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Abstract

The purposes of this paper are to establish and study the convergence of a new gradient scheme

with penalization terms called rapid gradient penalty algorithm (RGPA) for minimizing a convex

differentiable function over the set of minimizers of a convex differentiable constrained function.

Under the observation of some appropriate choices for the available properties of the considered

functions and scalars, we can generate a suitable algorithm that weakly converges to a minimal

solution of the considered constraint minimization problem. Further, we also provide a numerical

example to compare the rapid gradient penalty algorithm (RGPA) and the algorithm introduced

by Peypouquet [20].
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1. Introduction

LetH be a real Hilbert space with the norm and inner product given by ‖·‖ and 〈·, ·〉, respectively.

Let f : H → R and g : H → R be convex and (Fréchet) differentiable functions on the space H and

the gradients ∇f and ∇g are Lipschitz continuous operators with constants Lf and Lg, respectively.

We consider the following constrained convex optimization problem

min
x∈argmin g

f(x). (1.1)

Throughout the paper, we also assume that the solution set S := arg min{f(x) : x ∈ arg min g} is

a nonempty set. Further, without loss of generality, we may assume that min g = 0.

Due to the interesting applications of (1.1) in many branches of mathematics and sciences, many

researchers have paid attention to solve the problem (1.1) which can be mentioned briefly as follows:

In 2010, Attouch and Czarnecki [1] initially presented and studied a numerical algorithm called the

multiscale asymptotic gradient (MAG) for solving general constrained convex optimization prob-

lem. They proved that every sequence generated by (MAG) converges weakly to a solution of their
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considered problem. It seems that their representation is the starting point for the development

of numerical algorithms in the context of solving type of constrained convex optimization problem

(see, for instance [2–4, 7–10, 18]) and the references therein. Inspired by Attouch and Czarnecki

[1], in 2012 Peypouquet [20] proposed and analyzed an algorithm called diagonal gradient scheme

(DGS) via gradient method and exterior penalization scheme for constrained minimization of con-

vex functions. He also provided a weak convergence to find a solution of the considered constrained

minimization of convex functions. Several applications are provided such as relaxed feasibility,

mathematical programming with convex inequality constraints, and Stokes equation and signal

reconstruction, etc. In 2013, Shehu et al. [21] studied the problem (1.1) in the case when the

constrained set is simple enough and also proposed an algorithm for solving (1.1). In the last two

decades, intensive research efforts dedicated to algorithms of inertial type and their convergence

behavior can be noticed (see [6, 11, 13–17, 19]). In 2017, Bot et al. [9] considered the problem of

minimizing a smooth convex objective function subject to the set of minima of another differentiable

convex function. They proposed a new algorithm called gradient-type penalty with inertial effects

method (GPIM) for solving the problem (1.1). They also illustrated the usability of their method

via a numerical experiment for image classification via support vector machines.

In the remaining part of this section, we recall some elements of convex analysis. For a function

h : H → R := R ∪ {−∞,+∞} we denote by dom h = {x ∈ H : h(x) < +∞} its effective domain

and say that h is proper, if dom h 6= ∅ and h(x) 6= −∞ for all x ∈ H. The Fenchel conjugate of h

is h∗ : H → R, which is defined by

h∗(z) = sup
x∈H
{〈z, x〉 − h(x)} for all z ∈ H.

The subdifferential of h at x ∈ H, with h(x) ∈ R, is the set

∂h(x) := {v ∈ H : h(y)− h(x) ≥ 〈v, y − x〉 ∀y ∈ H}.

We take by convention ∂h(x) := ∅, if h(x) ∈ {±∞}.
The convex and differentiable function T : H → R has a Lipschitz continuous gradient with

Lipschitz constant LT > 0, if ‖∇T (x)−∇T (y)‖ ≤ LT ‖x− y‖ for all x, y ∈ H.
Let C ⊂ H be a nonempty closed convex set. The indicator function is defined as:

δC(x) =

{
0 if x ∈ C
+∞ otherwise.

The support function of C is defined as: σC(x) := supc∈C〈x, c〉 for all x ∈ H. The normal cone C at

a point x is

NC(x) :=

{
{x ∈ H : 〈x, c− x〉 ≤ 0 for all c ∈ C}, if x ∈ C
∅, otherwise.

