ADDITIVE-QUADRATIC FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES AND STABILITY

YOUNG JU JEON AND CHANG IL KIM*

Abstract. In this paper, we investigate the following functional inequality $N(f(x-y)+f(y-z)+f(z-x)-2[f(x)+f(y)+f(z)]\\ -f(-x)-f(-y)-f(-z),t)\geq N(f(x+y+z),t)$

and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

1. Introduction and preliminaries

The concept of a fuzzy norm on a linear space was introduced by Katsaras [11] in 1984. Later, Cheng and Mordeson [3] gave a new definition of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [13].

Definition 1.1. Let X be a real vector space. A function $N: X \times \mathbb{R} \longrightarrow [0,1]$ is called a fuzzy norm on X if for all $x, y \in X$ and all $c, s, t \in \mathbb{R}$,

- (N1) N(x, t) = 0 for all $t \le 0$;
- (N2) x = 0 if and only if N(x,t) = 1 for all t > 0;
- (N3) $N(cx,t) = N(x, \frac{t}{|c|})$ if $c \neq 0$;
- (N4) $N(x+y,s+t) \ge \min\{N(x,s),N(y,t)\};$
- (N5) $N(x,\cdot)$ is a nondecreasing function on \mathbb{R} and $\lim_{t\to\infty} N(x,t)=1$;
- (N6) for any $x \neq 0$, $N(x, \cdot)$ is continuous on \mathbb{R} .

In this case, the pair (X, N) is called a fuzzy normed space.

Let (X,N) be a fuzzy normed space. A sequence $\{x_n\}$ in X is said to be convergent if there exists an $x \in X$ such that $\lim_{n\to\infty} N(x_n-x,t)=1$ for all t>0. In this case, x is called the limit of the sequence $\{x_n\}$ in (X,N) and one denotes it by $N-\lim_{n\to\infty} x_n=x$. A sequence $\{x_n\}$ in (X,N) is said to be Cauchy if for any $\epsilon>0$, there is an $m\in N$ such that for any $n\geq m$ and any positive integer p, $N(x_{n+p}-x_n,t)>1-\epsilon$ for all t>0. A fuzzy normed space is said to be complete if each Cauchy sequence in it is convergent and a complete fuzzy normed space is called a fuzzy Banach space.

In 1940, Ulam proposed the following stability problem (cf.[21]):

"Let G_1 be a group and G_2 a metric group with the metric d. Given a constant $\delta > 0$, does there exist a constant c > 0 such that if a mapping $f: G_1 \longrightarrow G_2$ satisfies d(f(xy), f(x)f(y)) < c for all $x, y \in G_1$, then there exists an unique homomorphism $h: G_1 \longrightarrow G_2$ with $d(f(x), h(x)) < \delta$ for all $x \in G_1$?"

1

²⁰¹⁰ Mathematics Subject Classification. 39B62, 39B72, 54A40, 47H10.

Key words and phrases. Hyers-Ulam stability, additive-quadratic functional inequality, fuzzy normed space, fixed point theorem.

^{*} Corresponding author.

In the next year, Hyers [10] gave a partial solution of Ulam's problem for the case of approximate additive mappings. Subsequently, his result was generalized by Aoki [1] for additive mappings, and by Rassias [17] for linear mappings, to consider the stability problem with unbounded Cauchy differences. A generalization of the Rassias' theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of the Rassias' approach. In 2008, for the first time, Mirmostafaee and Moslehian [14], [15] used the definition of a fuzzy norm in [2] to obtain a fuzzy version of stability for the Cauchy functional equation

(1.1)
$$f(x+y) = f(x) + f(y)$$

and the quadratic functional equation

$$(1.2) f(x+y) + f(x-y) = 2f(x) + 2f(y).$$

Glányi [8] and Rätz [18] showed that if a mapping $f: X \longrightarrow Y$ satisfies the following functional inequality

$$(1.3) ||2f(x) + 2f(y) - f(xy^{-1})|| \le ||f(xy)||,$$

then f satisfies the following Jordan-Von Neumann functional equation

$$2f(x) + 2f(y) - f(xy^{-1}) = f(xy).$$

for an abelian group X divisible by 2 into an inner product space Y. Glányi [9] and Fechner [6] proved the Hyers-Ulam stability of (1.3). The stability problems of several functional equations and inequalities have been extensively investigated by a number of authors and there are many interesting results concerning the stability of various functional equations and inequalities.

