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Abstract. Our main work is to prove Mizogchi- Takahashi theorem in ν-

generalized metric space in the sense of Brancairi. In the same setting we
prove two more theorems which are generalizations of the main one.

1. Introduction

A metric is defined as a mapping d : X ×X → [0,∞), for any non-empty set X
which satisfying the following axioms, for any x, y, z ∈ X

(i) d(x, y) = 0 iff x = y
(ii) d(x, y) = d(y, x)

(iii) d(x, y) ≤ d(x, z) + d(z, y).

We said that the pair (X, d) is a metric space. The theory of metric spaces form a
basic environment for a lot of concepts in mathematics such as the fixed point the-
orems which have an important rules in various branches of mathematical analysis.
One of the famous result of fixed point theorems is Banach Contraction Principle
which state that,

Theorem 1.1. [11](Banach Contraction Principle)
Let (X, d) be a complete metric space. Let T : X → X be a self map on X such
that

d(Tx, Ty) ≤ rd(x, y),

hold for any x, y ∈ X, where r ∈ [0, 1). Then T has a unique fixed point.

Many authors explored the importance of this theorem and extended it in differ-
ent directions. For examples, we refer the reader to the following papers [2, 9, 8, 6],
and the references therein. In (1969) Nadler extended theorem 1.1 for multi-valued
mapping. Recall that the set of all non- empty, closed and bounded subsets of X
is denoted by CB(X) and let A,B be any sets in CB(X). A Hausdorff metric is
defined as

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

Theorem 1.2. [12](Nadler’s theorem) Let (X, d) be a complete metric space. Let
T : X → CB(X) be a multi-valued map. Assume that

H(Tx, Ty) ≤ rd(x, y),

holds for each x, y ∈ X and r ∈ [0, 1). Then T has a fixed point.
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Many attempts have been done to generalize Nadler’s theorem. One of these
generalizations is Mizoguchi- Takahashi’s theorem which stats that:

Theorem 1.3. [10] Let (X, d) be a complete metric space. Let T : X → CB(X)
be a multi-valued mapping. Assume that

H(Tx, Ty) ≤ β(d(x, y))d(x, y),

hold for each x, y ∈ X, where β : [0,∞)→ [0, 1) is a function such that lim sups→t+ β(s) <
1. Then T has a fixed point.

Remark 1.4. The function β in theorem 1.3, which satisfies lim sups→t+ β(s) < 1
is called Mizoguchi- Takahashi function (MT- function for short).

Starting with Mizoguchi and Takahashi’s paper, many generalizations of their
theorem have been established see [3, 13]. Recently, Eldred et al [4], claimed that
Nadler’s and Mizoguchi- Takahashi’s theorems are equivalent. However, in [14],
Suzuki proved that their claim is not true and he shown that Mizoguchi- Takahashi’s
theorem (1.3) is a real extension of Nadler’s theorem. This is why we are interesting
in such theorem.

In another direction, in (2000) Branciari created a new concept of generalized
metric spaces by modifying the triangle inequality to involve more points.

Definition 1.5. [1] Let X be a non- empty set and d : X×X → [0,∞). For ν ∈ N,
a pair (X, d) is called a ν- generalized metric space if the following hold:

(M1) d(x, y) = 0 iff x = y
(M2) d(x, y) = d(y, x)
(M3) d(x, y) ≤ d(x, u1) + d(u1, u2) + ...+ d(uν , y),

for any x, u1, u2, ...uν , y ∈ X, such that x, u1, u2, ...uν , y are all different.

It is not difficult to show that the new space is not the same as the original
one. Moreover, the new space is hard to deal with because it does not satisfy all
topological properties that metric space has, see [15] for more details. Recently,
in [16], Suzuki proved Nadler’s theorem in ν- generalized metric spaces. The main
work of this paper is to prove Mizoguchi -Takahashi’s theorem in ν- generalized
metric spaces. Firstly, we will list all the necessary definitions and some results
that we will need. Then, we will be able to prove our main results.

2. Preliminary

Definition 2.1. A point x ∈ X is said to be a fixed point of multi-valued map T if
x ∈ Tx.

Definition 2.2. [1] Let (X, d) be a ν- generalized metric space. A sequence {xn}n∈N ∈
X is said to be Cauchy sequence if

lim
n

sup
n>m

d(xn, xm) = 0

Definition 2.3. [16] A sequence {xn}n∈N is said to be (
∑
, 6=)- Cauchy sequence if

all xn’s are different and
∞∑
j=1

d(xj , xj+1) <∞

Definition 2.4. [16] Let (X, d) be a ν- generalized metric space. We said that, X
is a (

∑
, 6=)- complete if every (

∑
, 6=)- Cauchy sequence converges.
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Lemma 2.5. [16, 5] Let (X, d) be a ν- generalized metric space.