We denote by Ran(NC) for the range of NC . Notice that δ∗C = σC . Moreover, it holds that x ∈ NC(x)

if and only if σC(x) = 〈x, x〉.
Inspired by the research works in this direction, we are interested in the development and

improvement of the method for finding solutions of the considered problem, that is, we wish to

establish the algorithm called rapid gradient penalty algorithm (RGPA) for solving (1.1) which is

generated by a controlling sequence of scalars together with the gradient of objective and feasibility

gap functions as follows:

(RGPA)


x1 ∈ H;

yn = xn − λn∇f(xn)− λnβn∇g(xn);

xn+1 = yn + αn(yn − xn) for all n ≥ 1,
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where {λn} and {βn} are sequences of positive parameters and {αn} ⊆ (0, 1).

For n ≥ 1, we write Ωn := f + βng, which is also (Fréchet) differentiable function. Therefore,

∇Ωn is Lipschitz continuous with constant Ln := Lf +βnLg. In particular, if we setting αn = 0 for

all n ≥ 1, the algorithm (RGPA) can be reduced to (DGS) in Peypouquet [20].

In order to support our ideas, we also provide a numerical example to simulate an event for

solving problem (1.1). We also compare the time and the iteration between two algorithms including

(RGPA) and (DGS).

2. The Hypotheses

In this section, we will carry out the main assumptions to prove the convergence results for

rapid gradient penalty algorithm (RGPA). In order to prove the convergence results, the following

assumptions will be proposed.

Assumption A

(I) The function f is bounded from below;

(II) There exists a positive K > 0 such that βn+1 − βn ≤ Kλn+1βn+1, Ln

2 −
1

2λn
≤ −K and

α2
n−1
2λn

+ (1 + αn)2K < 0 for all n ≥ 1;

(III) {αn} ∈ l2 \ l1,

∞∑
n=1

λn = +∞ and lim inf
n→∞

λnβn > 0;

(IV) For each p ∈ Ran(Nargmin g), we have
∞∑
n=1

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
< +∞.

Remark 2.1. The conditions in Assumption A sparsely extend the hypotheses in [20]. The

differences are given by the second and third inequality in (II), which here involves a sequence {αn}
which controls the inertial terms, and by {αn} ∈ l2 \ l1.

In the following remark, we present some situations where Assumption A is verified.

Remark 2.2. Let K > 0, q ∈ (0, 1), δ > 0 and γ ∈ (0, 1
3Lg

) be any given. Then we set αn := 1
n+1

for all n ≥ 1, which implies that lim
n→∞

αn = 0,
∞∑
n=1

α2
n < +∞ and αn ≤ 1

2 for all n ≥ 1. We also set

βn :=
3γ[Lf + 2(K + δ)]

1− 3γLg
+ γKnq and λn :=

γ

βn
for all n ≥ 1.

Since βn ≥ 3γ[Lf+2(K+δ)]
1−3γLg

, we have for each n ≥ 1

βn(1− 3γLg) ≥ 3γ[Lf + 2(K + δ)].

It follows that
1

3λn
− βnLg ≥ Lf + 2(K+δ) for all n ≥ 1,

which implies that

− (K + δ) ≥ Ln
2
− 1

6λn
for all n ≥ 1. (2.1)

According to (2.1), we obtain that

−K ≥ Ln
2
− 1

2λn
and

1

3
> 2λnK for all n ≥ 1.
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Let us consider, for each n ≥ 1

α2
n − 1

2λn
+ (1 + αn)2K ≤

− 3
4 + 9

42λnK

2λn
<
− 3

4 + 3
4

2λn
= 0.

On the other hand,

βn+1 − βn = γK[(n+ 1)q − nq] ≤ γK = Kλn+1βn+1.

Hence, we can conclude that Assumption A (II) holds.

Since q ∈ (0, 1), we obtain that
∞∑
n=1

1

βn
= +∞, so

∞∑
n=1

λn = +∞. Notice that λnβn = γ for all

n ≥ 1. It follows that lim inf
n→∞

λnβn = lim inf
n→∞

γ > 0. Thus Assumption A (III) holds.