Now, we consider the following fixed point theorem on generalized metric spaces.

Definition 1.2. Let X be a non-empty set. Then a mapping $d: X^2 \longrightarrow [0, \infty]$ is called a generalized metric on X if d satisfies the following conditions:

- (D1) d(x, y) = 0 if and only if x = y,
- (D2) d(x, y) = d(y, x), and
- (D3) $d(x, y) \le d(x, z) + d(z, y)$.

In case, (X, d) is called a generalized metric space.

Theorem 1.3. [4] Let (X,d) be a complete generalized metric space and let $J: X \longrightarrow X$ a strictly contractive mapping with some Lipschitz constant L with 0 < L < 1. Then for each given element $x \in X$, either $d(J^n x, J^{n+1} x) = \infty$ for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $Y = \{y \in X \mid d(J^{n_0}x, y) < \infty\}$ and
- (4) $d(y, y^*) \le \frac{1}{1 L} d(y, Jy)$ for all $y \in Y$.

The following function equation $f: X \longrightarrow Y$ is called the Drygas functional equation:

$$f(x+y) + f(x-y) = 2f(x) + f(y) + f(-y)$$

for all $x, y \in X$. The Drygas functional equation has been studied by Szabo [20] and Ebanks, Făiziev and Sahoo [5]. The solutions of the Drygas functional equation in abelian group are obtained by H. Stetkær in [19].

In this paper, we investigate the following functional inequality which is related with the Drygas type functional equation

(1.4)
$$N(f(x-y) + f(y-z) + f(z-x) - 2[f(x) + f(y) + f(z)] - f(-x) - f(-y) - f(-z), t) \ge N(f(x+y+z), t)$$

and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

Throughout this paper, we assume that X is a linear space, (Y, N) is a fuzzy Banach space, and (\mathbb{R}, N') is a fuzzy normed space.

2. Solutions and the stability for (1.4)

In this section, we investigate the functional equation (1.4) and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces. For any mapping $f: X \longrightarrow Y$, let

$$f_o(x) = \frac{f(x) - f(-x)}{2}, \ f_e(x) = \frac{f(x) + f(-x)}{2}.$$

In [12], the authors proved the following theorem:

Lemma 2.1. [12] Let $f: X \longrightarrow Y$ be a mapping with f(0) = 0. Then f is quadratic if and only if f satisfies the following functional equation

$$f(ax+by) + f(ax-by) - 2a^2f(x) - 2b^2f(y) = k[f(x+y) + f(x-y) - 2f(x) - 2f(y)]$$

for all $x, y \in X$, a fixed nonzero rational number a and fixed real numbers b, k with $a^2 \neq b^2$.

Using this, we have the following theorem:

Theorem 2.2. If a mapping $f: X \longrightarrow Y$ satisfies (1.4), then f is an additive-quadratic mapping.

Proof. Suppose that f satisfies (1.4). Setting x = y = z = 0 in (1.4), by (N3), we have

$$N(f(0),t) \le N(6f(0),t) = N(f(0),\frac{t}{6})$$

for all t>0 and by (N5), $N(f(0),\frac{t}{6})\leq N(f(0),t)$ for all t>0. Hence we have

$$N(f(0),t) = N(f(0),6t)$$

for all t > 0. By induction, we get

$$N(f(0),t) = N(f(0), 6^n t)$$

for all t > 0 and all $n \in \mathbb{N}$. By (N5), we get

$$N(f(0),t) = \lim_{n \to \infty} N(f(0), 6^n t) = 1$$

for all t > 0 and hence by (N2), f(0) = 0. Letting z = -x - y in (1.4), we have

$$N(f(x-y) + f(x+2y) + f(-2x-y) - 2f(x) - 2f(y) - 2f(-x-y) - f(-x) - f(-y) - f(x+y), t) \ge N(0,t) = 1$$