• Every converge (
∑
, 6=)- Cauchy sequence is Cauchy.

• Let {xn}n∈N be a Cauchy sequence converges to some y ∈ X and {yn} ∈ X
be a sequence such that limn→∞ d(xn, yn) = 0. Then, {yn} also converges
to y.

Lemma 2.6. [14] Let β : [0,∞)→ [0, 1) is a MT-function. Then, for all s ∈ [0,∞),
there exist rs ∈ [0, 1) and εs > 0 such that β(t) ≤ rs for all t ∈ [s, s+ εs)

Lemma 2.7. [12] Let (X, d) be a metric space. For any A,B ∈ CB(X) and ε > 0,
there exist a ∈ A and b ∈ B such that d(a, b) ≤ H(A,B) + ε

3. Main Result

In this section we prove Mizoguchi -Takahashi’s theorem in ν -generalized metric
spaces and some of its generalizations in the space.

Theorem 3.1. Let (X, d) be a (
∑
, 6=) complete, ν- generalized metric space. and

let T be a multi-valued map defined from X into CB(X) satisfies the following:

(i) If {yn} ∈ Tx and {yn} converges to y then y ∈ Tx.
(ii) For any x, y ∈ X, H(Tx, Ty) ≤ α(d(x, y))d(x, y),

where α is MT-function. Then T has a fixed point.

Proof. Let define a function γ : [0,∞)→ [0, 1) as γ(t) =
1 + α(t)

2
. It is not difficult

to show that α(t) < γ(t), for any t ∈ [0,∞) and lims→t+ sup γ(s) < 1. Moreover,
for each x, y ∈ X and v ∈ Tx, there exist u ∈ Ty such that

d(v, u) ≤ γ(d(x, y))d(x, y).

Putting v = y, we will get that

d(y, u) ≤ γ(d(x, y))d(x, y)

Define f(x) = inf{d(x, b) : b ∈ Tx} and suppose that T does not have a fixed point
( i.e., for all x ∈ X, f(x) > 0). Let x1 ∈ X be arbitrary and choose x2 ∈ Tx1
satisfying

(1) d(x1, x2) <
1

γ(d(x1, x2))
f(x1).

Since Tx2 6= ∅, we can choose an arbitrary element x3 ∈ Tx2 such that

(2) f(x2) ≤ d(x2, x3) ≤ γ(d(x1, x2))d(x1, x2).

Also, as in equation (1), we have

(3) d(x2, x3) <
1

γ(d(x2, x3))
f(x2).

From (2) and (3), we have

d(x2, x3) ≤ min{γ(d(x1, x2))d(x1, x2),
1

γ(d(x2, x3))
f(x2)}.

Thus

γ(d(x2, x3))d(x2, x3) < f(x2) ≤ γ(d(x1, , x2))d(x1, x2) < f(x1).
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Continuously, {xn}n∈N ∈ X is a sequence constructed such that xn+1 ∈ Txn and
satisfying
(4)
γ(d(xn+1, xn+2)d(xn+1, xn+2) < f(xn+1) ≤ γ(d(xn, xn+1))d(xn, xn+1) < f(xn),

and

(5) d(xn+1, xn+2) ≤ γ(d(xn+1, xn))d(xn+1, xn).

Since γ(t) < 1, we have d(xn+1, xn+2) < d(xn, xn+1). Hence, from (4) and (5), the
sequences {f(xn)} and {d(xn, xn+1)} are strictly decreasing. Next, we show that
{xn}n∈N is a (

∑
, 6=)- Cauchy sequence in two steps:

Step 1 we show that all terms different. Suppose not i.e suppose xn = xm for some
n > m, where m,n ∈ N. Hence

f(xm) = inf{d(xm, b) : b ∈ Txm}
= inf{d(xn, b) : b ∈ Txn}
= f(xn),

which contradicts {f(xn)} being strictly decreasing.
Step 2 We show that

∑
d(xn, xn+1) < ∞. Since {d(xn, xn+1)} is an decreasing

sequence in R and bounded below, it converges to some positive real number (say
δ). Also, we have lims→t+ sup γ(s) < 1, thus, there exist r ∈ [0, 1) and ε > 0 such
that γ(s) ≤ r for all s ∈ [δ, δ + ε). For any n ∈ N, we can choose µ ∈ N satisfying
δ ≤ d(xn, xn+1) ≤ δ + ε with n ≥ µ. So,

∞∑
n=1

d(xn, xn+1) ≤
µ∑
n=1

d(xn, xn+1) +

∞∑
n=µ+1

d(xn, xn+1)

≤
µ∑
n=1

d(xn, xn+1) +
∞∑
n=1

rnd(xµ, xµ+1)

<∞.