Finally, since g∗ − σargmin g ≥ 0. If g(x) ≥ k
2dist2(x, arg min g) where k > 0, then g∗(x) −

σargmin g(x) ≤ 1
2k‖x‖

2 for all x ∈ H.
Therefore, for each p ∈ Ran(Nargmin g), we obtain that

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
≤ λn

2kβn
‖p‖2.

Thus,
∞∑
n=1

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
converges, if

∞∑
n=1

λn
βn

converges, which is equivalently

to
∞∑
n=1

1

β2
n

converges. This holds for the above choices of {βn} and {λn} when q ∈ ( 1
2 , 1).

3. Convergence analysis for convexity

In this section, we will prove the convergence of the sequence of {xn} generated by (RGPA)

and of the sequence of objective values {f(xn)}.
We start the convergence analysis of this section with three technical lemmas.

Lemma 3.1. Let x∗ be an arbitrary element in S and set p∗ := −∇f(x∗). Then for each n ≥ 1

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 + (1 + αn)λnβng(xn) ≤ (1 + αn)2‖xn − yn‖2

+ (1 + αn)λnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
. (3.1)

Proof. Applying to the first-order optimality condition, we have

0 ∈ ∇f(x∗) +Nargmin g(x
∗).

It follows that

p∗ = −∇f(x∗) ∈ Nargmin g(x
∗).

Note that for each n ≥ 1, xn−yn
λn

− βn∇g(xn) = ∇f(xn).

By monotonicity of ∇f , we obtain that〈
xn − yn
λn

− βn∇g(xn) + p∗, xn − x∗
〉

= 〈∇f(xn)−∇f(x∗), xn − x∗〉

≥ 0 ,∀n ≥ 1,

and hence, for each n ≥ 1

2 〈xn − yn, xn − x∗〉 ≥ 2λnβn 〈∇g(xn), xn − x∗〉 − 2λn 〈p∗, xn − x∗〉 . (3.2)
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Since g is convex and differentiable, we have for each n ≥ 1

〈∇g(xn), x∗ − xn〉+ g(xn) ≤ g(x∗) = 0,

whence

2λnβng(xn) ≤ 2λnβn〈∇g(xn), xn − x∗〉. (3.3)

On the other hand,

2〈xn − yn, xn − x∗〉 = ‖xn − yn‖2 + ‖xn − x∗‖2 − ‖yn − x∗‖2. (3.4)

Combining (3.2), (3.3) and (3.4), we get that

‖yn − x∗‖2 ≤ ‖xn − yn‖2 + ‖xn − x∗‖2 − 2λnβng(xn) + 2λn〈p∗, xn − x∗〉. (3.5)

Since x∗ ∈ S and p∗ ∈ Nargmin g(x
∗), we have

σargmin g(p
∗) = 〈p∗, x∗〉.

In (3.5), we observe that

2λn〈p∗, xn − x∗〉 − λnβng(xn) = 2λn〈p∗, xn〉 − λnβng(xn)− 2λn〈p∗, x∗〉

= λnβn

[〈
2p∗

βn
, xn

〉
− g(xn)−

〈
2p∗

βn
, x∗
〉]

≤ λnβn
[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
. (3.6)

Combining (3.6) and (3.5), we obtain that

‖yn − x∗‖2 ≤ ‖xn − yn‖2 + ‖xn − x∗‖2 − λnβng(xn) + λnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

(3.7)

On the other hand, we observe that

‖xn+1 − x∗‖2 = ‖yn + αn(yn − xn)− x∗‖2 = ‖(1 + αn)(yn − x∗) + αn(x∗ − xn)‖2

= (1 + αn)‖yn − x∗‖2 − αn‖xn − x∗‖2 + αn(1 + αn)‖xn − yn‖2. (3.8)

By (3.7) and (3.8), we obtain the desired result.

Lemma 3.2. For all n ≥ 1, we have

Ωn+1(xn+1) ≤ Ωn(xn) + (βn+1 − βn)g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2

+

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2.

