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Abstract

In this paper, the weakly singular Fredholm integral equations of the second
kind are solved by the periodized Daubechies wavelets method. In order to
obtain a good degree of accuracy of the numerical solutions, the Sidi-Israeli
quadrature formulae are used to construct the approximation of the singular
kernel functions. By applying the asymptotically compact theory, we prove the
convergence of approximate solutions. In addition, the sidi transformation can
be used to degrade the singularities when the kernel function is non-periodic.
At last, numerical examples show the method is efficient and errors of the
numerical solutions possess high accuracy order O (h3+α), where h is the mesh
size.
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1 Introduction

Many problems in science and engineering such as Lapalace’s equation, problems in
elasticity, conformal mapping, free surface flows and so on, result in Fredholm inte-
gral equations with singular or weakly singular (in general logarithmic) and periodic
kernels [11]. Therefore, singular or weakly Singular Fredholm linear equations and its
nonlinear counterparts are most frequently studied for decades.
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Generally, the weakly singular Fredholm integral equation of the second can be
converted into the following form

u(x)−
∫ 1

0

k(x, y)g(u(y))dy = f(x), x ∈ [0, 1], (1.1)

where

k(x, y) = H1(x, y)|x− y|α(ln |x− y|)β + H2(x, y), α > −1, β ≥ 0, (1.2)

u(x) is an unknown function and f ∈ L2[0, 1], and Hj(x, y) (j = 1, 2) are continu-
ous on [0, 1]. The integral equation (1.1) is linear when g(u(y)) = u(y), and when
g(u(y)) 6= u(y) the equation is nonlinear.

As is known, several different orthonormal basis functions, for example, Chebyshev
polynomial [8], Fourier functions [2], and wavelets [3, 4, 5, 6, 7, 9, 10, 13, 14, 16, 17],
can be used to approximate the solutions of integral equations. However, for large
scale problems, the most attractive one among them may be the wavelet bases, in
which the kernel can be transformed to a sparse matrix after discretization. This
is mainly due to functions with fast oscillations, or even discontinuities, in localized
regions may be approximated well by a linear combination of relatively few wavelets
[3].

This paper is organized as follows: in Section 2, the periodized Daubechies wavelets
is introduced for solving weakly singular Fredholm integral equations of the second
in detail. In Section 3, the convergence and error analysis are investigated. In Sec-
tion 4, numerical examples are provided to verify the theoretical results. Some useful
conclusions are made in Section 5.

2 Periodized Daubechies wavelets method

2.1 Multiresolution analysis and function expansions

Wavelets are attractive for the numerical solution of integrations, because their van-
ishing moments property leads to operator compression. Especially, Daubechies
wavelets [12, 15] have many good properties and can deal with some types of kernels
arising from boundary integral formulation of elliptic PDEs, and the coefficient are
often numerically sparse. In fact, there are only O (n log n) significant elements. Sup-
posed that ψ and φ be the the wavelet of genus N and Daubechies scaling function
respectively. Thus their support are supp(φ) = supp(ψ) = [0, N−1]. For any j, k ∈ Z,
we introduce the notations φj,k(x) = 2j/2φ(2jx−k) and ψj,k(x) = 2j/2ψ(2jx−k), then
their periodic kin with period-1 can be described by

φ̃j,k(x) =
∑
n∈Z

φj,k(x + n), ψ̃j,k(x) =
∑
n∈Z

ψj,k(x + n), x ∈ R, 0 ≤ k < 2j. (2.1)

Here {φ̃j,k(x)}k∈Z and {ψ̃j,k(x)}k∈Z are orthogonal [17]. Defining the periodic spaces

Ṽj = span{φ̃j,k}2j−1
k=0 and W̃j = span{ψ̃j,k}2j−1

k=0 . A chain of spaces Ṽ0 ⊂ Ṽ1 · · · ⊂
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L2[0, 1] can be constructed, which subject to the following conditions: (a) ∪j≥0 Ṽj =
L2[0, 1], ∩j∈Z Ṽj = {0}; (b) h(x) ∈ Ṽj ⇔ h(2x) ∈ Ṽj+1; (c) Ṽj ⊕ W̃j = Ṽj+1, W̃j ⊥ Ṽj.
The Daubechies wavelets and scaling functions described above result in the wavelet
theory (i.e., multiresolution analysis (MRA)) of L2[0, 1].

