
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Let X = L2([0, π];R), and let en(x) =
√

2
π

sinnx. Then {en : n = 1, · · · } is an

orthonormal base for X. Let A : X → X be defined by

Aw(x) = w′′(x),

where D(A) = {w ∈ X : w, w
′

are absolutely continuous, w
′′ ∈ X, w(0) = w(π) =

0}. Then

Aw =
∞∑
n=1

−n2(w, en)en, w ∈ D(A),

and A is the infinitesimal generator of a strongly continuous cosine family C(t),
t ∈ R, in X given by

C(t)w =
∞∑
n=1

cosnt(w, en)en, w ∈ X.

The associated sine family is given by

S(t)w =
∞∑
n=1

sinnt

n
(w, en)en, w ∈ X.

Let g1(t, x, w, p), p ∈ Rm, be assumed that there is a continuous ρ(t, δ) : R ×
R→ R+ and a real constant 1 ≤ δ such that

(f1) g1(t, x, 0, 0) = 0,

(f2) |g1(t, x, w, p)− g1(t, x, w, q)| ≤ ρ(t, |w|)|p− q|,

(f3) |g1(t, x, w1, p)− g1(t, x, w2, p)| ≤ ρ(t, |w1|+ |w2|)|w1 − w2|.

Let
g(t, w)x = g1(t, x, w,Dw,D2w).

Then noting that

||g(t, w1)− g(t, w2)||20,2 ≤ 2

∫
Ω

|g1(t, x, w1, p)− g1(t, x, w2, q)|2dx

+ 2

∫
Ω

|g1(t, x, w1, q)− g1(t, x, w2, q)|2dx

where p = (Dw1, D
2w1) and q = (Dw2, D

2w2), it follows from (f1), (f2) and (f3)
that

||g(t, w1)− g(t, w2)||20,2 ≤ L(||w1||D(A), ||w2||D(A))||w1 − w2||D(A)
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where L(||w1||D(A), ||w2||D(A)) is a constant depending on ||w1||D(A) and ||w2||D(A).
We set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ). Then, from the results in section 3, the solution w of
(E) exists and is unique in L2(0, T ;D(A))∩W 1,2(0, T ;E), and there exists a constant
C3 depending on T such that

||w||L2(0,T ;D(A)) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)).
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