Proof. Since ∇Ω is Ln-Lipschitz continuous and by Descent Lemma (see [5, Theorem 18.15]), we

obtain that

Ωn(xn+1) ≤ Ωn(xn) + 〈∇Ωn(xn), xn+1 − xn〉+
Ln
2
‖xn+1 − xn‖2.

Recall that −yn−xn

λn
= ∇Ωn(xn).
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It follows that

f(xn+1) + βng(xn+1)

≤ f(xn) + βng(xn)−
〈
yn − xn
λn

, xn+1 − xn
〉

+
Ln
2
‖xn+1 − xn‖2

= f(xn) + βng(xn)− 1

2λn
‖yn − xn‖2 −

1

2λn
‖xn+1 − xn‖2 +

1

2λn
‖yn − xn+1‖2 +

Ln
2
‖xn+1 − xn‖2

= f(xn) + βng(xn) +
α2
n − 1

2λn
‖yn − xn‖2 +

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2.

Adding βn+1g(xn+1) to both sides, we have

f(xn+1) + βn+1g(xn+1) ≤ f(xn) + βng(xn) + (βn+1 − βn)g(xn+1)

+
α2
n − 1

2λn
‖yn − xn‖2 +

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2,

which means that

Ωn+1(xn+1) ≤ Ωn(xn) + (βn+1 − βn)g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2 +

[
Ln
2
− 1

2λn

]
‖xn+1 − xn‖2.

For n ≥ 1 and x∗ ∈ S, we denote by

Λn := f(xn) + (1− (1 + αn)Kλn)βng(xn) +K‖xn − x∗‖2

= Ωn(xn)− (1 + αn)Kλnβng(xn) +K‖xn − x∗‖2.

Lemma 3.3. Let x∗ ∈ S and set p∗ := −∇f(x∗). Then there exists θ > 0 such that for each n ≥ 1

Λn+1 − Λn + θ‖yn − xn‖2 ≤ (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

Proof. From Lemma 3.2 and Assumption A (II), we obtain that

Ωn+1(xn+1)− Ωn(xn) ≤ Kλn+1βn+1g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2

≤ (1 + αn+1)Kλn+1βn+1g(xn+1) +
α2
n − 1

2λn
‖yn − xn‖2. (3.9)

On the other hand, multiplying (3.1) by K, we have

K‖xn+1 − x∗‖2 −K‖xn − x∗‖2 + (1 + αn)Kλnβng(xn)

≤ (1 + αn)2K‖xn − yn‖2 + (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
. (3.10)

Combining (3.9) and (3.10), we have

Λn+1 − Λn ≤
[
α2
n − 1

2λn
+ (1 + αn)2K

]
‖yn − xn‖2 + (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

(3.11)

For each n ≥ 1,
α2

n−1
2λn

+ (1 + αn)2K < 0, we have there exists θ > 0 such that

α2
n − 1

2λn
+ (1 + αn)2K < −θ.
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From (3.11), we have

Λn+1 − Λn + θ‖yn − xn‖2 ≤ (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

This completes the proof.

The next lemma is an important role in convergence analysis (see in [3, Lemma 2] or [12, Lemma

3.1]).

Lemma 3.4. Let {γn}, {δn} and {εn} be real sequences. Assume that {γn} is bounded from below,

{δn} is non-negative and
∞∑
n=1

εn < +∞ such that

γn+1 − γn + δn ≤ εn for all n ≥ 1.

Then lim
n→∞

γn exists and
∞∑
n=1

δn < +∞.

Lemma 3.5. Let x∗ ∈ S. Then the following statements hold:

(i) The sequence {Λn} is bounded from below and lim
n→∞

Λn exists;

(ii)
∞∑
n=1

‖yn − xn‖2 < +∞;

(iii) lim
n→∞

‖xn − x∗‖2 exists and
∞∑
n=1

λnβng(xn) < +∞;

(iv) lim
n→∞

Ωn(xn) exists;

(v) lim
n→∞

g(xn) = 0 and every weak cluster point of the sequence {xn} lies in arg min g.

Proof. We set p∗ := −∇f(x∗).