Supposed that function p(x) ∈ L2[0, 1] be approximated by scaling series at reso-
lution J as

p(x) =
2J−1∑

k=0

cJ,kφ̃J,k(x) = Φt(x)c, x ∈ [0, 1], (2.2)

where
Φ(x) = [φ̃J,0(x), φ̃J,1(x), · · · , φ̃J,2J−1(x)], (2.3)

and

c = (cJ,0, cJ,1, · · · , cJ,2J−1)t, cJ,k =

∫ 1

0

p(x)φ̃J,k(x)dx. (2.4)

First, we calculate the wavelet coefficient cJ,k for nonsingular function p(x) ∈
L2[0, 1]. Let xi = i/2J , i = 0, 1, · · · , 2J−1. Substituting x = xi into Eq. (2.2), we
have

p(x) =
2J−1∑

k=0

cJ,kφ̃J,k(i/2
J) = 2J/2

2J−1∑

k=0

cJ,k

∑
n∈Z

φj,k(2
Jn + i− k). (2.5)

By using the relationship between supp(φ) and [0, 1], we know when J ≥ J0 only
finite terms of the inner summation in (2.5) contribute the following result

n =

{
0 or 1, if 2J −N + 2 ≤ N − 1,
0, if 0 ≤ k ≤ 2Js−N + 1.

Now we write (2.5) as the matrix form

p = Tc, (2.6)

where p = [p(0), p(1/2J), · · · , p((2J − 1)/2J)]t, T is the nonsingular matrix which
entries are the function values of φ(x) at integers (i.e., φ(0),φ(1),· · · ,φ(N−2)) appear
in it, and hence it satisfies

2J∑
i=1

Tij =
2J∑

j=1

Tij = 2J/2, i, j = 1, 2, · · · , 2J . (2.7)

Consequently, the function k(x, y) ∈ L2([0, 1]×[0, 1]) in Eq.(1.1) can be approximated
at resolution J as

k(x, y) = Φt(x)QΦ(y), (2.8)

where Q is the 2J × 2J coefficient matrix. Eq. (2.8) can be written as the following
form

Q = T−1KT−t, (2.9)

where K is the 2J × 2J kernel matrix with Ki,j = k(i/2J , j/2J).
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Secondly, if the function p(x) is singular on [0, 1], some values of p(x) at the
dyadic points xi = i/2J , i = 0, 1, · · · , 2J − 1 may be unbounded and then c can not
be immediately solved from the Eq.(2.6). In order to avoid the Eq.(2.6) being invalid,
we can use the method in the literature [17] to compute the values of p(x). Without
loss of generality, we assumed that function p(x) ∈ L2[0, 1] has only one singular point
xi = i/2J , i ∈ {0, 1, · · · , 2J − 1}. Then the function value p(xi) in Eq.(2.6) can be
computed via on the following ( see [17])

p(i/2J) = 2J

∫ 1

0

p(x)dx−
2J−1∑

j=0,j 6=i

p(j/2J), i ∈ {0, 1, · · · , 2J − 1}, (2.10)

where integration
∫ 1

0
p(x)dx can be calculated by Sidi-Israeli quadrature formulae

[11].

2.2 Kernel function approximation and discretization of sin-
gular integral equation

Motivated by the Eq.(2.10) and by thinking k(x, y) as a one-dimensional function of
variable x and y respectively, we also have

k(x,m/2J) = 2J

∫ 1

0

k(x, y)dy −
2J−1∑

j=0,j 6=m

k(x, j/2J), m ∈ {0, 1, · · · , 2J − 1}. (2.11)

The following Theorem 2.1 can be used to construct the kernel approximation of
Eq.(1.1).

