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Abstract: In this paper, we discuss the �xed points of mappings satisfying
contractive type condition on a closed ball in an ordered complete dislocated
quasi G metric space. The notion of dominated mappings is applied to approx-
imate the unique solution of non linear functional equations. An example is
given to show the validity of our work. Our results improve/generalize several
well known recent and classical results.
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1 Introduction and Preliminaries

Let T : X ! X be a mapping. A point x 2 X is called a �xed point of T if x =
Tx: Let x0 be an arbitrary chosen point in X. De�ne a sequence fxng in X by
a simple iterative method given by xn+1 = Txn; where n 2 f0; 1; 2; 3; :::g: Such
a sequence is called a picard iterative sequence and its convergence plays a
very important role in proving existence of �xed point of a mapping T . A self
mapping T on a metric space X is said to be a Banach contraction mapping if,

d(Tx; Ty) � kd(x; y)

holds for all x; y 2 X where 0 � k < 1: Recently, many results appeared in
literature related to �xed point results in complete metric spaces endowed with
a partial ordering . Ran and Reurings [17] proved an analogue of Banach�s �xed
point theorem in metric space endowed with partial order and gave applications
to matrix equations. Subsequently, Nieto et. al. [12] extended the results of [17]
for non decreasing mappings and applied this results obtain a unique solution
for a 1st order ordinary di¤erential equation with periodic boundary conditions.
On the other hand in 2005, Mustafa and Sims in [14] introduce the notion of a
generalized metric space as generalization the usual metric space. Mustafa and
others studied �xed point theorems for mappings satisfying di¤erent contrac-
tive conditions for further useful results can be seen in [3, 8, 9, 10, 15, 16, 21].
Recently, Arshad et. al. [4] proved a result concerning the existence of �xed
points of a mapping satisfying a contractive condition on closed ball in a com-
plete dislocated metric space. For further results on closed ball we refer the
reader to [5, 6, 7, 13, 20] and references their in. The dominated mapping [2]
which satis�es the condition fx � x occurs very naturally in several practical
problems . For example x denotes the total quantity of food produced over a
certain period of time and f(x) gives the quantity of food consumed over the
same period in a certain town, then we must have fx � x:
In this paper we have obtained �xed point results for dominated self- map-

pings in an ordered complete dislocated quasi Gd metric space on a closed ball
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under contractive condition to generalize, extend and improve some classical
�xed point results. We have used weaker contractive condition and weaker re-
strictions to obtain unique �xed point. Our results do not exists even yet in
metric spaces. An example shows how this result can be used when the corre-
sponding results cannot.

De�nition 1 Let X be a nonempty set and let Gd : X � X � X ! R+ be a
function satisfying the

following axioms:
(i) If Gd(x; y; z) = Gd(y; z; x) = Gd(z; x; y) = 0,then x = y = z;
(ii) Gd(x; y; z) � Gd(x; a; a) + Gd(a; y; z) for all x; y; z; a 2 X (rectangle

inequality).
Then the pair (X;Gd) is called the dislocated quasi Gd-metric space. It is

clear that if
Gd(x; y; z) = Gd(y; z; x) = Gd(z; x; y) = 0 then from (i) x = y = z: But if

x = y = z then Gd(x; y; z) may not be 0: It is observed that if Gd(x; y; z) =
Gd(y; z; x) = Gd(z; x; y) for all x; y; z 2 X; then (X;Gd) becomes a dislocated
Gd-metric space.

Example 2 If X = R+ [ f0g then Gd(x; y; z) = x + maxfx; y; zg de�nes a
dislocated quasi metric G on X.

De�nition 3 Let (X;Gd) be a Gd-metric space, and let fxng be a sequence
of points in X, a point x in X is said to be the limit of the sequence fxng if
limm;n!1Gd(x; xn; xm) = 0; and one says that sequence fxng is Gd-convergent
to x:Thus, if xn ! x in a Gd-metric space (X;Gd), then for any 2 > 0; there
exists n;m 2 N such that Gd(x; xn; xm) < 2; for all n;m � N:

De�nition 4 Let (X;Gd) be a Gd-metric space. A sequence fxng is called
Gd-Cauchy sequence if, for each 2 > 0 there exists a positive integer n? 2 N
such that Gd(xn; xm;xl) < 2 for all n; l;m � n?; i.e. if Gd(xn; xm; xl) ! 0 as
n;m; l!1:

De�nition 5 Gd-metric space (X;Gd) is said to be Gd-complete if every Gd-
Cauchy sequence in (X;Gd) is Gd-convergent in X:

Proposition 6 Let (X;Gd) be a Gd-metric space, then the following are equiv-
alent:

(1) fxng is Gd convergent to x:
(2) Gd(xn; xn; x)! 0 as n!1:
(3) Gd(xn; x; x)! 0 as n!1:
(4) Gd(xn; xm; x)! 0 as m n!1:

De�nition 7 Let (X;Gd) be a Gd-metric space then for x0 2 X, r > 0; the
closed ball with centre x0 and radius r is,

B(x0; r) = fy 2 X : Gd(x0; y; y) � rg:
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De�nition 8 [2] Let (X;�) be a partial ordered set. Then x; y 2 X are called
comparable if x � y or y � x holds.