YOUNG JU JEON AND CHANGIL KIM

for all $x, y \in X$ and all t > 0 and so by (N2), we get

(2.1)
$$f(x-y) + f(x+2y) + f(-2x-y) = 2f(x) + 2f(y) + 2f(-x-y) + f(x+y) + f(-x) + f(-y)$$

for all $x, y \in X$. By (2.1), we have

4

$$(2.2) f_o(x-y) + f_o(x+2y) - f_o(2x+y) = -f_o(x+y) + f_o(x) + f_o(y)$$

for all $x, y \in X$ and interchanging x and y in (2.2), we have

$$(2.3) -f_o(x-y) + f_o(2x+y) - f_o(x+2y) = -f_o(x+y) + f_o(x) + f_o(y)$$

for all $x, y \in X$. By (2.2) and (2.3), we have

$$f_o(x+y) = f_o(x) + f_o(y)$$

for all $x, y \in X$ and hence f_0 is an additive mapping. By (2.1), we have

$$(2.4) f_e(x-y) + f_e(2x+y) + f_e(x+2y) = 3f_e(x+y) + 3f_e(x) + 3f_e(y)$$

for all $x, y \in X$ and letting y = -y in (2.4), we have

$$(2.5) f_e(x+y) + f_e(2x-y) + f_e(x-2y) = 3f_e(x-y) + 3f_e(x) + 3f_e(y)$$

for all $x, y \in X$. By (2.4) and (2.5), we have

(2.6)
$$f_e(2x+y) + f_e(2x-y) + f_e(x+2y) + f_e(x-2y) = 2f_e(x+y) + 2f_e(x-y) + 6f_e(x) + 6f_e(y)$$

for all $x, y \in X$. Letting y = 0 in (2.6), we get

(2.7)
$$f_e(2x) = 4f_e(x)$$

for all $x \in X$ and letting y = 2y in (2.6), by (2.7), we have

(2.8)
$$4f_e(x+y) + 4f_e(x-y) + f_e(x+4y) + f_e(x-4y) = 2f_e(x+2y) + 2f_e(x-2y) + 6f_e(x) + 24f_e(y)$$

for all $x, y \in X$. By (2.6) and (2.8), we have

$$(2.9) 2f_e(2x+y) + 2f_e(2x-y) + f_e(x+4y) + f_e(x-4y) = 18f_e(x) + 36f_e(y)$$

for all $x, y \in X$. Letting y = 2y in (2.9), by (2.7), we have

$$f_e(x+8y) + f_e(x-8y) + 8f_e(x+y) + 8f_e(x-y) = 18f_e(x) + 144f_e(y)$$

for all $x, y \in X$. By Lemma 2.1, f_e is a quadratic mapping. Thus f is an additive-quadratic mapping.

Now, we will prove the generalized Hyers-Ulam stability of (1.4) in fuzzy normed spaces. For any mapping $f: X \longrightarrow Y$, let

$$Df(x,y,z) = f(x-y) + f(y-z) + f(z-x) - 2[f(x) + f(y) + f(z)] - f(-x) - f(-y) - f(-z).$$