Theorem 2.1 [11] Assume that the functions H1(x, y) and H2(x, y) are 2` times
differentiable on [a, b]. Assume also that the functions k(x, y) are periodic with period

T = b− a, and that they are 2` times differentiable on R̃ = (−∞,∞)\{x+ jT}∞j=−∞.
If k(x, y) = H1(x, y)|x − y|α(ln |x − y|)β + H2(x, y), s > −1, β = 0, 1, then the
quadrature rules of the following integral

I[k(x, y)] =

∫ b

a

k(x, y)dy, (2.12)

are

In[k(x, y)] = h

n∑

j=1,yj 6=x

k(x, yj) + 2[βζ
′
(−α)− ζ(−α)(ln h)β]H1(x, x)hα+1 + H2(x, x)h,

(2.13)
and the quadrature errors are

En[k(x, y)] = 2
`−1∑
µ=1

[βζ
′
(−α− 2µ)− ζ(−α− 2µ)(ln h)β]

H
(2µ)
1 (x, yj)

(2µ)!
h2µ+α+1 + o (h2`),

(2.14)
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where En[k(x, y] = I[k(x, y)]− In[k(x, y)], and the mesh size is h = (b− a)/n.
Let n = 2J and by (2.13), we can get the Nyström approximation for the kernel

function k(x, y)

kD(xi, yj) =

{
2[βζ

′
(−α)− ζ(−α)(ln h)β]H1(xi, xi)h

α + H2(xi, xi), if i = j,
k(xi, yj), if i 6= j.

(2.15)
Supposed that the kernel function k(x, y), u(x) and f(x) be approximated at

resolution J as

k(x, y) = Φt(x)QΦ(y), f(x) = Φt(x)b and u(x) = Φt(x)c, (2.16)

where c = [c(0), c(1/2J), · · · , c((2J − 1)/2J)]t is the expansion coefficient vector of
u(x). By the orthonormality of periodized wavelets, the integration of the product of
the same two scaling function vectors is achieved as

∫ 1

0

Φ(x)Φt(x)dx = I, (2.17)

where I is the 2J by 2J identity matrix. For the linear integral equation, we have

Φt(x)c−
∫ 1

0

Φt(x)QΦ(y)Φt(y)cdy = Φt(x)b. (2.18)

Substituting (2.15), (2.16) and (2.17) into (2.18), and by invoking (2.9), we get a
linear system

(I −KD(T tT )−1)uD = f, (2.19)

where f = [f(0), f(1/2J), · · · , f((2J − 1)/2J)]t and KD = T tQT . Similarly, the
nonlinear case for Eq. (1.1) can be transformed into the following by the wavelet
method

uD −KD(TT t)−1g(uD) = f, (2.20)

Eq. (2.20) is a system of nonlinear equations about u and can be computed by Newton
iteration method.

3 Convergence and error analysis

In this section, we mainly study the convergence and error for the linear case of (1.1)
by wavelet method.

We write Eq. (1.1) as the operate form

(I − K̃)u = f, (3.1)

where

(K̃u)(x) =

∫ 1

0

k(x, y)u(y)dy, (3.2)
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with the kernel

k(x, y) = H1(x, y)|x− y|α(ln |x− y|)β + H2(x, y), α > −1, β ≥ 0, (3.3)

and the approximation of K̃ is defined by

(K̃nu)(x) = h

n∑

j=1,yj 6=x

k(x, yj)u(yj) + ωn(x)u(x), (3.4)

where the weight function

ω(x) = 2[βζ
′
(−α)− ζ(−α)(ln h)β]H1(x, x)hα+1 + H2(x, x)h. (3.5)

Supposed that the approximation of (3.1) is

(I − K̃n)un(x) = g. (3.6)

Lemma 3.1 Supposed the the operator K̃n is defined by (3.4), then the operator
sequence {K̃n} is asymptotically compactly convergent to K̃, i.e.,

K̃n
a.c→ K̃, (3.7)

where
a.c→ denotes the asymptotically compact convergence.