(i). From Assumption A (II) implies 1−(1+αn)Kλn ≥ 0. Since f is convex and differentiable,

we have for each n ≥ 1

Λn = f(xn) + (1− (1 + αn)Kλn)βng(xn) +K‖xn − x∗‖2 ≥ f(xn) +K‖xn − x∗‖2

≥ f(x∗) + 〈∇f(x∗), xn − x∗〉+K‖xn − x∗‖2 = f(x∗)−
〈

p∗√
2K

,
√

2K(xn − x∗)
〉

+K‖xn − x∗‖2

≥ f(x∗)− ‖p
∗‖2

4K
−K‖xn − x∗‖2 +K‖xn − x∗‖2 = f(x∗)− ‖p

∗‖2

4K
.

Therefore, {Λn} is bounded from below.

Next, we set γn = Λn, δn = θ‖yn − xn‖2 and

εn = (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

Recall that min g = 0. Thus g ≤ δargmin g. Therefore σargmin g = (δargmin g)
∗ ≤ g∗ and hence,

g∗ − σargmin g ≥ 0. It follows that

εn = (1 + αn)Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
≤ 2Kλnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

By using Assumption A (IV) and p∗ ∈ Nargmin g(x
∗), we have

∞∑
n=1

εn < +∞. Applying Lemma

3.3 and Lemma 3.4, we obtain that lim
n→∞

Λn exists.
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(ii). Follows immediately from Lemmas 3.3 and 3.4.

(iii). We set γn = ‖xn − x∗‖2, δn = (1 + αn)λnβng(xn) and

εn = (1 + αn)2‖yn − xn‖2 + (1 + αn)λnβn

[
g∗
(

2p∗

βn

)
− σargmin g

(
2p∗

βn

)]
.

From statement (ii), Lemma 3.4 and Lemma 3.1, we get that

lim
n→∞

‖xn − x∗‖ exists and
∞∑
n=1

λnβng(xn) < +∞.

For (iv) since for each n ≥ 1 Ωn(xn) = Λn + (1 +αn)Kλnβng(xn)−K‖xn−x∗‖2, by using (i), (iii)

and lim
n→∞

αn = 0, we have lim
n→∞

Ωn(xn) exists.

(v). It follows from Assumption A (III) that lim inf
n→∞

λnβn > 0. According to statement (iii)

implies lim
n→∞

g(xn) = 0. Let x be any weak cluster point of the sequence {xn}. Therefore, there exists

subsequence {xnk
} of {xn} converges weakly to x as k →∞. By the weak lower semicontinuity of

g, we get that

g(x) ≤ lim inf
k→∞

g(xnk
) ≤ lim

n→∞
g(xn) = 0,

which means that x ∈ arg min g. This completes the proof.

Lemma 3.6. Let x∗ ∈ S. Then

∞∑
n=1

λn [Ωn(xn)− f(x∗)] < +∞.

Proof. Since f is differentiable and convex function, we obtain that for each n ≥ 1

f(x∗) ≥ f(xn) + 〈∇f(xn), x∗ − xn〉.

Since g is differentiable, convex function and min g = 0 , we obtain that for each n ≥ 1

0 = g(x∗) ≥ g(xn) + 〈∇g(xn), x∗ − xn〉,

which implies that

0 ≥ βng(xn) + 〈βn∇g(xn), x∗ − xn〉, for all n ≥ 1.

Therefore, we can conclude that

f(x∗) ≥ Ωn(xn) + 〈∇Ωn(xn), x∗ − xn〉 = Ωn(xn) +

〈
xn − yn
λn

, x∗ − xn
〉
. (3.12)

From (3.12), we obtain that

2λn [Ωn(xn)− f(x∗)] ≤ 2〈xn − yn, xn − x∗〉 = ‖xn − yn‖2 + ‖xn − x∗‖2 − ‖yn − x∗‖2. (3.13)

On the other hand, for each n ≥ 1

‖yn − x∗‖2

= ‖xn+1 − αn(yn − xn)− x∗‖2 = ‖xn+1 − x∗‖2 + α2
n‖yn − xn‖2 − 2〈αn(xn+1 − x∗), yn − xn〉