Theorem 2.3. Assume that $\phi: X^3 \longrightarrow [0, \infty)$ is a function such that

$$(2.10) N'\left(\phi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right), t\right) \ge N'\left(\frac{L}{4}\phi(x, y, z), t\right)$$

for all $x, y, z \in X$, t > 0 and some L with 0 < L < 1. Let $f: X \longrightarrow Y$ be a mapping such that f(0) = 0 and

$$(2.11) N(Df(x,y,z),t) \ge \min\{N(f(x+y+z),t), N'(\phi(x,y,z),t)\}\$$

for all $x, y, z \in X$ and all t > 0. Then there exists an unique additive-quadratic mapping $F: X \longrightarrow Y$ such that

$$(2.12) \quad N\Big(f(x) - F(x), \frac{L}{4(1-L)}t\Big) \ge \min\{N'(\phi(x, -x, 0), t), N'(\phi(-x, x, 0), t)\}$$

for all $x \in X$ and all t > 0. Further, we have

(2.13)
$$F(x) = N - \lim_{n \to \infty} \left[\frac{2^n (2^n + 1)}{2} f\left(\frac{x}{2^n}\right) + \frac{2^n (2^n - 1)}{2} f\left(-\frac{x}{2^n}\right) \right]$$

for all $x \in X$.

Proof. Consider the set $S = \{g \mid g : X \longrightarrow Y\}$ and the generalized metric d on S defined by

$$d(g,h) = \inf\{c \in [0,\infty) | N(g(x) - h(x), ct) \ge \min\{N'(\phi(x, -x, 0), t), N'(\phi(-x, x, 0), t)\},\$$
$$\forall x \in X, \forall t > 0\}.$$

Then (S,d) is a complete metric space([16]). Define a mapping $J: S \longrightarrow S$ by $Jg(x) = 3g(\frac{x}{2}) + g(-\frac{x}{2})$ for all $g \in S$ and all $x \in X$. Let $g, h \in S$ and $d(g,h) \leq c$ for some $c \in [0,\infty)$. Then by (2.10), we have

$$\begin{split} &N(Jg(x)-Jh(x),cLt)\\ &=N\left(3g\left(\frac{x}{2}\right)+g\left(-\frac{x}{2}\right)-3h\left(\frac{x}{2}\right)-h\left(-\frac{x}{2}\right),cLt\right)\\ &\geq \min\left\{N\left(g\left(\frac{x}{2}\right)-h\left(\frac{x}{2}\right),\frac{1}{4}cLt\right),N\left(g\left(-\frac{x}{2}\right)-h\left(-\frac{x}{2}\right),\frac{1}{4}cLt\right)\right\}\\ &\geq \min\left\{N'\left(\phi\left(\frac{x}{2},-\frac{x}{2},0\right),\frac{1}{4}Lt\right),N'\left(\phi\left(-\frac{x}{2},\frac{x}{2},0\right),\frac{1}{4}Lt\right)\right\}\\ &\geq \min\{N'(\phi(x,-x,0),t),N'(\phi(-x,x,0),t)\} \end{split}$$

for all $x \in X$ and all t > 0. Hence we have $d(Jg, Jh) \leq Ld(g, h)$ for any $g, h \in S$ and so J is a strictly contractive mapping.

Putting y = -x and z = 0 in (2.11), we get

$$(2.14) N(f(2x) - 3f(x) - f(-x), t) > N'(\phi(x, -x, 0), t)$$

for all $x \in X$, t > 0 and hence

$$N\left(f(x) - Jf(x), \frac{L}{4}t\right) = N\left(f(x) - 3f\left(\frac{x}{2}\right) - f\left(-\frac{x}{2}\right), \frac{L}{4}t\right)$$

$$\geq N'\left(\phi\left(\frac{x}{2}, -\frac{x}{2}, 0\right), \frac{L}{4}t\right) \geq \min\{N'(\phi(x, -x, 0), t), N'(\phi(-x, x, 0), t)\}$$

for all $x \in X$, t > 0 and so we have $d(f, Jf) \leq \frac{L}{4} < \infty$. By Theorem 1.3, there exists a mapping $F: X \longrightarrow Y$ which is a fixed point of J such that $d(J^n f, F) \to 0$ as $n \to \infty$. By induction, we have

$$J^{n}f(x) = \frac{2^{n}(2^{n}+1)}{2}f\left(\frac{x}{2^{n}}\right) + \frac{2^{n}(2^{n}-1)}{2}f\left(-\frac{x}{2^{n}}\right)$$

for all $x \in X$ and all $n \in \mathbb{N}$ and hence we have (2.13).