Proof. Let the continuous kernel approximation of K̃ be defined by

kc
n(x, y) =

{
k(x, y), if |x− y| ≥ h,
H1(x, x)hα(ln h)β + H2(x, x), if |x− y| < h,

(3.8)

and the corresponding operator approximation be

(Kc
nu)(x) = h

n∑
j=1

kc
n(x, yj)u(yj). (3.9)

For any v ∈ C[0, 1], we have

‖(K̃ −Kc
n)v‖ = sup

‖v‖∞≤1

∫ 1

0

|(k(x, y)− kc
n(x, y))v(y)|dy

≤
∫ 1

0

|k(x, y)− kc
n(x, y)|dy‖v‖∞

≤
∫

|x−y|≤h

|H1(x, y)|||x− y|α(ln |x− y|)β − hα(ln h)β|dy‖v‖∞

≤ max
x,y∈C[0,1]

|H1(x, y)|
∫

|x−y|≤h

||x− y|α(ln |x− y|)β − hα(ln h)β|dy‖v‖∞

= O((lnh)βhα)‖v‖∞,
(3.10)

6
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hence, we can obtain

‖K̃ −Kc
n‖ = O((lnh)βhα) → 0, as h → 0. (3.11)

On the other hand, we know ω(x) → 0 as h → 0 by (3.5), then

‖Kc
n − K̃n‖ → 0, as h → 0. (3.12)

First, there exists a subsequence in {Kc
nyn} for any yn ⊂ C[0, 1] by (3.11),. Without

loss of generality, assumed that Kc
nyn → z and by (3.12), then

‖K̃nyn − z‖ ≤ ‖K̃nyn −Kc
nyn‖+ ‖Kc

nyn − z‖
≤ ‖K̃n −Kc

n‖‖yn‖+ ‖Kc
nyn − z‖ → 0,

(3.13)

that is to say, the sequence {K̃n} is asymptotically compactly convergent. Secondly,
for any y ∈ C[0, 1], we have

‖K̃ny − K̃y‖ ≤ ‖K̃n −Kc
n‖‖y‖+ ‖Kc

ny − K̃y‖ → 0. (3.14)

The proof of Lemma 3.1 is completed. ¤
Corollary 3.2 The operator sequence {K̃n(I − o(h)E)} is asymptotically com-

pactly convergent to K̃, i.e.,

K̃n(I − o(h)E)
a.c→ K̃. (3.15)

where E is a matrix and every element in it is one.
Proof. By Lemma 3.1, we know

K̃n
a.c→ K̃, (3.16)

that is,
‖K̃n − K̃‖→0. (3.17)

Hence, we immediately have

‖K̃n(I − o(h)E)− K̃‖ ≤ ‖K̃n − K̃‖+ ‖K̃n‖‖o(h)E‖→0. (3.18)

The proof of Corollary 3.2 is completed. ¤
Let x = (i− 1)h, i = 1, 2, · · · , 2J , where h = 1/2J . Using the trapezoidal rule to

approximate Eq.(2.17), then we have hTT t = I + o(h)E, where E is a matrix and
every element in it is one. By (hTT t)−1 = I + o(h)E, (2.15) and (2.19), we get

(I − K̃n(hT htT )−1)uD = f, (3.19)

which is equivalent to
(I − K̃n(I − o(h)E)uD = f. (3.20)

Hence, by the Corollary 3.2 we get the following remark.
Remark 1 According to the Corollary 3.2, the solutions uD of Eq.(3.20) by

7
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Daubechies wavelet method are convergent to the solutions un of Eq.(3.6) when h→0.
Theorem 3.3 The solutions of Eq.(3.6) have asymptotic expansions hold at nodes

un(x) = u(x) + σ1(x)hα+3 + σ2(x)hα+3lnh + o(hα+5lnh), (3.21)

where σj(x) ∈ C[0, 1], j = 1, 2 are independent of h, and σ2 = 0 when β = 0 and
α > −1, or β = 1 and α = 0.