De�nition 9 [2] Let (X;�) be a partially ordered set. A self mapping f on X
is called dominated if fx � x for each x in X:

Example 10 [2] Let X = [0; 1] be endowed with usual ordering and f : X ! X
be de�ned by fx = xn for some n 2 N. Since fx = xn � x for all x 2 X,
therefore f is a dominated map.

2 Fixed Points of Contractive Mapping

Theorem 11 Let (X;�; Gd) be an ordered complete dislocated quasi Gd metric
space, and T : X ! X be a dominated mapping. Suppose there exists a; b such
that a + 3b < 1 and for all comparable elements x; y and z in B(x0; r); with
x0 2 B(x0; r); r > 0;.

Gd(Tx; Ty; Tz) � a Gd(x; y; z) + b [Gd(x; Tx; Tx) (2.1)

+Gd(y; Ty; Ty) +Gd(z; Tz; Tz)]

where � =
a+ b

1� 2b
and Gd(x0; Tx0; Tx0) � (1� �)r: (2.2)

If for a nonincreasing sequence fxng in B(x0; r), fxng ! u implies that u � xn
and

G(x0; Tx0; Tx0) +G(v; Tv; Tv) +G(v; Tv; Tv)

� G(x0; v; v) +G(Tx0; T v; Tv) +G(Tx0; T v; Tv) (2.3)

then there exists a point x? in B(x0; r) such that Gd(x?; x?; x?) = 0 and x? =
Tx?:
Proof. Consider a picard sequence xn+1 = Txn with initial guess x0: As xn+1 =
Txn � xn for all n 2 f0g[N: By inequality (2:2), Gd(x0; x1; x1) � r. It implies
that x1 2 B(x0; r): Similarly x2 : : : xj 2 B(x0; r) for some j 2 N:

Gd(xj ; xj+1; xj+1) = Gd(Txj�1; Txj ; Txj) � a Gd(xj�1; xj ; xj)
+b[Gd(xj�1; Txj�1; Txj�1) +Gd(xj ; xj+1; xj+1)

+Gd(xj ; xj+1; xj+1)]

(1� 2b)Gd(xj ; xj+1; xj+1) � (a+ b)Gd(xj�1; xj ; xj)

Gd(xj ; xj+1; xj+1) � (a+ b)

(1� 2b)Gd(xj�1; xj ; xj)

...

Gd(xj ; xj+1; xj+1) � �jGd(x0; x1; x1): (2.4)

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.6, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

1038 Shoaib 1036-1046



Now by using the inequality (2:2) and (2:4) we have

Gd(xj ; xj+1; xj+1) � Gd(x0; x1; x1) +Gd(x1; x2; x2) + � � �+Gd(xj ; xj+1; xj+1)
Gd(xj ; xj+1; xj+1) � (1� �)r + �(1� �)r + � � �+ �j(1� �)r
Gd(xj ; xj+1; xj+1) � r(1� �)[1 + �+ �2 + � � �+ �j ]

Gd(xj ; xj+1; xj+1) � r(1� �) (1� �
j+1)

(1� �) � r

) Gd(xj ; xj+1; xj+1) � r:

Thus xj+1 2 B(x0; r). Hence xn 2 B(x0; r) for all n 2 N: Now inequality (2:4)
can be written as in the form of

Gd(xn; xn+1; xn+1) � �nGd(x0; x1; x1) for all n 2 N: (2.5)

By using inequality (2:5) we get

Gd(xn; xn+i; xn+i) � Gd(xn; xn+1; xn+1) + � � �+Gd(xn+i�1; xn+i; xn+i)

Gd(xn; xn+i; xn+i) � �n(1� �i)
(1� �) Gd(x0; x1; x1)! 0 as n!1 (2.6)

Notice that the sequence fxng is Cauchy sequence in (B(x0; r) ; Gd): Therefore
there exist a point x? 2 B(x0; r):

lim
n!1

Gd(xn; x
?; x?) = lim

n!1
Gd(x

?; x?; xn) = 0

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) +Gd(xn; Tx
?; Tx?)