Thus {xn} is a (
∑
, 6=)- Cauchy sequence in (

∑
, 6=) complete ν- generalize metric

space. Then, it is converge to some z ∈ X and by lemma (2.5), {xn} is a Cauchy
sequence. From our assumption we choose {un} ∈ Tz satisfy

d(xn+1, un) ≤ H(Txn, T z) ≤ γ(d(xn, z))d(xn, z),

for any n ∈ N. But {xn} converges to z, so d(xn+1, un) → 0 as n → ∞. Thus we
have xn+1 → z and xn+1 → un. Therefore, by lemma(2.5) d(un, z) = 0 as n→∞.
So d(Tz, z) = 0 implies f(z) = 0 which is a contradiction. Therefore, there exist
z ∈ X such that f(z) = 0 and hence z ∈ Tz is a fixed point. �

Definition 3.2. [7] A multi- valued map T from X into CB(X) is called α- ad-
missible if for any x ∈ X and y ∈ Tx, α(x, y) ≥ 1 implies α(y, z) ≥ 1 for any
z ∈ Ty, where α : X ×X → [0,∞).

The up coming lemma proved in [18], for single-valued map here, we prove it for
multi- valued map.
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Lemma 3.3. Let (X, d) be a ν- generalized metric space. Let T be a multi-valued
mapping from X into 2X and {xn}n∈N be a sequence in X defined by xn+1 ∈ Txn
such that xn 6= xn+1. Assume that

(6) d(xn, xn+1) ≤ δd(xn−1, xn)

hold for any δ ∈ [0, 1). Then xn 6= xm ∀n 6= m ∈ N.

Proof. We prove that xn+` 6= xn for all n ∈ N and ` ≥ 1. Suppose the contrary
that is xn+` = xn for some n ∈ N and ` ≥ 1. By assumption, we have that
xn+`+1 = xn+1. Then from (6) we get
(7)
d(xn, xn+1) = d(xn+`, xn+`+1) ≤ δd(xn+`−1, xn+`) ≤ ... ≤ δ`d(xn, xn+1) < d(xn, xn+1)

which is contradiction. Thus, we get xm 6= xn for all m 6= n in N. �

Let Φ be the family of all functions ϕ : [0,∞) → [0,∞) which satisfying the
following conditions:

(a) ϕ(s) = 0 iff s = 0.
(b) ϕ is non-decreasing and lower semi-continuous

(c) lims→0+ sup
s

ϕ(s)
<∞.

Theorem 3.4. Let (X, d) be a (
∑
, 6=) complete ν- generalized metric space. Let

T : X → CB(X) be an α- admissible multi-valued mapping satisfying:

(i) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1
(ii) If (yn) ∈ Tx and (yn) converge to y then y ∈ Tx

(iii) α(x, y)H(Tx, Ty) ≤ φ(d(x, y))d(x, y) for any x, y ∈ X, and φ is MT-function.

Then T has a fixed point.

Proof. Let β : [0,∞) → [0, 1) as β(t) =
1 + φ(t)

2
such that lims→t+ supβ(s) < 1.

Clearly φ(t) < β(t) for each t ∈ [0,∞). Let x0 ∈ X and choose x1 ∈ Tx0 such that

α(x0, x1) ≥ 1. Assume x0 6= x1 so,
1− φ(d(x0, x1))

2
d(x0, x1) > 0. Since Tx1 6= ∅,

choose x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) +
1− φ(d(x0, x1))

2
d(x0, x1)

≤ α(x0, x1)H(Tx0, Tx1) +
1− φ(d(x0, x1))

2
d(x0, x1)

≤ φ(d(x0, x1))d(x0, x1) +
1− φ(d(x0, x1))

2
d(x0, x1)

≤ β(d(x0, x1))d(x0, x1).

Since T is α- admissible, x1 ∈ Tx0 and α(x0, x1) ≥ 1 then, α(Tx0, Tx1) ≥ 1 which

implies α(x1, x2) ≥ 1. Similarly assume x1 6= x2 we have
1− φ(d(x1, x2))

2
d(x1, x2) >
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0 and choose x3 ∈ Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2) +
1− φ(d(x1, x2))

2
d(x1, x2)

≤ α(x1, x2)H(Tx1, Tx2) +
1− φ(d(x1, x2))

2
d(x1, x2)

≤ φ(d(x1, x2))d(x1, x2) +
1− φ(d(x1, x2))

2
d(x1, x2)

≤ β(d(x1, x2))d(x1, x2).