Proof. We construct the auxiliary equation

(I − K̃)σ = P (x), (3.22)

where
P (x) = [βζ

′
(−α− 2)− ζ(−α− 2)(ln h)β](H1u)(2)h3+α. (3.23)

By invoking Eq.(2.14), we have

(K̃n − K̃)u(x) = −P (x) + o(h5+α ln h). (3.24)

Using (3.22), we get

(I − K̃n)(un − u− h3+ασ) = f − u + K̃nu + h3+α(I − K̃n)σ

= (K̃n − K̃)u + h3+α(I − K̃)σ + h3+α(K̃n − K̃)σ

= o(hα+5lnh),

(3.25)

that is,
un − u− h3+ασ = o(hα+5lnh). (3.26)

From (3.22), we obtain
σ = −σ1 − σ2(ln h)β, (3.27)

where

σ1 = −βζ
′
(−α−2)(I−K̃)−1(H1u)(2), and σ2 = ζ(−α−2)(I−K̃)−1(H1u)(2). (3.28)

Substituting (3.28) into (3.26), and by ζ(−2) = 0 (see [1]), we know that (3.21) holds.
The proof of Theorem 3.3 is completed. ¤

Remark 2 According to the Theorem 3.3 and Remark 1, the numerical solutions
uD of Eq.(3.19) possess high accuracy order O (h3+α) as h→0.

4 Numerical experiments

In this section, two numerical examples about the Fredholm equations are com-
puted by Daubechies wavelet method. Let erru

n(x) =
∣∣u(x) − un(x)

∣∣ be the er-
rors by Daubechies wavelet method using n (= 2J J = 3, · · · , 8) nodes, and let
EOC = log(errn/err2n)/ log 2 be the estimated order of convergence.
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If the kernel function k(x, y) of Eq.(1.1) is not periodic, we can apply the Sidi
transformation for Eq.(1.1) and make the kernel be periodic. The Sidi transformation
is defined by (see [18])

ψγ(t) =

∫ t

0

(sinπτ)γdτ
( ∫ 1

0

(sinπτ)γdτ
)−1

: [0, 1] → [0, 1], γ ≥ 1.

In the following three examples, the errors and error ratio of numerical solutions
at the selected points x1 = 0, x2 = 0.25 and x3 = 0.5 by Daubechies wavelet method
using transformation ψ6(t) are listed in tables.

Example 1. Consider the linear Fredholm equation of the first kind

u(x) +

∫ 1

0

ln|x− y|u(y)dy = g(x)

where g(x) = x2 ln x/2 + (1 − x2) ln(1 − x)/2 + x/2 − 1/4 and the exact solution is
u(x) = x. We use periodic Daubechies wavelet of genus D = 12 as basis functions to
compute the errors for Example 1 using different resolutions. The plots of computed
errors are shown in Figure 1 and the errors and error ratio of numerical solutions are
listed in Table 1. From the results in Table 1, we can see EOC ≈ 3.

Table 1: The Errors of u.