Replacing x, y, z, and t by $\frac{x}{2^n}$, $\frac{y}{2^n}$, $\frac{z}{2^n}$, and $\frac{t}{2^{2n}}$ in (2.11), respectively, by (2.11), we have

$$N\left(Df_{e}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{1}{2^{2n}}t\right)
(2.15) \ge \min\left\{N\left(Df\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, -\frac{z}{2^{n}}\right), \frac{1}{2^{2n}}t\right), N\left(Df\left(-\frac{x}{2^{n}}, -\frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{1}{2^{2n}}t\right)\right\}
\ge \min\left\{N'\left(L^{n}\phi(x, y, z), t\right), N'\left(L^{n}\phi(-x, -y, z), t\right)\right\}$$

for all $x, y, z \in X$ and all $n \in \mathbb{N}$. Letting $n \to \infty$ in (2.15), we have

$$DF_e(x, y, z) = 0$$

for all $x,y,z\in X$ and by Lemma 2.1, F_e is an quadratic mapping. Similarly, F_o is an additive mapping and thus F is an additive-quadratic mapping. Since $d(f,Jf)\leq \frac{L}{4}$, by Theorem 1.3, we have (2.12).

Now, we show the uniqueness of F. Let G be another additive-quadratic mapping with (2.12). Then clearly, G is a fixed point of J and

(2.16)
$$d(Jf,G) = d(Jf,JG) \le Ld(f,G) \le \frac{L^2}{4(1-L)} < \infty$$

and hence by (3) in Theorem 1.3, F = G.

Similar to Theorem 2.3, we have the following threoem:

Theorem 2.4. Assume that $\phi: X^3 \longrightarrow [0,\infty)$ is a function such that

$$(2.17) N'(\phi(2x, 2y, 2z), t) \ge N'(2L\phi(x, y, z), t)$$

for all $x, y, z \in X$, t > 0 and some L with 0 < L < 1. Let $f: X \longrightarrow Y$ be a mapping with f(0) = 0 and (2.11). Then there exists an unique additive-quadratic mapping $F: X \longrightarrow Y$ such that

$$(2.18) \quad N\Big(f(x) - F(x), \frac{1}{2(1-L)}t\Big) \ge \min\{N'(\phi(x, -x, 0), t), N'(\phi(-x, x, 0), t)\}$$

for all $x \in X$ and all t > 0. Further, we have

$$F(x) = \lim_{n \to \infty} \left[\frac{2^n + 1}{2^{2n+1}} f(2^n x) - \frac{2^n - 1}{2^{2n+1}} f(-2^n x) \right]$$

for all $x \in X$.

Proof. Consider the set $S = \{g \mid g : X \longrightarrow Y\}$ and the generalized metric d on S defined by

$$d(g,h) = \inf\{c \in [0,\infty) | N(g(x) - h(x), ct) \ge \min\{N'(\phi(x, -x, 0), t), N'(\phi(-x, x, 0), t)\},\$$
$$\forall x \in X, \forall t > 0\}.$$

Then (S,d) is a complete metric space([16]). Define a mapping $J: S \longrightarrow S$ by $Jg(x) = \frac{3}{8}g(2x) - \frac{1}{8}g(-2x)$ for all $g \in S$ and all $x \in X$. Let $g, h \in S$ and $d(g,h) \leq c$ for some $c \in [0,\infty)$. Then by (2.10), we have

$$\begin{split} &N(Jg(x)-Jh(x),cLt)\\ &=N\left(\frac{3}{8}g(2x)-\frac{1}{8}g(-2x)-\frac{3}{8}h(2x)+\frac{1}{8}h(-2x),cLt\right)\\ &\geq \min\{N(g(2x)-h(2x),2cLt),N(g(-2x)-h(-2x),2cLt)\}\\ &\geq \min\{N'(\phi(2x,-2x,0),2Lt),N'(\phi(-2x,2x,0),2Lt)\}\\ &\geq \min\{N'\phi(x,-x,0),t),N'(\phi(-x,x,0),t)\} \end{split}$$