Similarly, using the same method of proving theorem (3.1), we have our result.
�

Theorem 3.5. Let (X, d) be a (
∑
, 6=) complete ν- generalized metric space. Let

T : X → CB(X) be a multi-valued map satisfying:

ϕ(H(Tx, Ty)) ≤ α(ϕ(d(x, y)))ϕ(d(x, y)),

for each x, y ∈ X, where α is a MT- function and ϕ ∈ Φ. Then T has a fixed point.

Proof. Let γ : [0,∞)→ [0, 1) defined by γ(t) =
1 + α(t)

2
. Since ϕ is non- decreasing

function, then

max

{
sup
v∈Tx

ϕ(d(v, Ty)), sup
u∈Ty

ϕ(d(u, Tx))

}
= max

{
ϕ( sup
v∈Tx

d(v, Ty)), ϕ( sup
u∈Ty

d(u, Tx))

}
= ϕ (H(Tx, Ty)) ≤ γ(ϕ(d(x, y)))ϕ(d(x, y)).

(8)

There exist an element z ∈ Ty such that

ϕ(d(y, z)) ≤ γ(ϕ(d(x, y)))ϕ(d(x, y)),

for each x ∈ X and y ∈ Tx. Thus, in the same way a sequence {xn}n∈N ∈ X
defined as xn+1 ∈ Txn is constructed such that

(9) ϕ(d(xn, xn+1) ≤ γ(ϕ(d(xn−1, xn))ϕ(d(xn−1, xn))

for all n ∈ N. Since γ(t) < 1 for any t ∈ [0,∞), hence from (9) we get

(10) ϕ(d(xn, xn+1) < ϕ(d(xn−1, xn)).

Clearly {ϕ(d(xn−1, xn))} is decreasing sequence of positive real numbers. Hence
it is converge to some non- negative real number, say ε. By contradiction, it is
easy to show that ε = 0. Note that, ϕ is a non- decreasing function which implies
to d(xn, xn+1) < d(xn−1, xn). Thus the sequence {d(xn, xn+1)} is also decreasing.
Hence by lemma (3.3), the terms of the sequence all are different. Now, show that∑∞
n=0 d(xn, xn+1) < ∞. Note that the sequence {d(xn, xn+1)} is decreasing and

bounded. Thus, it is converges to a positive real number (say δ) which implies that
ϕ(δ) ≤ ϕ(d(xn, xn+1)). Thus,

ϕ(δ) ≤ lim
n→∞

ϕ(d(xn, xn+1)) = ε = 0.
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Since ϕ(s) = 0 if and only if s = 0 then, δ = 0. By lemma (2.6), there exist
r ∈ [0, 1) such that, ϕ(d(xn, xn+1)) ≤ rϕ(d(xn−1, xn)). Therefore,

∞∑
n=1

ϕ(d(xn, xn+1)) ≤
µ∑
n=1

ϕ(d(xn, xn+1)) +
∞∑

n=µ+1

ϕ(d(xn, xn+1))

≤
µ∑
n=1

ϕ(d(xn, xn+1)) +
∞∑
n=1

rnϕ(d(xµ, xµ+1))

<∞.

By defintion of ϕ, we have

lim
n→∞

sup
d(xn, xn+1)

ϕ(d(xn, xn+1))
≤ lim
s→0+

s

ϕ(s)
<∞.

Thus, the sequence {xn} is a (
∑
, 6=)- Cauchy sequence. Since X is a (

∑
, 6=)

complete ν- generalized metric space and by lemma (2.5), it is Cauchy and then it
is converge to some z ∈ X. From the definition of ϕ and its increasing we conclude
that,

ϕd(z, Tz)) ≤ lim
n→∞

inf ϕ(d(xn+1, T z) ≤ lim
n→∞

inf ϕ(H(Txn, T z))

≤ lim
n→∞

inf γ(ϕ(d(xn, z)))ϕ(d(xn, z)) ≤ lim
n→∞

inf ϕ(d(xn, z))

= lim
s→0+

ϕ(s) = lim
n→∞

ϕ(d(xn, xn+1)) = 0.

Therefore, ϕ(d(z, Tz)) = 0. Thus by the definition of ϕ and since Tz closed we
have z ∈ Tz is a fixed point. �
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