J 3 4 5 6 7 8
erru

n(x1) 2.058-02 2.111-03 3.214-04 3.935-05 4.896-06 6.116-07
EOC(x1) − 3.2857 2.715 3.030 3.007 3.001
erru

n(x2) 2.328-02 2.485-03 3.607-04 4.401-05 5.481-06 6.847-07
EOC(x2) − 3.228 2.784 3.035 3.006 3.001
erru

n(x3) 2.278-02 9.764-05 1.752-05 2.222-06 2.778-07 3.474-08
EOC(x3) − 7.866 2.478 2.979 3.000 3.000
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−0.02
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Figure 1: The error distributions of Example 1 at different resolutions.
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Example 2. Solving the following non-periodic second kind Fredholm integral
equation with algebraic singular kernel

u(x) +

∫ 1

0

|x− y|−1/2u(y)dy = g(x),

where g(x) = x+2(x
√

(x)−x2/3/3+x
√

(1−x)+(1−x)2/3/3) and the exact solution
is u(x) = x. We also use periodic Daubechies wavelet of genus D = 12 as basis
functions to compute the errors using different resolutions. The plots of computed
errors are shown in Figure 2 and the errors and error ratio of numerical solutions are
listed in Table 2. From the results in Table 2, we can see EOC ≈ 2.5.

Table 2: The Errors of u.

J 3 4 5 6 7 8
erru

n(x1) 1.713-03 3.964-05 1.638-05 2.627-06 4.505-07 7.898-08
EOC(x1) − 5.433 1.275 2.640 2.544 2.512
erru

n(x2) 8.526-03 3.899-04 3.847-05 4.843-06 8.529-07 1.508-07
EOC(x2) − 4.451 3.341 2.990 2.505 2.500
erru

n(x3) 4.698-03 2.975-04 6.878-05 1.216-05 2.150-06 3.800-07
EOC(x3) − 3.981 2.113 2.499 2.500 2.500

0 0.2 0.4 0.6 0.8 1
−0.02

−0.015

−0.01

−0.005
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Figure 2: The error distributions of Example 2 at different resolutions.

Example 3. Solving the following nonlinear second kind Fredholm integral equa-
tion with weakly singular kernel

u(x) +

∫ 1

0

ln
∣∣x− y

∣∣g(u(y))dy = f(x),

10
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where

f(x) = (x− 0.5)2/3 +
1

3
(x2−x+1/3)−x(x2/3−x/2+0.25) ln(

x

1− x
)− 1

12
ln(1−x).

The exact solution is u(x) = (x− 0.5)2/3. The periodic Daubechies wavelets of genus
D = 12 as basis functions are used to compute the errors. The Newton iteration
method is used for solve Example 3 and the initial vector of u0 is given by u0 =
(1, 1, · · · , 1)t

2J×1. After 4 iterations the errors are shown in Fig.3. The errors and
error ratio of numerical solutions are listed in Table 3. From Table 3, we can see
EOC ≈ 3.

Table 3: The Errors of u.

J 3 4 5 6 7 8
erru

n(x1) 4.900-04 4.755-05 4.371-06 5.481-07 6.865-08 8.582-09
EOC(x1) − 3.365 3.443 2.996 2.997 3.000
erru

n(x2) 1.659-03 1.565-04 1.714-05 2.141-06 2.673-07 3.340-08
EOC(x2) − 3.407 3.190 3.001 3.002 3.001
erru

n(x3) 6.442-04 2.102-04 6.570-05 8.145-06 1.004-06 1.252-07
EOC(x3) − 1.616 1.678 3.012 3.019 3.003
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Figure 3: The error distributions of Example 3 at different resolutions.

5 Conclusions

In this paper, the Sidi-Israeli quadrature formula is used to construct the approxima-
tion of kernel functions and then the Daubechies wavelet method is used to solve Eq.
(1.1). when the kernel functions are not periodic, we can apply the Sidi transforma-
tion for Eq.(1.1) and make the kernels be periodic. Because the wavelet integrations
are completely avoided and the expansion coefficients obtained here are exact, which
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makes the wavelets method has a good degree of accuracy. In addition, the Daubechies
wavelets method is used for linear Fredholm integration equation, the discrete matrix
of the associated linear system can be transformed into a very sparse and symmetri-
cal one. Accordingly, many preconditioners can be used to reduce the computational
cost.
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