for all $x \in X$. Hence we have $d(Jg, Jh) \leq Ld(g, h)$ for any $g, h \in S$ and since 0 < L < 1, J is a strictly contractive mapping. By (2.14), we get

$$N\left(f(x) - Jf(x), \frac{t}{2}\right)$$

$$= N\left(\frac{3}{8}[f(2x) - 3f(x) - f(-x)] - \frac{1}{8}[f(-2x) - 3f(-x) - f(x)], \frac{t}{2}\right)$$

$$\geq \min\{N'(\phi(x, -x, 0), t), N'(\phi(-x, x, 0), t)\}$$

for all $x \in X$ and all t > 0. Thus $d(f, Jf) \le \frac{1}{2} < \infty$. The rest of proof the proof is similar to Theorem 2.3.

As examples of $\phi(x, y, z)$ and N'(x, t) in Theorem 2.3 and Theorem 2.4, we can take $\phi(x, y, z) = \epsilon(||x||^p + ||y||^p + ||z||^p)$ and

$$N'(x,t) = \begin{cases} \frac{t}{t+k|x|}, & \text{if } t > 0\\ 0, & \text{if } t \le 0 \end{cases}$$

for all $x \in \mathbb{R}$, t > 0, and for some $\epsilon > 0$, where k = 1, 2. Then we can formulate the following corollary:

Corollary 2.5. Let X be a normed space and (Y, N) a fuzzy Banach space. Let $f: X \longrightarrow Y$ be a mapping such that

$$N(Df(x,y,z),t) \geq \min \left\{ N(f(x+y+z),t), \frac{t}{t+k\epsilon(\|x\|^p+\|y\|^p+\|z\|^p)} \right\}$$

for all $x, y, z \in X$, t > 0, a fixed real number p with 0 or <math>2 < p. Then there is an unique additive-quadratic mapping $F: X \longrightarrow Y$ such that

$$(2.19) N(f(x) - F(x), t) \ge \begin{cases} \frac{(2^p - 4)t}{(2^p - 4)t + 2k\epsilon ||x||^p}, & \text{if } 2$$

for all $x \in X$ and all t > 0.

For any $f: X \longrightarrow Y$, let

(2.20)
$$D_1 f(x,y) = f(x-y) + f(x+2y) + f(-2x-y) - 2f(x) - 2f(y) - 2f(-x-y) - f(-x) - f(-y) - f(x+y)$$

Using Corollary 2.5, we have the following corollary:

Corollary 2.6. Let X be a normed space and (Y, N) a fuzzy Banach space. Let $f: X \longrightarrow Y$ be a mapping such that

(2.21)
$$N(D_1 f(x, y), t) \ge \frac{t}{t + k\epsilon(\|x\|^p + \|y\|^p + \|x + y\|^p)}$$

for all $x, y, z \in X$, t > 0, a fixed real number p with 0 or <math>2 < p. Then there is an unique additive-quadratic mapping $F: X \longrightarrow Y$ with (2.19).

We remark that the functional inequality (1.4) is not stable for p = 1 in Corollary 2.6. The following example shows that the inequality (2.21) is not stable for p = 1.

Example 2.7. Define mappings $t, s : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$t(x) = \begin{cases} x, & \text{if } |x| < 1\\ -1, & \text{if } x \le -1\\ 1, & \text{if } 1 \le x, \end{cases}$$

$$s(x) = \begin{cases} x^2, & \text{if } |x| < 1\\ 1, & \text{ortherwise} \end{cases}$$

and a mapping $f: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} \left[\frac{t(2^n x)}{2^n} + \frac{s(2^n x)}{4^n} \right]$$

We will show that f satisfies the following inequality

$$(2.22) |D_1 f(x,y)| \le 112(|x| + |y| + |x+y|)$$

for all $x, y \in \mathbb{R}$ and so f satisfies (2.21). But there do not exist an additive-quadratic mapping $F : \mathbb{R} \longrightarrow \mathbb{R}$ and a non-negative constant K such that

$$(2.23) |F(x) - f(x)| \le K|x|$$

for all $x \in \mathbb{R}$.