= ‖xn+1 − x∗‖2 + α2
n‖yn − xn‖2 − α2

n‖xn+1 − x∗‖2 − ‖yn − xn‖2 + ‖αn(xn+1 − x∗)− (yn − xn)‖2

≥ ‖xn+1 − x∗‖2 + α2
n‖yn − xn‖2 − α2

n‖xn+1 − x∗‖2 − ‖yn − xn‖2,

which implies that

−‖yn − x∗‖2 ≤ −‖xn+1 − x∗‖2 − α2
n‖yn − xn‖2 + α2

n‖xn+1 − x∗‖2 + ‖yn − xn‖2. (3.14)
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Combining (3.13) and (3.14), we have for all n ≥ 1

2λn [Ωn(xn)− f(x∗)] ≤ (2− α2
n)‖xn − yn‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + α2

n‖xn+1 − x∗‖2

≤ 2‖xn − yn‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + α2
n‖xn+1 − x∗‖2.

Therefore, according to Lemma 3.5 (iii), we get that the sequence {‖xn − x∗‖} is bounded, which

means that there exists M > 0 such that ‖xn − x∗‖ ≤M for all n ≥ 1.

By Assumption A (III) and Lemma 3.5, we obtain that

2
∞∑
n=1

λn[Ωn(xn)− f(x∗)] ≤ 2
∞∑
n=1

‖yn − xn‖2 + ‖x1 − x∗‖2 +M2
∞∑
n=1

α2
n < +∞.

The following proposition will play an important role in convergence analysis, which is the main

result of this paper.

Proposition 3.7 ([5, Opial Lemma]). Let H be a real Hilbert space, C ⊆ H be nonempty set and

{xn} be any given sequence such that:

(i) For every z ∈ C, lim
n→∞

‖xn − z‖ exists;

(ii) Every weak cluster point of the sequence {xn} lies in C.

Then the sequence {xn} converges weakly to a point in C.

Let {xn} be define by (RGPA). Then {xn} converges weakly to a point in S. Moreover, the

sequence {f(xn)} converges to the optimal objective value of the optimization problem (1.1).

Proof. From Lemma 3.5 (iii), lim
n→∞

‖xn− x∗‖ exists for all x∗ ∈ S. Let x be any weak cluster point

of {xn}. Then there exists a subsequence {xnk
} of {xn} such that {xnk

} converges weakly to x as

k →∞. According to Lemma 3.5 (v) implies x ∈ arg min g. It suffices to show that f(x) ≤ f(x) for

all x ∈ arg min g. Since

∞∑
n=1

λn = +∞, and by Lemma 3.6 and Lemma 3.5 (iv), we have

lim
n→∞

Ωn(xn)− f(x∗) ≤ 0 for all x∗ ∈ S.

Therefore, f(x) ≤ lim inf
k→∞

f(xnk
) ≤ lim

n→∞
Ωn(xn) ≤ f(x∗), ∀x∗ ∈ S, which implies that x ∈ S.

Applying Opial Lemma, we obtain that {xn} converges weakly to a point in S. The last statement

follows immediately from the above.

4. Numerical experiments

In this section, we present the convergence of the algorithm proposed (RGPA) in this paper by

the minimization problem with linear equality constraints. Firstly, we are given a linear system of

the form

Ax = b,

where A ∈ Rm×n and b ∈ Rm. In addition, we assume that n > m. In this section, the system

has many solutions. This leads us to the question of which solution should be considered. As a

result, we may consider the following problem, say, the minimization problem with linear equality

constraints.

minimize
1

2
‖x‖2

subject to Ax = b,
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Table 1: Comparison of the convergence of (RGPA) and (DGS) for the parameters K = 0.001 and q ∈ ( 1
2
, 1).

q
(RGPA) (DGS)

Time (sec) #(Iters) Time (sec) #(Iters)

0.6 2.38 566 10.23 2221

0.7 2.31 568 107.78 25336

0.8 2.46 581 384.00 90636

0.9 44.96 11458 447.11 103487

or , equivalently,

minimize
1

2
‖x‖2

subject to x ∈ arg min
1

2
‖A(·)− b‖2.

The above problem can be written in the form of the problem (1.1) as

minimize f(x) :=
1

2
‖x‖2

subject to g(x) :=
1

2
‖A(x)− b‖2.

In this setting, we have ∇f(x) = x and notice that ∇f is 1-Lipschitz continuous.