By assumption x? � xn � xn�1, therefore,

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) +Gd(Txn�1; Tx
?; Tx?)

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) + a Gd(xn�1; x
?; x?)

+b[Gd(xn�1; Txn�1; Txn�1) +Gd(x
?; Tx?; Tx?)

Gd(x
?; Tx?; Tx?)]

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) + a Gd(xn�1; x
?; x?)

+b[Gd(xn�1; Txn�1; Txn�1) + 2Gd(x
?; Tx?; Tx?)

(1� 2b)Gd(x?; Tx?; Tx?) � Gd(x
?; xn; xn) + a Gd(xn�1; x

?; x?)

+b Gd(xn�1; xn; xn)

Taking limn!1 both sides and using (2:6) we have

(1� 2b)Gd(x?; Tx?; Tx?) � 0 + a(0) + b(0)

) Gd(x
?; Tx?; Tx?) � 0

) x? = Tx?: (2.7)
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Similarly Gd(Tx?; Tx?; x?) = 0 and Gd(Tx?; x?; Tx?) = 0 and hence x? =
Tx?:Now

Gd(x
?; x?; x?) = Gd(Tx

?; Tx?; Tx?) � a Gd(x?; x?; x?)
+3bGd(x

?; Tx?; Tx?)

(1� a� 3b)Gd(x?; x?; x?) � 0

) Gd(x
?; x?; x?) � 0:

This implies that Gd(x?; x?; x?) = 0:
Uniqueness:
Let y? be another point in B(x0; r) such that

y? = Ty?: (2.8)

Gd(y
?; y?; y?) = Gd(Ty

?; T y?; T y?) � a Gd(y?; y?; y?)
+3b[Gd(y

?; T y?; T y?)]

(1� a� 3b)Gd(y?; y?; y?) � 0

) Gd(y
?; y?; y?) � 0:

) Gd(y
?; y?; y?) = 0:

If x? and y? are comparable then

Gd(x
?; y?; y?) = Gd(Tx

?; T y?; T y?) � a Gd(x?; y?; y?)
+b[Gd(x

?; Tx?; Tx?) + 2Gd(y
?; T y?; T y?)]

(1� a)Gd(x?; y?; y?) � 0

) Gd(x
?; y?; y?) = 0:

Similarly, Gd(y?; y?; x?) = 0: This shows that x? = y?:
If x? and y? are not comparable then there exist a point v 2 B(x0; r) which is
a lower bound of both x? and y?: Now we will to prove that Tnv 2 B(x0; r):
Moreover by assumptions v � x? � xn � � � � � x0: Now by using (2:1), we have,

Gd(Tx0; T v; Tv) � a Gd(x0; v; v) + b [Gd(x0; x1; x1) + 2Gd(v; Tv; Tv)]:
By using (2:3); we have

Gd(Tx0; T v; Tv) � a Gd(x0; v; v) + b [Gd(x0; v; v) + 2Gd(x1; T v; Tv)]

(1� 2b)Gd(Tx0; T v; Tv) � (a+ b) Gd(x0; v; v)

Gd(Tx0; T v; Tv) � (a+ b)

(1� 2b) Gd(x0; v; v)

Gd(Tx0; T v; Tv) � � Gd(x0; v; v): (2.9)

Now,

Gd(x0; T v; Tv) � Gd(x0; x1; x1) +Gd(x1; T v; Tv)

Gd(x0; T v; Tv) � Gd(x0; x1; x1) + � Gd(x0; v; v) by (2:9)

Gd(x0; T v; Tv) � (1� �)r + �r
Gd(x0; T v; Tv) � r:
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It follows that Tv 2 B(x0; r): Now we will prove that Tnv 2 B(x0; r): By us-
ing mathematical induction to apply inequality (2:1): Let T 2v; T 3v; � � �T jv 2
B(x0; r) for some j 2 N: As

T jv � T j�1v � � � � � v � x? � xn � � � � � x0:

Then,

Gd(T
jv; T j+1v; T j+1v) = Gd(T (T

j�1v); T (T jv); T (T jv))

Gd(T
jv; T j+1v; T j+1v) � a Gd(T

j�1v; T jv; T jv) + b [Gd(T
j�1v; T jv; T jv)

+2Gd(T
jv; T j+1v; T j+1v)]

(1� 2b)Gd(T jv; T j+1v; T j+1v) � (a+ b)Gd(T
j�1v; T jv; T jv)

Gd(T
jv; T j+1v; T j+1v) � �Gd(T

j�1v; T jv; T jv)

Gd(T
jv; T j+1v; T j+1v) � �2Gd(T

j�2v; T j�1v; T j�1v)

Gd(T
jv; T j+1v; T j+1v) � �3Gd(T

j�3v; T j�2v; T j�2v)

...