Proof. Note that $t_o(x) = t(x)$, $s_o(x) = 0$, and $|f_o(x)| \le 2$ for all $x \in \mathbb{R}$. First, suppose that $\frac{1}{4} \le |x| + |y| + |x+y|$. Then $|D_1 f_o(x,y)| \le 48(|x| + |y| + |x+y|)$. Now suppose that $\frac{1}{4} > |x| + |y| + |x+y|$. Then there is a non-negative integer m such that

$$\frac{1}{2^{m+3}} \le |x| + |y| + |x+y| < \frac{1}{2^{m+2}}$$

and so

$$2^m|x| < \frac{1}{4}, \quad 2^m|y| < \frac{1}{4}, \quad 2^m|x+y| < \frac{1}{4}.$$

Hence we have

$$\{2^m x, 2^m y, 2^m (x-y), 2^m (x+y), 2^m (x+2y), 2^m (2x+y)\} \subset (-1, 1)$$

and so for any $n = 0, 1, 2, \dots, m$,

$$|D_1 t_0(2^n x, 2^n y)| = 0,$$

because $t(x) = t_o(x) = x$ on (-1, 1). Thus

$$|D_1 f_o(x,y)| = \Big| \sum_{n=0}^{\infty} \frac{1}{2^n} D_1 t_o(2^n x, 2^n y) \Big|$$

$$\leq \Big| \sum_{n=0}^{m} \frac{1}{2^n} D_1 t_o(2^n x, 2^n y) \Big| + \Big| \sum_{n=m+1}^{\infty} \frac{1}{2^n} D_1 t_o(2^n x, 2^n y) \Big|$$

$$\leq \frac{12}{2^{m+1}} \leq 48(|x| + |y| + |x + y|),$$

because $|D_1t_0(2^nx, 2^ny)| \le 6$.

ADDITIVE-QUADRATIC FUNCTIONAL INEQUALITIES...

Note that $t_e(x) = 0$, $s_e(x) = s(x)$, and $|f_e(x)| \le \frac{4}{3}$ for all $x \in \mathbb{R}$. First, suppose that $\frac{1}{4} \le |x| + |y| + |x+y|$. Then $|D_1 f_e(x,y)| \le 64(|x| + |y| + |x+y|)$. Now suppose that $\frac{1}{4} > |x| + |y| + |x+y|$. Then there is a non-negative integer k such that

$$\frac{1}{2^{2k+4}} \leq |x| + |y| + |x+y| < \frac{1}{2^{2k+2}}$$

and so

$$2^{2k}|x| < \frac{1}{4}, \quad 2^{2k}|y| < \frac{1}{4}, \quad 2^{2k}|x+y| < \frac{1}{4}.$$

Hence we have

$$\{2^k x, 2^k y, 2^k (x-y), 2^k (x+y), 2^k (x+2y), 2^k (2x+y)\} \subseteq (-1, 1)$$

and so for any $n = 0, 1, 2, \dots, k$,

$$|D_1 s_e(2^n x, 2^n y)| = 0.$$

Thus

$$|D_1 f_e(x,y)| = \Big| \sum_{n=0}^{\infty} \frac{1}{2^n} D_1 s_e(2^n x, 2^n y) \Big|$$

$$\leq \Big| \sum_{n=0}^{k} \frac{1}{4^n} D_1 s_e(2^n x, 2^n y) \Big| + \Big| \sum_{n=k+1}^{\infty} \frac{1}{4^n} D_1 s_e(2^n x, 2^n y) \Big|$$

$$\leq \frac{16}{4^{k+1}} \leq 64(|x| + |y| + |x + y|),$$

because $|D_1s_e(2^nx,2^ny)| \leq 12$. Hence we have

$$|D_1 f_o(x,y)| \le 48(|x|+|y|+|x+y|), |D_1 f_e(x,y)| \le 64(|x|+|y|+|x+y|)$$

for all $x, y \in X$ and so we have (2.22).

