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Abstract

In this paper, we present the following new asymptotic formula of factorial n

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− U(n), n→∞

where U(n) =
(
240
11 n+ 9480

847 + 919466
65219 n + 1455925

5021863 n2 − 639130140029
92804028240 n3 + ...

)−1
depending on Ra-

manujan’s approximation formula for n! and we deduce the following upper bound for

gamma function Γ(x+ 1) <
√
π (x/e)x

[
8x3 + 4x2 + x+ 1

30 + 1
240x
11

+ 9480
847

]1/6
, x > 0.
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1 Introduction.

In many science branches, we need estimations of big factorials. Stirling’s formula

n! ∼
√

2πn
(n
e

)n
, n→∞

is the most well known and used approximation formula for factorial n, which is satisfactory in
many branches such as statistical physics and statistics but we need more precise estimates in
many pure mathematics studies. For more details about Stirling’s formula refinements and its
related inequalities, we refer to [2], [12], [22].

Other known formula for estimating n! for large values of n is Ramanujan formula:

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
, (1)
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which is a refinement of Stirling’s formula and was recorded in the book ”The lost notebook
and other unpublished papers” as a conjecture of Srinivasa Ramanujan based on some numerical
evidence. For more details please refer to [1], [4], [13], [24], [29].

Starting from Ramanujan formula (1), Karatsuba presented the following asymptotic formula
[13]

Γ(x+ 1) ∼
√
π (x/e)x

[
8x3 + 4x2 + x+

1

30
− 11

240x
+

79

3360x2
+

3539

201600x3
+ ...

]1/6
, (2)

where Γ(x) =
∫∞
0
e−rrx−1dr, x > 0 is the ordinary gamma function and n! = Γ(n+ 1) for n ∈ N .

Mortici [23] improve the Ramanujan formula by establishing the following asymptotic formula:

Γ(x+ 1) ∼
√
π (x/e)x

[
8x3 + 4x2 + x+

1

30

]1/6
exp

[
− 11

11520x4
+

13

3440x5
+

1

691200x6
+ ...

]
,

(3)
which is faster than formula (2).

Dumitrescu and Mortici [9] introduced the following class of approximations:

Γ(x+ 1) ∼
√

2πx (x/e)x 6

√
1 +

1

2(x− δ)
+

α

2(x− δ)2
+

β

2(x− δ)3
, α, β, δ ∈ R (4)

which is a generalization of the Ramanujan’s formula (1) at δ = 0, α = 1/8 and β = 1/240.

More various results involving approximations for the gamma function and the factorial can
be found in [7], [8], [15], [16], [25], [26], [30] and the references therein.

In sequel, we need the following important Lemma, which is due to Mortici in 2010 and is a
very useful tool for constructing asymptotic expansions and measuring the convergence rate of
a family of null sequences [19]:

Lemma 1.1. If {σm}m∈N is a null sequence and there is s ∈ R and n > 1 such that

lim
m→∞

mn(σm − σm+1) = s, (5)

then we have
lim
m→∞

mn−1σm =
s

n− 1
.

From Lemma (1.1), we can conclude that the convergence rate of the sequence {σm}m∈N will
increase with the increasing of the value of n in relation (5). Several approximations, formulas
and inequalities have been produced using the technique developed by this Lemma. For more
details please refer to [5], [6], [11], [14], [17], [20], [21], [28] and the references therein.

In the rest of this paper, we will present a new asymptotic formula of n! depending on
Ramanujan’s asymptotic formula (1) and we deduce a new upper bound for the ordinary gamma
function related to our new asymptotic formula.
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2 Main results.

In our first step, we will try to find the best possible constants k1 and k2 in the approximation
formula

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

k1n+ k2
, n→∞ (6)

by defining a sequence An satisfies

n! =
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

k1n+ k2
eAn , n ≥ 1.

Then

An − An+1 =

(
1

12k1
− 11

2880

)
1

n5
+

(
− 5k2

48k21
− 25

96k1
+

29

2016

)
1

n6

+

(
−9031k31 + 158200k21 + 100800k1k2 + 33600k22

268800k31

)
1

n7
+O(n−8).

If
(

1
12k1
− 11

2880

)
6= 0 and

(
− 5k2

48k21
− 25

96k1
+ 29

2016

)
6= 0, then the sequence An − An+1 has a rate of

worse than n−6. So, we will consider{
1

12k1
− 11

2880
= 0

− 5k2
48k21
− 25

96k1
+ 29

2016
= 0

that is, k1 = 240
11

and k2 = 9480
847

. Now by Lemma (1.1), we obtain the following result:

Lemma 2.1. The sequence

An = lnn!− ln
√
π − n lnn− n− 1

6
lnn

(
8n3 + 4n2 + n+

1

30
− 1

240
11
n+ 9480

847

)
(7)

has a rate of convergence equal to n−6, where

lim
n→∞

n7(An − An+1) =
459733

124185600
.

In our second step, we will try to find the best possible constants T1, T2 and T3 in the
approximation formula

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

240
11
n+ 9480

847
+ T1

n
+ T2

n2 + T3
n3

, n→∞ (8)

by defining a sequence Bn satisfies

n! =
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− 1

240
11
n+ 9480

847
+ T1

n
+ T2

n2 + T3
n3

eBn , n ≥ 1.
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Hence

Bn −Bn+1 =
(919466− 65219T1)

248371200 n7
+

(45457643T1 − 10043726T2 − 637955952)

32784998400 n8

+
1

265066712064000 n9
(4253517961T 2

1 − 1277759560770T1 + 466430635440T2

− 92804028240T3 + 16394247383595)

+
1

54427031543808000 n10
(−5933657555595T 2

1 + 1965125297982T1T2

+ 750735798062481T1 − 361540539736530T2 + 118464342048360T3

− 8420494064916176)

+
1

301743462878871552000 n11
(−277410187898459T 3

1 + 143136026144382810T 2
1

− 79155247002714960T1T2 + 12105171835569120T1T3

− 10550047712231492850T1 + 6052585917784560T 2
2 + 6180552136457196960T2

− 2679997511635567200T3 + 101393364617835255540)

+ O(n−12).