Gd(T
jv; T j+1v; T j+1v) � �jGd(T

j�jv; T j�(j�1)v; T j�(j�1)v)

Gd(T
jv; T j+1v; T j+1v) � �jGd(v; Tv; Tv) (2.10)

Now,

Gd(xj+1; T
j+1v; T j+1v) � Gd(Txj ; T (T

jv); T (T jv))

Gd(xj+1; T
j+1v; T j+1v) � a Gd(xj ; T

jv; T jv)

+b [Gd(xj ; Txj ; Txj) + 2Gd(T
jv; T j+1v; T j+1v)]:

By using (2:4) and (2:10)

Gd(xj+1; T
j+1v; T j+1v) � a�jGd(x0; v; v)

+b[�jGd(x0; x1; x1) + 2�
jGd(v; Tv; Tv)]

Gd(xj+1; T
j+1v; T j+1v) � a�jGd(x0; v; v)

+b�j [Gd(x0; x1; x1) + 2Gd(v; Tv; Tv)]

By using the condition (2:3)

Gd(xj+1; T
j+1v; T j+1v) � a�jGd(x0; v; v)

+b�j [Gd(x0; v; v) + 2�Gd(x0; v; v)]

Gd(xj+1; T
j+1v; T j+1v) � �j(a+ b+ 2b�)Gd(x0; v; v)

Gd(xj+1; T
j+1v; T j+1v) � �j+1Gd(x0; v; v) (2.11)
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Now ,

Gd(x0; T
j+1v; T j+1v) � Gd(x0; xj+1;xj+1) +Gd(xj+1; T

j+1v; T j+1v)

Gd(x0; T
j+1v; T j+1v) � Gd(x0; x1;x1) + � � �+Gd(xj ; xj+1;xj+1)

+Gd(xj+1; T
j+1v; T j+1v)

Gd(x0; T
j+1v; T j+1v) � Gd(x0; x1;x1) + �Gd(x0; x1;x1)

+ � � �+ �j+1Gd(x0; v; v) by (2:5) and (2:11)
Gd(x0; T

j+1v; T j+1v) � Gd(x0; x1;x1)[1 + �+ �
2 + � � �+ �j ] + �j+1r as v 2 B(x0; r)

Gd(x0; T
j+1v; T j+1v) � (1� �)r (1� �

j+1)

(1� �) + �j+1r = r

Gd(x0; T
j+1v; T j+1v) � r:

It follows that T j+1v 2 B(x0; r) and hence T jv 2 B(x0; r): Now the inequality
(2:10) can be written as

Gd(T
nv; Tn+1v; Tn+1v) � �nGd(v; Tv; Tv)! 0 as n!1 (2.12)

Now,

Gd(x
?; y?; y?) = Gd(Tx

?; T y?; T y?)

Gd(x
?; y?; y?) � Gd(Tx

?; Tn+1v; Tn+1v) +Gd(T
n+1v; Ty?; T y?)

Gd(x
?; y?; y?) � a Gd(x

?; Tnv; Tnv) + b [Gd(x
?; Tx?; Tx?)

+2Gd(T
nv; Tn+1v; Tn+1v)] + a Gd(T

nv; Ty?; T y?)

+b [Gd(T
nv; Tn+1v; Tn+1v) + 2Gd(y

?; T y?; T y?)]

By using (2:7); (2:8) and (2:12) we have

Gd(x
?; y?; y?) � a Gd(x

?; Tnv; Tnv) + a Gd(T
nv; y?; y?)

Gd(x
?; y?; y?) � a [Gd(Tx

?; Tnv; Tnv) +Gd(T
nv; Ty?; T y?)]

Gd(x
?; y?; y?) � a [a Gd(x

?; Tn�1v; Tn�1v) + b Gd(x
?; Tx?; Tx?)

+2b Gd(T
n�1v; Tnv; Tnv) + a Gd(T

n�1v; y?; y?)

+b Gd(T
n�1v; Tnv; Tnv) + 2b Gd(y

?; T y?; T y?)]:

By using (2:7); (2:8) and (2:12) we have

Gd(x
?; y?; y?) � a2 [Gd(x

?; Tn�1v; Tn�1v) +Gd(T
n�1v; y?; y?)]