Furthermore, we get that∇g(x) = A>(Ax−b) and notice that∇g is ‖A‖2-Lipschitz continuous.

All the numerical experiments were performed under MATLAB (R2015b). We begin with the

problem by random matrix A in Rm×n , vector x1 ∈ Rn and b ∈ Rm with m = 1000 and n = 4000

generated by using MATLAB command randi, which the entries of A, x1 and b are integer in

[-10,10]. Next, we are going to compare a performance of the algorithms (RGPA) and (DGS).

The choice of the parameters for the computational experiment is based on Remark 2.2. We chooses

γ = 1
4‖A‖2 and δ = 1. We consider different choices of the parameters K ∈ (0, 1] and q ∈ ( 1

2 , 1). We

will terminate the algorithms (RGPA) and (DGS) when the errors become small, i.e.,

‖xn − x∗‖ ≤ 10−6,

where x∗ = A>(AA>)−1b.

In Table 1 we present a comparison of the convergence between two algorithms including

(RGPA) and (DGS) for the parameters K = 0.001 and different choices for the parameters

q ∈ ( 1
2 , 1). We observe that when q = 0.6 leads to lowest computation time for (RGPA) and

(DGS) with 2.38 second and 10.23 second, respectively. Furthermore, we also observe that (DGS)

hit a big number of iterations than (RGPA) for all choices of parameter q.

In Table 2 we present a comparison of the convergence of (RGPA) and (DGS) for the pa-

rameters q = 0.6 and K ∈ (0, 1]. We observe that the number of iterations and computation time

for (RGPA) smaller than the number of iterations for (DGS) for each choice of parameters K.

Furthermore, (RGPA) needs tiny computation time to reach the optimality tolerance than (DGS)

for each choice of parameter K.

We observe that our algorithm (RGPA) performs an advantage behavior when comparing

with algorithm (DGS) for all different choices of parameters. Note that the number of iterations

for (RGPA) smaller than the number of iterations for (DGS). Furthermore, (RGPA) needs tiny

computation time to reach optimality tolerance than (DGS) for each different choice of parameters.

5. Conclusions

We have presented a new gradient penalty scheme, say, rapid gradient penalty algorithm (RGPA).

We provide sufficient conditions to guarantee the convergences of (RGPA) for the considered con-
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Table 2: Comparison of the convergence of (RGPA) and (DGS) for the parameters q = 0.6 and K ∈ (0, 1].

K
(RGPA) (DGS)

Time (sec) #(Iters) Time (sec) #(Iters)

0.001 2.38 566 10.23 2221

0.005 2.40 585 171.46 40888

0.01 6.63 1612 254.93 64469

0.05 83.22 20480 288.39 65722

0.1 107.41 26257 212.02 52464

0.5 79.95 18606 100.33 24419

1 51.46 13414 67.20 16616

strained convex optimization problem (1.1). We also provide a numerical example to compare the

performance of the algorithms (RGPA) and (DGS). As a result, we observe that our algorithm

(RGPA) performs an advantage behavior when comparing with (DGS) for all different choices of

parameters.

Acknowledgements

The second author would like to thank Naresuan University and The Thailand Research Fund

for financial support. Moreover, N. Artsawang is also supported by The Royal Golden Jubilee

Program under Grant PHD/0158/2557, Thailand.

Disclosure statement

The authors declare that there is no conflict of interests regarding the publication of this paper.

Funding

N. Artsawang was supported by the Thailand Research Fund through the Royal Golden Jubilee

PhD Program under Grant PHD/0158/2557, Thailand.

References

[1] H. Attouch, M-O. Czarnecki, Asymptotic behavior of coupled dynamical systems with multiscale

aspects, J. Differ. Equat. 248 (2010), 1315–1344.

[2] H. Attouch, M-O. Czarnecki and J. Peypouquet, Coupling forward-backward with penalty

schemes and parallel splitting for constrained variational inequalities, SIAM J. Optim. 21

(2011), 1251–1274.

[3] H. Attouch, M-O. Czarnecki and J. Peypouquet, Prox-penalization and splitting methods for

constrained variational problems, SIAM J. Optim. 21 (2011), 149–173.
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