To obtain the best possible values of the constants T1, T2 and T3, we put
65219T1 = 919466

45457643T1 − 10043726T2 = 637955952
4253517961T 2

1 − 1277759560770T1 + 466430635440T2 − 92804028240T3 = −16394247383595
,

that is, T1 = 919466
65219

, T2 = 1455925
5021863

and T3 = −639130140029
92804028240

. Hence by Lemma (1.1), we get the
following result:

Lemma 2.2. The sequence

Bn = lnn!− ln
√
π − n lnn− n− 1

6
lnn

(
8n3 + 4n2 + n+

1

30

− 1
240
11
n+ 9480

847
+ 919466

65219 n
+ 1455925

5021863 n2 − 639130140029
92804028240 n3

)
(9)

has a rate of convergence equal to n−9, where

lim
n→∞

n10(Bn −Bn+1) =
142970656174139

108854063087616000
.

In our third step, we can follow the same technique to get the following result:

Lemma 2.3. The sequence Cn defined by

n! =
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− V (n) eCn ,

where

V (n) =
1

240
11
n+ 9480

847
+ 919466

65219 n
+ 1455925

5021863 n2 − 639130140029
92804028240 n3 + T4

n4 + T5
n5 + T6

n6

,
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converges to zero as n−12 with the best possible constants T4 = 142970656174139
42875461046880

, T5 = 288878734012247231
22009403337398400

and T6 = −5422052608484409095873
396565429333244371200

since

lim
n→∞

n13(Cn − Cn+1) = − 384377015548794481311979

19141959578859903385600000
.

Hence, we get the asymptotic formula

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
− U(n), n→∞ (10)

where

U(n) =

(
240

11
n+

9480

847
+

919466

65219 n
+

1455925

5021863 n2
− 639130140029

92804028240 n3
+

142970656174139

42875461046880 n4

+
288878734012247231

22009403337398400 n5
− 5422052608484409095873

396565429333244371200 n6
+ ...

)−1
.

3 An inequality of Gamma function.

In this section, we will follow a method presented by Elbert and Laforgia in their paper [10] (see
also, [3], [27], [32] and its simple modification in [18]):

Corollary 3.1. Let T (t) be a real-valued function defined on t > t0 ∈ R with limt→∞ T (t) = 0.
Then T (t) > 0, if T (t) > T (t+ 1) for all t > t0 and T (t) < 0, if T (t) < T (t+ 1) for all t > t0.

Now, Consider the following function

F (x) = −1

6
ln

(
8x3 + 4x2 + x+

1
240x
11

+ 9480
847

+
1

30

)
+x−x ln(x)+ln Γ(x+1)− ln(

√
π), x > 0

which satisfies
lim
x→∞

F (x) = 0.

F (x)− F (x+ 1) =
−1

6
ln

(
8x3 + 4x2 + x+

847

18480x+ 9480
+

1

30

)
− x ln(x) + x ln(x+ 1)

+
1

6
ln

(
8(x+ 1)3 + 4(x+ 1)2 + x+

847

18480x+ 27960
+

31

30

)
− 1

+ H(x)

The function H(x) satisfies

H ′′(x) =
H1(x)

H2(x)
< 0, x > 0
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where

H1(x) = − 1.84724× 1029x16 − 2.37023× 1030x15 − 1.39723× 1031x14 − 5.01631× 1031x13

− 1.22596× 1032x12 − 2.15964× 1032x11 − 2.83269× 1032x10 − 2.81806× 1032x9

− 2.14586× 1032x8 − 1.25283× 1032x7 − 5.57791× 1031x6 − 1.86841× 1031x5

− 4.59618× 1030x4 − 7.9786× 1029x3 − 9.149× 1028x2 − 6.15185× 1027x

− 1.83421× 1026 < 0

and

H2(x) = 3x(x+1)2(154x+79)2(154x+233)2
(
147840x4 + 149760x3 + 56400x2 + 10096x+ 1163

)2
(
147840x4 + 741120x3 + 1392720x2 + 1163536x+ 365259

)2
.

Then H(x) is strictly concave function satisfies

lim
x→0

H(x) =
1

6

(
log

(
28855461

270979

)
− 6

)
< 0

and
lim
x→∞

H(x) = 0.

So, F (x) < 0 for x > 0 and hence we get the following inequality

Lemma 3.2.

Γ(x+ 1) <
√
π (x/e)x

[
8x3 + 4x2 + x+

1

30
+

1
240x
11

+ 9480
847

]1/6
, x > 0. (11)

Remark 1. In 2018, Yang and Tian [31] presented the inequality

Γ(x+ 1) <

(
x2 + 6γ

π2−12γ

x+ 6γ
π2−12γ

) 6γ2

π2−12γ

, 0 < x < 1 (12)

which is not included in inequality (11).

Remark 2. From the spirit of the previous inequality (11), we can suggest the following inequality:

Γ(x+ 1) >
6

√
9480

1163
(x/e)x

[
8x3 + 4x2 + x+

1

30
+

1
240x
11

+ 9480
847

]1/6
, x > 0
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