Gd(x
?; y?; y?) � a3 [Gd(x

?; Tn�2v; Tn�2v) +Gd(T
n�2v; y?; y?)]

...

Gd(x
?; y?; y?) � an [Gd(x

?; T v; Tv) +Gd(Tv; y
?; y?)]

Gd(x
?; y?; y?) ! 0 as n!1

Gd(x
?; y?; y?) = 0

x? = y?:
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This proves the uniqueness of the �xed point.

Now we give an example of an ordered complete dislocated quasi Gd-metric
space in which the contraction does not hold on the whole space rather it holds
on a closed ball only.

Example 12 Let X = R+[f0g be endowed with usual order and Gd : X�X�
X ! X be a complete dislocated quasi Gd metric space de�ned by,

Gd(x; y; z) =

�
0 if x = y = z

max f2x; y; zg otherwise:

�
Then (X;Gd) is a Gd complete G dislocated quasi metric space.
Let T : X ! X be de�ned by,

Tx =

�
x
5 if x 2 [0;

3
2 ]

x� 1
3 if x 2 [

3
2 ;1)

�
:

Clearly, T is a dominated mappings. Take x0 = 1
3 , r =

3
2 , B(x0; r) = [0;

3
2 ] and

� = 1
4 ; a+ 3b < 1; where a =

1
10 ; and b =

1
10 :

Gd(x0; Tx0; Tx0) � (1� �)r

Gd(
1

3
; T
1

3
; T
1

3
) = maxf2

3
;
1

15
;
1

15
g = 2

3

Since (1� �)r = (1� 1
4
)
3

2
=
9

8

) 2

3
� 9

8
) 16 � 27

Also if x; y and z 2 [ 32 ;1): We assume that x > y; and y > z; then

maxf2x� 2
3
; y � 1

3
; z � 1

3
g � 1

10
maxf2x; y; zg

1

10
[maxf2x; x� 1

3
; x� 1

3
g

+maxf2y; y � 1
2
; y � 1

2
g

+maxf2z; z � 1
2
; z � 1

2
g]

Gd(Tx; Ty; Tz) � a Gd(x; y; z) + b [Gd(x; Tx; Tx)

+Gd(y; Ty; Ty) +Gd(z; Tz; Tz)]

So the contractive conditions does not holds in X: Now if x; y and z 2 B(x0; r)
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then,

Gd(Tx; Ty; Tz) = maxf2x
5
;
y

5
;
z

5
g � 1

10
f2x; y; zg

+
1

10
[maxf2x; x

5
;
x

5
g+maxf2y; y

5
;
y

5
g

+maxfz; z
5
;
z

5
g]

) Gd(Tx; Ty; Tz) � a Gd(x; y; z) + b [Gd(x; Tx; Tx)
+Gd(y; Ty; Ty) +Gd(z; Tz; Tz)]:

Hence it satis�es all the requirements of Theorem11. If we take b = 0 in in-
equality (2:1) then we obtain the following corollary.

Corollary 13 Let (X;�; G) be an ordered complete dislocated quasi G�metric
space, T : X ! X be a dominated mapping and x0 be any arbitrary point in X.
Suppose there exists a 2 [0; 1) with,

G(Tx;Ty;Tz) � a G(x; y; z); for all x; y and z 2 Y = B(x0; r);

and
G(x0;Tx0;Tx0) � (1� a)r:

If for a nonincreasing sequence fxng ! u implies that u � xn. Then there exists
a point x? in B(x0;r) such that x? = Sx? and G(x?; x?; x?) = 0: Moreover if for
any three points x; y and z in B(x0; r) such that there exists a point v 2 B(x0;r)
such that v � x; v � y and v � z; that is, every three of elements in B(x0; r)
has a lower bound, then the point x? is unique.
Similarly if we take a = 0 in inequality (2:1) then we obtain the following corol-
lary.

Corollary 14 Let (X;�; G) be an ordered complete dislocated quasi G-metric
space T : X ! R be a mapping and x0 be an arbitrary point in X: Suppose there
exists b 2

�
0; 13

�
with

G(Tx; Ty; Tz) � b (G(x; Tx; Tx) +G(y; Ty; Ty) +G(z; Tz; Tz))

for all comparable elements x; y; z 2 B(x0;r) and

G(x0; Tx0; Tx0) � (1� �)r;

where � = b
1�2b . If for non increasing sequence fxng ! u implies that u � xn:

Then there exists a point x? in B(x0; r) such that x? = Sx?and G(x?; x?; x?) =
0: Moreover, if for any three points x; y; z 2 B(xo; r); there exists a point v in
B(x0; r) such that v � x and v � y, v � z:
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