Suppose that there exist an additive mapping $A: \mathbb{R} \longrightarrow \mathbb{R}$, a quadratic mapping $Q: \mathbb{R} \longrightarrow \mathbb{R}$, and a non-negative constant K such that A+Q satisfies (2.23). Since $|f(x)| \leq \frac{10}{3}$, by (2.23), we have

$$-\frac{10}{3n^2} - K\frac{|x|}{n} \le \frac{A(x)}{n} + Q(x) \le \frac{10}{3n^2} + K\frac{|x|}{n}$$

for all $x \in X$ and all positive integers n and so Q(x) = 0 for all $x \in X$. Since A is additive,

$$-\frac{10}{3n} - K|x| \le A(x) \le \frac{10}{3n} + K|x|$$

for all $x \in X$ and all $n \in \mathbb{N}$ and hence $|A(x)| \leq K|x|$. By (2.23), we have

$$(2.24) |f(x)| \le 2K|x|$$

for all $x \in X$. Take a positive integer l such that l > 2K and $x \in \mathbb{R}$ with $0 < 2^{l}x < 1$. Since x > 0,

$$f(x) \ge \sum_{n=0}^{\infty} \frac{t(2^n x)}{2^n} \ge \sum_{n=0}^{l-1} \frac{t(2^n x)}{2^n} = lx > 2Kx$$

which contradicts to (2.24).

9

References

- T. Aoki, On the stability of the linear transformation in Banach space, J.Math.Soc.Japan 2 (1950), 64-66.
- [2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(2003), 687-705.
- [3] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Cal. Math. Soc. 86(1994), 429–436.
- [4] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74(1968), 305-309.
- [5] B. R. Ebanks, PL. Kannappan, and P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner product spaces, Canad. Math. Bull. 35(3)(1992), 321-327.
- [6] W. Fechner, Stability of a functional inequality associated with the Jordan-Von Neumann functional equation, Aequationes Mathematicae 71(2006), 149-161.
- [7] P. Găvruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
- [8] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Mathematicae 62(2001), 303-309.
- [9] A. Gilányi, On a problem by K. Nikoden, Mathematical Inequalities and Applications 4(2002), 707-710.
- [10] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27(1941), 222-224.
- [11] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst 12(1984), 143-154.
- [12] C. I. Kim, G. Han, and S. A. Shim, Hyers-Ulam Stability for a Class of Quadratic Functional Equations via a Typical Form, Abs. and Appl. Anal. 2013(2013), 1-8.
- [13] I. Kramosil and J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica 11(1975), 336-344.
- [14] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math. 52(2008), 161–177.
- [15] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst. 159(2008), 720-729.
- [16] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in non-Archimedean spaces, Applicable Anal. Discrete Math. 1(2007), 325-334.
- [17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
- [18] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Mathematicae 66(2003), 191-200.
- [19] H. Stetkær, Functional equations on abelian groups with involution, II, Aequationes Math. 55(1998), 227-240.
- [20] G. Y. Szabó, Some functional equations related to quadratic functions, Glasnik Math. 38(1983), 107-118.
- [21] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960, Chapter VI.

Department of Mathematics Education, College of Education, ChonBuk National University, 567, Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Korea Email address: jyj@jbnu.ac.kr

DEPARTMENT OF MATHEMATICS EDUCATION, DANKOOK UNIVERSITY, 152, JUKJEON-RO, SUJI-GU, YONGIN-SI, GYEONGGI-DO, 16890, KOREA

Email address: kci206@hanmail.net